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The elastic properties of model random networks are studied, in which a fraction p, of the sites are
randomly present and are connected to their remaining nearest neighbors by Hooke springs with
force constant cx. The one-site-defect problem is solved exactly using Careen's-function techniques
specialized to the static elastic limit. The location of p, , the critical point at which all the elastic
moduli vanish, and f(p, ), the fraction of zero-frequency modes, agree we11 with the predictions of
constraint-counting theory. In contrast to previously studied bond-depletion problems, it is shown
both analytically and numerically that Cauchy s relation (C&2 =C44) is strictly disobeyed, even in the
one-site-defect limit.

I. INTRQDUCTIQN

Our previous work' on the elastic properties of
central-force elastic networks has focused on systems in
which various kinds of bonds were distributed according
to random bond-depletion statistics. Efective-medium
theories (EMT) were developed for each of the three cases
studied: nearest-neighbor bonds that were missing or
present, ' nearest- and next-nearest-neighbor bonds that
were missing or present, and nearest- and next-nearest-
neighbor bonds that were strong or weak. In each case,
to develop the EMT one first solves the one-defect prob-
lem (one changed bond embedded in the network of origi-
nal bonds), and then uses the probability distribution of
the bond strengths to generate the EMT equations for any
number of defects. The one-defect problem is easy to
solve for these cases, because changing one bond affects
only two sites. Some work has also been done to extend
EMT to networks which have noncentral forces. The
one-defect problem becomes much harder when angular
forces are present, because more than two sites are
affected.

In this paper we treat the problem of site percolation
(site depletion) on networks with nearest-neighbor central
forces, the analog of the bond-depletion problem studied
in Ref. 1. This case is of interest because the associated
single-defect problem is intermediate in difficulty between
the central-force and angular force problems. A missing
site defect affects many more sites than does a missing
bond defect, but the assumption of central forces
simplifies much of the work. The site-depletion problem
is also of interest because it has a distribution of missing
bonds that is qualitatively different from that of a bond-
depletion problem. This gives another kind of random
central-force network on which to test the validity of
Cauchy's relation (Ct2 ——C44) which has been found to
hold, within numerical accuracy, on systems with random
bond strengths. '

Section II adapts constraint counting arguments to the
site-depletion problem and presents computer simulation
results for the fraction of zero frequency modes and elas-
tic rnoduli of the triangular net and fcc lattice. The solu-
tion to the one-site-defect problem is developed in Sec.
III. Section IV discusses our numerical and analytical re-
sults.

II. NUMERICAL RESULTS

The lattice potential for the networks considered is

V= —,'a g p,p (I; —Io)
&ij &

where cz is the spring force constant, l;~ is the strained
length of the bond connecting sites i and j and Io is its un-
strained length, and p; is a random variable taking on the
value 1 if the ith site is present, and 0 otherwise. The an-
gular bracket in (1) restricts the summation to nearest-
neighbor pairs. The random variable p; takes on the
value 1 or 0 with probability p, or 1 —p„where p, is the
fraction of sites present. It is easy to see that p =p, is the
fraction of bonds present. In the harmonic limit of small
displacements, the lattice potential (1) becomes

V= —,'a g p;p, [(u; —uj).5;~]
(i,j &

where u; and uj are the displacements from equilibrium
of sites i and j, and 5;~ is a unit vector from i to j.

We first develop the constraint counting prediction for
f, the fraction of zero frequency modes, and then use f to
approximately locate p, , the critical value of the site frac-
tion at which the elastic moduli go to zero.

For a network with X sites originally and z nearest
neighbors in d dimensions, the total number of constraints

will be approximately equal to the total number of
bonds present:
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N, = —,'Nzp = —,'Nzp, (3) 2. 00

1.0
Now, when the site is removed, we create d trivial zero-
frequency modes that do not affect the rigidity of the
remaining network. The fraction of zero-frequency modes

f is therefore defined for the remaining network and is

given by
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FIG. 1. Showing the two independent elastic moduli Cl1 and
C44 vs the site fraction p, for the triangular net. Each data point
has been averaged over ten configurations of a 40&46 lattice.
The results for Cll were also averaged over the x and y direc-
tions. The solid lines are the exact initial slopes extrapolated to
zero. The inset shows the fraction of zero-frequency modes
f(p, ) averaged over the configurations of a 60X70 (30X34) tri-
angular net for p, (0.27 (p, &0.27). The solid line is the con-
straint counting result from Eq. (41.

f(p, )=(d. Np, —,'Nzp—, )/dNp, =1-
2d

where dip, is the total number of degrees of freedom of
the remaining network.

