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Concentration fluctuations of polystyrene-polybutadiene blends
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Small-angle x-ray scattering analysis of concentration fluctuations in polystyrene-polybutadiene
mixtures is interpreted using a recently derived mean-field version of the gradient term of the Landau
expansion for the free energy. Available information on the temperature dependence of the interac-
tion parameter, obtained from optical determination of cloud point curves, allows direct comparison
between theoretical and experimental correlation lengths at temperatures approaching the spinodal
line in the homogeneous phase. Critical wave vectors after quenching below the spinodal line are an-

alyzed in similar fashion. Polydispersity effects on the spinodal line and the structure factor are cal-
culated for an arbitrary shape of the molecular weight distribution. The values of the temperature
coefficient of 7 obtained separately from cloud point curves and scattering data near the spinodal line

are consistent. Comparison after quenching to temperatures below the spinodal line shows systemat-
ic overestimation of critical wavelengths.

INTRODUCTION

Concentration fluctuations in polymer blends at tem-
peratures close to the spinodal line are presumably dom-
inated by many chain features. ' Verification of this as-
sumption requires formulation of a molecular theory ac-
counting for long-range density fluctuations and compar-
ison with experiment. The random-phase approximation
(RPA) yields reasonable values of the correlation length
for many concentrated polymer systems. However, refer-
ence to the decoupled state stresses the approximate char-
acter of the method. More intuitive mean-field ideas are
often successful in the prediction of the thermodynamic
behavior of concentrated systems. In a recent paper, we
proposed a mean-field evaluation of the additional contri-
bution to the free energy associated with nonuniform con-
centration fields. This contribution, additive with respect
to the number of chains, comes from configurational dis-
tortions induced by concentration gradients causing
nonhomogeneous energetics of interaction with the medi-
um. In this paper, we present scattering data obtained for
mixtures of polystyrene (PS) with polybutadiene (PBD), at
temperatures above and below the spinodal line. RPA
predictions of the critical wavelength and temperature
dependence of the interaction parameter are compared to
our calculations, which provide better agreement with ex-
periment in the range of temperatures considered. Ac-
count of polydispersity effects on the spinodal line and the
scattering intensity leads to a description in terms of the
weight average degree of polymerization. Here, our
analysis is extended to the evaluation of the structure fac-
tor incorporating polydispersity effects on the form of the
gradient term of the Landau expansion.

SPINODAL LINE AND SCATTERING FUNCTION

The spinodal line for polydisperse blends has been
treated by Konings veld and Chermin, whose results
confirm those derived earlier by Stockmayer. Restrict-

ing, for the moment, our analysis to bulk polymer mix-
tures without solvent, we devise a technique applicable to
the evaluation of the scattering intensity at finite values of
the scattering vector.

The free energy AG per unit volume 0 of a
polydisperse binary blend is given by
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The sets P„(i) and Pit(i) define the volume fractions of
the molecules of types A and B containing %„(i) and
Nit(i) monomers, respectively Uq and. Uz are the mono-
mer volumes of components 3 and 8 and X is the
effective interaction parameter. The value of 7 at the spi-
nodal temperature is that value of the reduced interaction
parameter for which fluctuations of infinite wavelength be-
come unstable. Our definition and treatment of the spino-
dal can be extended to finite wavelengths. In the infinite-
wavelength limit the contribution of gradient terms to the
free energy may be neglected.

Expressing the concentration fields QA(i, r) and ps(i, r)
as average values 4&„(i) and Nit (i) plus fiuctuations
itj„(i,r) and gtt(i, r) and neglecting linear terms which
average out after integration over all space, the quadratic
expansion of the local free energy (1) yields:
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A and B results from the assumption of incompressibility
which states:
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Apparent lack of symmetry between the two components
I

Fourier cosine expansion of the fluctuations throughout
the volume V=L and integration over space yields the
total free energy in terms of the Fourier components,
q „(i,q) and q~(i, q):
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Each point of the reciprocal space has a volume vr /L .
The partition function is obtained extracting the
Boltz mann factor from Eq. (4) and multiplying by a
singular weighting factor which incorporates the condition
(3). Integration over the Fourier components %„(i,q) and
q'~ ( i, q ) yields the expression

Z= exp — g & r, &r d'r
V

after Fourier representation of the 5 function in Eq. (5),
Z1 can be expressed as
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The partition function factorizes, in the absence of gra-
dient terms, into a product of identical contributions:

z (z )M
where co is the auxiliary variable used for the Fourier rep-
resentation and
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where M is the total number of available points in the re-
ciprocal space. Introducing the reduced variables
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Integrating first over y;, then over co, we obtain the result
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According to our previous discussion, for given sets of
average concentrations @z and Wz, the spinodal value of
the interaction parameter is obtained by determining the
appearance of the first nonpositive eigenvalue of the com-
plete matrix of the quadratic form. However, Eq. (10) im-
plies a more trivial conclusion. The molecular weight dis-
tribution of polymer B appears in Eq. (10) only through
the weight average. By symmetry, Z1 must depend only

on the weight average molecular weight M of the two

polymers. Passing to the equivalent monodisperse case
we get the familiar equation of the spinodal line

1 1+
2Nq~ v „@ 2N~„uz (1 —N)

where 4& is the concentration of polymer A, denoted as P
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in the monodisperse case. Equation (11) coincides with
the result derived by Koningsveld using matrix methods
and with the results of Joanny. This has also been re-
ported by Shibayama et al. Our formulation in terms of
an elementary functional integral becomes more useful in
the analysis of correlations, to different degrees of com-
plexity, required for the evaluation of the scattering func-
tions.

We will now focus on the gradient term in the presence
of polydispersity. Prediction of the scattering intensity at
finite scattering wavelengths above the spinodal tempera-
ture requires the introduction of polydispersity into the
gradient term of the free energy per unit volume, Q (VP) .
The expression for Q previously calculated for mono-
disperse systems is

Q(~» +)= (&~a —&~~)'4(r~ ~N
18vg

2

ful check on their consistency. Specifically, we can con-
sider a polymer solution of A molecules in an effective
solvent B, subject to small poymer density gradients due
to remote boundary conditions. Linear-response theory'
relates density changes to applied perturbing potentials.
Mean-field interpretation, acceptable in the limit of weak
long range cooperativity, refers these potentials to total
density changes A. t Pnite solvent amounts, allowing in-
dependent motion of the molecules, the effective single
chain potential of the solution for molecules of type A be-
comes

N
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where X',ft
——X~s —Xz~ in keeping with Eq. (13). As we

will see, self-consistent evaluation of 7',z yields a different
result. In the case of slow variations of the density
profile, we may write
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where P is the volume fraction of polymer A. N„and
are the number of monomers of components A and 8

with monomer volumes vz and vB, respectively.
Xzz, and EBB are the three separate interaction parame-
ters. In the derivation of Eq. (12) each chain was as-
sumed to interact with its environment by means of an
effective g parameter. In the simplest approximation the
energetics of the environment is completely characterized
in terms of volume fractions and bulk 7's with no refer-
ence to the molecular weights. Conceptually, we are al-
lowed to consider the polymer solvent case and extend the
results to other cases of binary mixtures. Previously, we
expressed the energy of interaction of a given chain with
the medium on the basis of the same probabilistic argu-
ments used for the evaluation of the thermodynamic
enthalpy as