Setting f(p, ) to zero in the usual way' gives the esti-
mate p,*=2d/z for the rigidity transition point at which
the elastic moduli vanish. It is interesting to note that p,*

is numerically identical to p', the constraint counting pre-
diction for bond-depleted networks derived in Ref. 1.
However, one must remember that p,.* refers to the frac-
tion of sites present. The corresponding bond fraction
would be p*=(p,*) =4d /z . For the triangular net,
0 =2, z=6, so that p,*=—', , and for the fcc lattice d=3,
z = 12 giving p,

*= —,'.
The insets in Figs. 1 and 2 show f(p, ) for the triangu-

lar net and fcc lattice, respectively. The solid lines are the
prediction of Eq. (4) and the points are numerical results
from a negative eigenvalue algorithm adapted for sparse
random matrices. The algorithm finds the number of
modes less than a cutoff frequency ni [co & 10 in this
case in units where the maximum cg is 0(1)]. The tri-
angular net results were obtained using three
configurations of a 30&(34=1020 site net for p, ~0.27,
and a 60)&70=4200 site lattice for p, &0.27. The lattice
sizes for the fcc results ranged from 2048 sites (ten
configurations) for the smallest values of p„ to 256 sites
(three configurations) for the largest values of p, . In both
figures, good agreement with Eq. (4) is seen except near
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FIG. 2. Showing the three independent elastic moduli Cl l, K,
and C44 vs the site fraction p, for the fcc lattice. Each data point
has been averaged over five configurations of an 8&&8)&8 (2048
site) lattice. Cil and C44 were also averaged over the x, y, and z
directions. The solid lines are the exact initial slopes extrapolat-
ed to zero. The inset shows the fraction of zero frequency modes

f(p, ) for the fcc lattice. The lattice size and number of
configurations averaged over ranged from ten configurations of
an 8&&8)&8 lattice for the smallest values of p, down to three
configurations of a 4&4)&4 lattice for the largest p, values. The
solid line is the constraint counting result from Eq. (4).

p,*, where the small deviations are due to finite-size nu-
merical effects and overcounting of constraints, since each
bond does not represent an independent constraint except
as p, ~0. '

Figure 1 also shows C~~ and C44 for the triangular net
versus the site fraction p, . The points are an average of
ten configurations of a 40&46=1840 site cell. C~~ was
also averaged over the x and y directions. The simula-
tions were performed by redefining the shape and/or size
of the large unit cell according to the applied strain e.
Each site was allowed to relax to its new equilibrium posi-
tion. The corresponding modulus was then determined
from the computed elastic energy per unit volume via the
relation U= —,'C;~e . The magnitude of e was always of
the order 10 ", and periodic boundary conditions were al-

ways maintained. An estimate for p,* can be obtained
from Fig. 1: p,* =0.71+0.02. The constraint counting
prediction of —', differs from this result by about 5%.
Chakrabarti, Chowdhury, and Stauffer also found p,* to
be about —', in a simulation of a site-depleted triangular
network with nearest-neighbor Lennard-Jones forces.

Figure 2 shows C&&, K, and C44 vs the site fraction p,
for the fcc lattice. The points represent the average of five
independent configurations of a 2048-site unit cell
(8X8X8). Ci, and C~ were also averaged over the x, y,
and z directions. The simulations were performed in a
similar manner to the triangular net simulations. From
Fig. 2 we can estimate p,

* for the fcc lattice to be
0.51+0.02. The constraint counting prediction differs
from this result by only 2% and is contained within the
error bars.
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III. ONE-SITE-DEFECT PROBLEM E= ~f, .u (14)

When a single site is removed from a network, the
effect on the elastic moduli can be solved analytically,
which we do in this section. The change in the elastic
properties due to a single missing bond is a rather simple
problem. ' The site defect is more complex because the
defect matrix is larger. This problem has been previously
considered by Lakatos and Krumhansl, although in our
case the defect is not as complex and so allows a simpler
solution. We will use a technique previously employed by
Thorpe and Tang' for tight-binding Hamiltonians.