N

= g IX&zg(x;)+g'„~[1—P(x,. )]},
where P(x) is the local volume fraction, N, the number of
effective lattice cubes and g'=n 'g, where n ' is the num-
ber of monomers per statistical cube. Equation (13) im-

plies that concentration gradients introduce alterations to
the mass distribution of each chain, resulting in an addi-
tional contribution to its configurational free energy. In
the case of binary polymer mixtures with no solvent, both
sets of molecules contribute. The calculated overall in-
crease of the thermodynamic free energy per unit volume
is given by Eq. (12). One chain at a time can be con-
sidered in the evaluation of the extra free energy.
Division by two avoids improper counting of interactions
in the classical derivation of the thermodynamic enthalpy.
Motion of each chain through its environment certainly
produces changes of the local energetics of the mutual in-
teractions between solvent molecules or chains of the oth-
er type. These interactions are not taken into account in
Eq. (13). Extension of single chain concepts to the mean
field prediction of long-range fluctuations provides a use-

where P is the polymer volume fraction, proportional to
the polymer density. Application of linear-response
theory to a system of nz chains, each containing N, sta-
tistical units, yields

n N
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(16)

where p„, (q) is the Fourier transform of the density distri-
bution associated with the ith monomer of the nth chain
and S(q) is the complete scattering function. Equation
(16) holds for g«1/q &D, where g is the correlation
length and D is the distance between boundaries. Since

S(q~0) ~ 2X'—

Zx = dxn exp 2k, v

G
i
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where C is the rigidity of each of the Xz Gaussian sub-

for long molecules and finite solvent amounts, the form of
Eq. (16) implies that X ',s ——2X ', where X ' is the reduced X
parameter per lattice unit. If so, Eq. (13) cannot be
correct. The condition 7 ',&

——2X, preserves unperturbed
statistics between distant boundaries at 0 conditions
(X'= —,') and low concentrations. Calculation of the ex-

tra free energy of the general A chain embedded in a den-
sity gradient is done subtracting from the effective single
chain free energy interactive terms and the ideal contribu-
tion. Let /=go(ro)+h, .(r —ro) for a particular chain of
type A, whose extreme is fixed at r = ro. Within the
Gaussian approximation, its partition function reduces to
the product of three independent factors. The general
component Z is
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molecules, x is the component of the mth Gaussian
bond vector, and 7 is the interaction parameter per
Gaussian strand. After evaluating Z„, we must subtract
the interactive part of the free energy and also the ideal
contribution —ln[Z (M =0)]. Summing the contribu-
tions of the three Cartesian factors, we obtain a simple
formula for the extra free energy of distortion per chain of
type A:

1
(2X) N„( r „)( VQ)

where 7 refers, again, to the monomer unit. Interactions
must be subtracted because local energetics is already ac-
counted, with or without density fluctuations, by Eq. (1).
The complete front factor of the gradient term is easily
obtained adding individual chain contribution.

S(q(=(2rr)'VS(q(vP'+HVv„( gx(i q)x(j q)) .
i&J

Equations (9a) and (10) yield
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J X
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with y;, (q) as given by Eq. (20). From Eqs. (9a), (10),
(17), and (20) we observe that the molecular weight distri-
bution of polymer B appears in the integral giving Z1(q)
only in terms of N and N, . By symmetry, the same
must hold for polymer A. Introducing the "eA'ec-

tive" characteristic ratios C~ ——C~ N q, /N ~ and
C~=CtjNtj, /NB, we can formally express Z1(q) and,
consequently, the overall scattering function (23), in terms
of the equivalent monodisperse formula:
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Formulation of Q in terms of X makes comparison with
experiment more straightforward. The extension of Eq.
(17) to polydisperse systems follows easily due to the addi-
tive character of the contributions associated with the par-
tial volume fractions of each molecular weight

Q( A, B,4)= C„NN„N„,(2X)'
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where irz ) =CzNq, t, re ) =CjjNjj, N is the weight
average number of monomers, and N, the z average. Re-
formulation of the partition integral in the presence of
fluctuations of finite wavelength leads to the result

Equation (25) is easily derived also by calculation of the
determinant of the quadratic form and application of Eq.
(24). The cumbersome structures of Eqs. (9a) and (10) be-

come very useful in the analysis of partial correlations of
fractions with selected molecular weights.