The dynamical matrix" for the perfect system in k
space may be written as

AE= —
—,
' f G.f+ —,'f-P-f, , (15)

where we have used (9) and also a similar equation with
P, up replaced by G, u when the defect is introduced.
Equation (15) can be conveniently rewritten as

b.E = ——,
' f.(G —P).f

= ——' f P.V-G-f
2

= —
—, f P.V(1 —P V) 'P. f (16a)

Thus, the change in the energy due to the introduction of
a defect is

d 5k 5kp
(5) = —

—,
' uo. V( 1 —P V )

'
uo . (16b)

where

1 iak 5O;rl = —ge
z

(6)

The form (16a) is quite convenient, as the applied force f
is usually only nonzero at the surface. However, (16b) is
often more useful in practice and can be rewritten in
terms of the familiar T matrix'

and the sum over i goes over the z nearest neighbors. The
unit vector from the origin to one of its nearest neighbors
i is 5O;. The nearest-neighbor distance is a. The form (5)
holds for any Bravais lattice with nearest-neighbor central
forces. The equation of motion for the displacements up
in the perfect system is

men up ——D-up,2 (7)

where up is considered to be a dN vector and D is the
dynamical matrix in real space. It is convenient to work
in real space in order to exploit the localized nature of the
defect. If an external force f„also considered as a dN
vector, is applied to the system, then

f, = —f=D'up . (8)

Inverting this equation, we find that

up= P f (9)

where P is the zero-frequency limit of the usual Green
function P(co ) and

P(co )=(men —D) (10)

Here G is the zero-frequency limit of the Green function
G(co ) for the system including the defect, defined by

G(co )=(mes —D —V) (12)

We also set the mass of the defect equal to m, as it is ir-
relevant for the elastic moduli in the static limit. It
simplifies the notation a little to have all the masses equal.
The formal solution of (11) is

G=(1 —PV) 'P . (13)

The static energy of the system including the defect is

If a single defect is introduced into the system de-
scribed by (7), then D~D+V is a potential localized
around the defect. We have the usual Dyson equation

G=P+P VG .

T=V(1 —P V) (17)

so that

AE= —
—,'up T-up . (18)

This is a convenient form for developing effective-
medium theories of many defects as well as the single de-
fect problem we are considering here. Equation (18) is
simple because the range of T is the same as V and so is
localized around the defect. To calculate AE, it is there-
fore necessary to know up only around the defect.
Remember that the up are the displacements produced by
the external force f, in the absence of the defect. The sit-
uation is particularly simple in a Bravais lattice if f, is a
uniform external stress (e.g. , shear, compression). Then
the lattice is uniformly distorted and the up are easy to
write down. This is the only case considered here.

Consider a uniform homogeneous distortion of the per-
fect crystal in which the displacement of the ith atom is

u; =e(R;.a)P, (19)

where e is the magnitude of the strain and a and P are
Cartesian unit vectors. The vector R; is the equilibrium
position of the ith atom. The elastic energy associated
with (19) for the potential (2) is

E= —,'aa g [(5;,"a)(5;, P)]'e (20)
( ~,j )

where 6;~ =R;~/a is a unit nearest-neighbor vector and a
is the nearest-neighbor distance. Hence we can write

E= ,'Nze a a((6 ) (6~)—), (21)

where the average ( ) goes over the z nearest neighbors of
the defect site. Because of the central forces, we need
only the components of the distortion (19) in the radial
direction on the shell around the defect. It is convenient
to put the origin at the defect site. Putting it elsewhere
corresponds to a uniform translation and does not affect
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the result. We therefore form uo from the components
e(R, .a)(R;.P) on the shell. We set R; =Ra; and 5;=50;.
The normalization of uo is given by

e g (R;.a) (R;.P)'=e a a ((5 ) (5e) ) (22)

Therefore, we may write

u =ea[z((5 ) (5~) )]' ~s), (23)

&e

fPTPf+
fPf

(25)

using Eqs. (13)—(15), where a, is the renormalized spring
force constant. This can be rewritten in terms of the uo
produced by the f

where
~

s ) is a unit state vector. Thus, the change in the
energy volume for a single defect may be written as

b,F.= —2ze —a ((5 ) (5~) )(s
~
T

~

s) . (24)

Remembering that when the defect is introduced, the
stress is held constant, so that it is the quantity a that is
renormalized as the energy -f /a. Hence we may write

pt= ———(s
~

P ~s)
2 z

then

(33)

2ca(ao —a)
Aq =A+

2a(1 —pt )+ao(2pt —1) (34)

CAa, =e—
1 —pl

(35)

which gives the initial slope for small c. If this slope is
extrapolated to the point at which it crosses the horizontal
axis, this occurs at p =1—c =pI', hence the notation.

The quantity pl is a pure number, and it allows the
general site-defect problem (34) to be solved, as well as the
vacancy (35). We will now calculate pt for various strains
in the triangular net and fcc lattice.

For the triangular net, the elements of the dynamical
matrix in k space may be obtained from y& [see Eqs. (5)
and (6)]:

yq = —,
' [2 cos(2x)+4 cosx cosy],

and so for the special case of most interest here, a vacancy
where G.o ——0,

CXe

uo Tup=1-
uoDuo

(26) where the x axis is along one of the bonds and we use the
shorthand notation x=k a/2, y=&3kya/2. Using (5),
we see that

which is also given by

(27)
D =3—2 cos(2x) —cosx cosy,

Dyy =3(1—cosx cosp )

D,y =D»„=+3 sinx siny .

=1—2c(s
i
T is)/a, (29)

where Nc is the (small) number of noninteracting defects.
It is more usual to invert (29) to give

The results (25) —(27) are quite general. ' In the present
case, using (21) and (24), we find that

a
1

2Nc(s ~T~s)

The group of the site defect in the triangular net is C6,
and the radial displacements on the shell around the de-
fect transform' as I ]+I"3+I5+I 6. A second rank ten-
sor transforms as (x +y ) which is I

~ and (xy) which is
I 6. Thus I ] leads to the bulk modulus E and I 6 leads to
the shear modulus C44. These are the ~s) that are the
eigenstates of P and from these two elastic moduli, all
others may be found. The inverse of the dynamical ma-
trix D(k) may be written A where

a, =a+2c(s
i
T is)

to first order in the concentration c of defects.
If the defect is such that the z bonds around the defect

site are ao rather than a, then it is easy to see that for any
~

s ) formed as above

A =Dyy /(D Dyy Dy ), —

&yy =Dxx /(Dxx Dyy —Dxy )

Axy =+yx = Dxy /(DxxDyy Dxy )

Thus the components of the Green function are

(38)

and

V
~

s) =(ap —a)
~

s) (31)
Pg t'= 1 ik(R; —R )

k

2c(ap —a)
CX~ =A+

1 —(ao —a)(s
~

P
~

s)
where we use the fact that for certain special strains

~

s)
is an eigenstate of the matrix P. In the tight-binding
model, this is achieved automatically, ' but here we have
to find the appropriate strains. There are exactly the right
number of independent eigenstates

~

s ) to give a complete
solution to the problem. If we write'

where i,j denote either the defect atom or an atom on the
nearest-neighbor shell.

For the bulk modulus K, we have u;=ea5;, so after
forming the normalized

~

s) state vector as described ear-
lier, we find that

f3

~~g~&~P

where the sum over i,j goes over the atoms in the shell or
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where

~ye
2 N 5a 6Pk, a,P

(40)

and

&yk

6X
= ——'[sin(2x )+ sinx cosy]

~yI l—cosx siny .
5y &3

For the shear modulus C44, we project into the radial
direction to get u; = ea(5; x)(5;.y)5;. After forming the
state vector

~

s ) we find that

1 2 ~ gxpgapapgpgxy, iak ~t ~j
pl z 3 ~ l l f 1J

ij,a, p

The group of the site defect in the fcc lattice is Oq, and
the radial displacements on the shell around the defect
transform as I ~++I

~ +I 3++I 4 +I 5++I 5 . A second-
rank tensor transforms' as (x +y +z ) which is 1 i+,
(x —y, 3z —r ) which is 1 3+, and (xy,yz, zx) which is
I 5+. Thus I ~+ leads to the bulk modulus K, and I 3+ is
the shear modulus —,

'
( Ci i

—C i2 ). This corresponds to a
shear along [110] in the [110] direction, for example.
Also I &+ leads to C~ which is a shear along [100] in the
[010] direction, for example. These are the

~

s) that are
the eigenstates of P; from these three elastic moduli, all
others can be found. It is perhaps surprising that one is
led to —,'(C, i

—C,2) rather than, say, C», but that is the
way it works out.