EXPERIMENTAL PART

Z = g [F(q»1(q)] (19)

where F(q) is a function of the wave vector and Z1(q) is
still expressed by Eq. (10) with a proper redefinition of the
matrix y;

r;, (q) =7;, +U~q'Q[A, B,+] . (20)

X ( X x (i q)x (j q(lexp[iq (r —r')], (21)

where

x(i, q)= v
8vg
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From Eq. (21) the scattering function S(q) is readily ob-
tained:

Fourier expansion of the partial concentrations gives the
overall density correlation ( b C7(r)b, 4(r') ):
( bA&(r)b, @(r'))

Mixtures of PS (M =2000, M /M„=1.3) and PBD
(M = 1000, M /M„= 1.2 and M =2500, M /M„
= 1.15) were prepared by combining preweighed portions
of each polymer in a glass-weighing pan at room tempera-
ture. Homogeneous mixtures were obtained by heating
the mixtures to approximately 90 C for 15 min under a
nitrogen blanket. Using heated pipettes, the homogene-
ous, single-phased mixtures were transferred to the
scattering cell consisting of a stainless-steel ring (1 mm in
thickness) with two Kapton windows (8 (Mm in thickness).
The specimens were then allowed to cool to room temper-
ature prior to the experiments.

The samples were mounted into a Mettler FP85 hot
stage using a brass collar to center the specimen over the
hole through which the collirnated x-ray beam passed.
Scattering measurements were performed at the small an-
gle scattering facility on beamline I-4 at the Stanford Syn-
chrotron Radiation Laboratory. The white radiation from
the storage ring is focussed horizontally using a 1e25-m
fioat glass mirror and a cylindrically bent Si(111) crystal.
The size of the beam at the specimen is approximately 1

mrn in diameter and at the detector, 50 cm downstream,
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FIG. 1. Small-angle x-ray scattering profiles of a 60'Fo PS
(M =2000) with 40% PBD (M =1000) as a function of tem-
perature.

0.15 and 0.4 mm in the vertical and horizontal directions,
respectively. The Si(111) crystal reflected 1.412-A x rays
into the specimen with higher harmonics being filtered
previously by the mirror. Scattered x rays were collected
using a 1024 pixel, self-scanning photodiode array. In-
tegration times on the detector ranged from 1 —2 min. In
addition to the scattering profiles, the incident beam mon-
itor counts just before and after the specimen, the temper-
ature of the specimen and the integration time were stored
on a hard disk for later use. At least five minutes were
given at each temperature prior to collecting a scattering
profile to attain thermal equilibrium. Detailed descrip-
tions of the scattering geometry can be found else-
where &o

Typical scattering profiles of a 60% PS (M„=2000)
with 40% PBD (M„=1000) are shown in Fig. 1 as a
function of temperature. Only a few representative
scattering profiles are shown for this mixture as it is
cooled from 82 'C (homogeneous state) to 25 'C (well
below the spinodal line). Analysis of one of these scatter-
ing profiles in an Ornstein-Zernike manner, i.e., plotting
1/I versus q, where I is the scattered intensity and q is
the scattering vector, is shown in Fig. 2. The average
chain dimension of the polystyrene sample is approxi-
mately 3 nm, which is well within the experimental reso-
lution. As can be seen over the scattering vector range

36$U „N„36(1 p)vgNg—
(27)

Our mean-field version is given by Eq. (17). We do not
consider polydispersity effects for the systems studied.
(r„) and (r~ ) have been evaluated using known values
of the characteristic ratios. In the case of PBD, we have
chosen a value of C intermediate between those of the

studied, the q dependence of the scattering is evident.
It should be noted, however, that as T~Tz the correla-
tion lengths, g, get quite large and a pronounced down-
ward curvature of these plots was observed. Most likely,
this is due to the limited spatial resolution of the small-
angle x-ray scattering (SAXS) camera. In the immediate
vicinity of Tz, quartic terms in the expansion of the free
energy cannot be neglected. This yields a different ther-
modynamic characterization of the phase transition.
However, agreement of experimental scattering data with
the Gaussian exponent of the correlation length is clearly
observed over an interval of more than ten degrees ap-
proaching the spinodal temperature from above.

We will now proceed to discuss the analysis of PS-PBD
scattering data. Binodal lines determined from optical
density measurements' using the two fractions of PBD in
different relative amounts were analyzed in Ref. 3. In
both cases the consolute point corresponds to PS weight
fractions of about 50%. Complementary information is
obtained from an analysis of scattering data at tempera-
tures approaching the spinodal, with PS weight fractions
close to the consolute value, in order to avoid phase nu-
cleation. The RPA version of the gradient term is'
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FIG. 2. Ornstein-Zernike plot for a 60'Fo PS (M =2000)
with PBD (M =1000) at 50'C.

FIG. 3. Plot of the reciprocal square of the correlation length
determined from the Ornstein-Zernike analysis as a function of
temperature. The intercept at 1/g'=0 yields the spinodal tem-
perature (50% 2 K PS; 1 K PBDj.
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TABLE I. Quenching temperature T, calculated spinodal temperature Tsc, experimental critical
wavelength 1/q„RPA prediction, and mean-field estimates. P~, is the weight fraction of PS.

2000 PS
2500 PBD
2000 PS
1000 PBD

40%%uo

60%%uo

40%%uo

T ('C)

75
60

35

Tsc ( C)

110
123

58

1/q, (A)

43.45
36.36

47.62

1/q, (A)

16
12

15

1/q, (A)

72
54

52

two forms (trans and cis). From Eq. (25), using our previ-
ous result 7= A T, we can express the correlation
length g at temperatures T close to the spinodal value Ts

txX( Ts )( T —Ts )

Q(A, B,Q)ua Ts
(28)

u„2N„u„g 2N~u~(1 —P)

(29)

Three cases have been analyzed with X( T) calculated from
the analysis of the binodals. The results are shown in

Figure 3 clearly shows the linear dependence of g on
(T —Ts) for blends containing the shorter fraction of
PBD at 50% weight fraction of PS. The experimental
values of A and a calculated fitting binodal curves at two
different molecular weights of the PBD fraction are
A =6.96&(10 and a=2.65. Using these to calculate 7
overestimates the spinodal temperature by about ten de-
grees. Polydispersity may account for this discrepancy,
which does not substantially affect the potential use of Eq.
(28) for comparison of Eqs. (17) and (27). The corre-
sponding values of a, recalculated using Eq. (28) and the
data of Fig. 1 are +=3.02 and 0.35, respectively. This
discrepancy is remarkable. Independent comparison be-
tween the proposed versions of the gradient term is done
by considering the kinetics of spinodal decomposition
after quenching. Critical wave vectors are obtained from
the formula

Table I. The critical scattering wavelength is considerably
larger than the coil radius of gyration. A comparative
analysis of the two versions of the gradient term shows
that the two models provide opposite bounds.

The practical utility of our mean-field approach to
quasicritical Ji'uctuations and the opportunity of expressing
even single-chain energetics in terms of the Flory effective
7 parameter is consistently shown. The value of the ex-
ponent n extracted from the analysis of the scattering data
using our version of the gradient term is slightly higher
than that calculated from the cloud point curves. Ac-
count of polydispersity effects, weak in our case, would
not increase the discrepancy substantially. Formally
(recourse to N, ) and quantitatively similar effect of po-
lydispersity on the gradient term has been predicted by
Joanny and Shibayama et al. using RPA methods. Our
evaluation of the critical wavelength after quenching
exceeds the experimental value (see Table I). Increasing
dominance of single chain effects must be expected at
lower temperatures. Scattering data above the spinodal
line are more accurate. The method developed for the
evaluation of the global scattering function is applicable to
the calculation of the structure factor of restricted sets of
labeled molecules in the homogeneous phase close to the
spinodal line. Solvent effects contribute additional steric
terms to Eq. (17). Our analysis of the cloud point curves
did not require introduction of concentration dependence
of the 7 parameter for PS-PBD mixtures. Careful
analysis of biphasic equilibria in the concentration range
around the consolute point shows higher sensitivity to po-
lydispersity effects.
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