Proceeding as in the triangular net, we find the pq for
the bulk modulus K to be

N „p 5x5y5a 5x5y5P
(41)

&y~ &y&
(45)

Evaluating the factors involving the derivatives of yk, we
find

for the shear modulus —,'(Cii —Ciq)

&'yI

6X5y

&'yk

6x 5y

=
4 slnx cosy

1 —cosx siny .
4V'3

(42)

1 36
2 N „

&'y~ &'yi,
X& p 6 x6p 6 y5p

The integrals (40) and (41) are over the first Brillouin
zone and can be evaluated numerically. The values are
given in Table I. From these two, the pi for all other
elastic moduli can be found. Some of these are also
shown in Table I.

For the fcc lattice, the calculation proceeds similarly to
the case of the triangular net, so we give only the essential
steps. The elements of the dynamical matrix may be ob-
tained from yk..

and for the shear modulus C~

6'rI, 5'ra
PI= A p2 N q p 5x5y5a 6x5y5P

(47)

These expressions are three-dimensional integrals over the
first Brillouin zone and are evaluated numerically. The
results are shown in Table II. From these three inter-
cepts, the pi for all other elastic moduli can be found.
Some of these are also shown in Table II.

rl, = —,'(cosx cosy+cosy cosz+ cosz cosx), (43)
IV. DISCUSSION

D, =4—2 cosx(cosy+ cosz),
Dxy =2 s1Ilx s1ny

plus cyclic permutations to get the other D p.

(44)

where x, y, and z are the usual cubic axes, and we use the
shorthand notation k a /&2 =x, etc. Using (5) we see
that

In this paper, we have presented numerical simulations
and exact analytical initial slope results for the elastic
properties of two- and three-dimensional site-depleted
central-force networks. Upon comparison with our previ-
ous results' (Ref. 1 in particular) for bond-depleted net-
works, several interesting similarities and differences may
be seen.

TABLE I. List of values of intercepts derived from initial
slope calculation for triangular net, in terms of site fraction p, .
Results labeled "Simulation" were obtained by direct numerical
simulation of a 40&(46 lattice with one site missing. Only two of
the intercepts are independent.

TABLE II. List of values of intercepts derived from initial
slope calculation for fcc lattice in terms of site fraction p, . Re-
sults labeled "Simulation" were obtained by direct numerical
simulation of an 8X8)&8 lattice with one site missing. Only
three of the intercepts are independent.

Modulus

K
E
Clz

Theory

0.782
0.696
0.759
0.495
0.731

Simulation

0.782
0.695
0.759
0.497
0.731

Modulus

K
C44

21 (C}1—C12)

Clz

Theory

0.620
0.666
0.688
O.S91
0.646

Simulation

0.620
0.666
0.687
0.591
0.646
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FIG. 3. Showing the Young's modulus E and Poisson's ratio
o. vs the bond fraction p=p, for the triangular net. The solid
lines are the extrapolated exact initial slopes.

FIG. 5. Showing the ratio C~l/C44 vs the site fraction p, for
the triangular net. The solid line is the extrapolated exact initial
slope.

then pi ——2pi —1 is the intercept in terms of the bond frac-
tion p. The data points for E follow the initial slope re-
markably closely. The agreement is nearly as good as in
the bond percolation case. ' Poisson's ratio follows the ini-
tial slope well until about p =0.7. There is typically more
noise in a computed ratio as we are dividing smaller and
smaller numbers as p ~p*. Figure 4 is the equivalent of
Fig. 3 but for the fcc lattice, showing C&&, K, and C44
versus p. Again the data points follow the initial slope re-
sult quite well. However, the agreement was somewhat
better in the bond problem on the fcc lattice. ' One should
note that p*=(0.51) =0.26.

The elastic behavior of the site-depleted networks
differed significantly from that of the analogous bond-
depleted networks in the behavior of the ratios of the elas-
tic moduli. In the bond case, ' the ratios were essentially
constant as a function of p, since the agreement with
effective medium theory was so good and pi was the same
for all moduli. Figures 5 and 6 show the elastic moduli

1.001.50

0. 75
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o
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FICx. 4. Showing the elastic moduli Cll, K, and C44 vs the

bond fraction p=p, for the fcc lattice. The solid lines are the
extrapolated exact initial slopes.

FIG. 6. Showing the ratios C44/K and C~~/Cll vs the site
fraction p,- for the fcc lattice. The solid lines are the extrapolated
exact initial slopes

Simple constraint-counting theory (albeit in a slightly
modified form) continues to be a powerful method of lo-
cating the rigidity transition point to within a percent or
so. The reason for this success is still not clear, as it is
known that f(p, ) [or f(p)] is not equal to zero at the rigi-
dity transition point, since small Aoppy inclusions persist
in the rigid backbone for p, ~p,*, resulting in the coex-
istence of zero-frequency modes and finite macroscopic
elastic stiffness. It should be noted here that the power of
constraint counting also extends to problems with angular
forces. ' The form of f(p, ) was also predicted quite well

by constraint counting, except in the critical region
around p,*.

Figure 3 shows the elastic moduli for the triangular net,
in this case the Young's modulus E and the Poisson's ra-
tio o plotted versus the bond fraction p (these quantities
can be calculated from the c;, as shown in Ref. 7). The
critical point' becomes p* =—(0.71) =0.5. The solid lines

are the exact initial slopes replotted versus p. It is easy to
show if pi is the intercept in terms of the site fraction p„
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FIG. 7. Showing the elastic moduli CI2 and C~ vs the site
fraction p, for the triangular net. The solid lines are the exact
initial slopes extrapolated down to zero. The inset shows C vs
p„where C=(Cl2 —C44)/C~. The straight line is the extrapo-
lated exact initial slope.

PI
FIG. 8. Showing the elastic moduli C)2 and C~4 vs the site

fraction p, for the fcc lattice. The solid lines are the exact initial
slopes extrapolated down to zero. The inset shows C vs p„
where C =(Cl2 —C44)/C44. The straight line is the extrapolated
exact initial slope.

ratios for the site case. C~~/C44 is plotted in Fig. 5 for
the triangular net versus the site fraction p, . The initial
slope of the ratio is non-zero because the initial slopes for
C~~ and C44 are different. It is interesting to note that the
critical value of the C~~/C44 ratio is roughly 3.5+0.3,
which is the same value Bergman' found for C~~/C44 for
the bond-percolation problem on the honeycomb net with
angular forces. The reason, if any, for this numerical
coincidence is not obvious, as the two prob1ems are in
different universality classes. ' The fcc ratios in Fig. 6 are
also not constant.

A more important distinction can be drawn between
the central-force site-depletion and bond-depletion elastic
problems on the basis of Cauchy's relation. The deriva-
tion of Cauchy's relation, as usually stated, ' states that a
network with a center of symmetry at every site and only
central forces will have C&2

——C44. In the bond-depleted
systems, it was found that C&2

——C44 was obeyed with re-
markable accuracy even close to the critical region, where
the difficulty of relaxing the networks caused large numer-
ical uncertainties. More importantly, however, was that
the effective-medium theory in the bond case, which gave
the initial slope exactly, implied that Cauchy s relation
was obeyed exactly even in the presence of a few altered
bonds. In the site-depletion case studied here, it was

found that the initial slopes of C&2 and C44 were rigorous-
ly not the same (see Tables I and II), implying that
Cauchy's relation is not obeyed even when only one site
defect is present.

C~2 and C44 are plotted versus p, for the triangular net
and fcc lattice in Figs. 7 and 8, respectively. The insets
show the parameter C—:(C~2 —Cq4)/Cq4 graphed versus
p, . The solid lines are the extrapolated exact initial
slopes. It is clear in both figures that Cauchy's relation is
no longer obeyed when site defects are present in a
central-force network. The evidence from the bond-
depletion studies (Refs. l —3) already shows that the usual
assumptions behind Cauchy's relation may have to be
generalized; the negative result in the site-depletion case
puts limits on how general such assumptions may be. A
possible generalized hypothesis for Cauchy's relation has
been proposed and is presented elsewhere along with sup-
porting numerical evidence. '
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