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The power spectra of different dynamic correlation functions of a single one-dimensional rotor cou-
pled to a bath of harmonic oscillators have been studied using molecular dynamics and, to some ex-

tent, Mori theory. The latter results, obtained in the lowest nontrivial order of approximation, are
found to be unreliable over most of the parameter range studied. The molecular dynamics results are
compared both to experiment and to our earlier results for the one-dimensional oscillator which is an
example of a linear system. %'e find that the present nonlinear system retains some of the general
spectral features of the linear one. However, the nonlinear coupling strongly affects the low-

frequency end of the velocity power spectrum P, (co), particularly in the strong-coupling limit a~1.
The weak divergence in P, (co) as co~0 for a=1 present in the oscillator case is absent in the rotor
system. For nonzero a (0&+ & 1) we find that, for temperatures smaller than the adiabatic barrier
height, the qualitative structure of the sine and the cosine power spectral functions are relatively in-

sensitive to a. The velocity power spectrum, however, is strongly a dependent and can in principle
distinguish between the strong (a~1)- and weak (a —+0)-coupling regimes.

I. INTRODUCTION

In the dynamical study of rotation-translation coupling,
even the case of a single rotating molecule coupled to a vi-
brating lattice is not well understood, especially when the
coupling is strong. Systems of this type are molecular im-
purities, e.g. , CN and 02 in alkali halide crystals at
very low concentrations, ' or 02 and Nz molecules on a
graphite surface at very low concentrations surrounded by
a two-dimensional (2D) Ar matrix. In such systems the
coupIing mentioned above may be quite strong. The
rigid-lattice potential well for the rotation may combine
with the translation-rotation coupling to produce a shal-
low effective potential. This was suggested to us by the
example of CN impurities in KBr. Theoretical estimates
for a rigid crystal led to a barrier height of several hun-
dred K, ' while the experimental results gave about 50
K. ' It is physically obvious that if properly synchron-
ized, the neighboring ions can get out of the way of the
rotating molecule, thereby reducing the height of the
effective barrier.

In our initial attempt' at solving this problem we took
the coupled translation-rotation Hamiltonian appropriate
for a CN impurity in KBr and followed the Mori-theory
approach of de Raedt and de Raedt, and of de Raedt and
Michel to calculate the dynamic correlation functions for
different rotational variables, keeping only second and
fourth moments of these variables (higher moments are
approximated in terms of these two and zeroth-order mo-
ments). To this order of approximation, the translational
motion of the surrounding lattice is taken into account

only in an average way, so that the vibrational dynamics
is not adequately considered. We found, ' to our surprise,
that for CN in KBr, in the parameter regime in which
the barrier height came out reasonably, the Raman spec-
trum for both the Eg and T2g symmetries had a dominant
central peak. This contradicted the experimental results,
which gave a central peak for one symmetry and a finite-
frequency peak for the other. On the other hand, the cal-
culation of de Raedt and Michel, ' which only considers a
rigid barrier, gives only one central peak, but at the cost
of having to adjust the rigid potential barrier to the exper-
imental height and neglecting the rotation-translation cou-
pling, which is known to be strong in these systems. The
disagreement between our calculation and experiment
may be either due to the inadequacy of the model Hamil-
tonian or to the approximation scheme used in the Mori
theory. We have therefore reexamined the approximation
scheme and found it to be ambiguous.

Lacking a trustworthy approximation scheme, we de-
cided to choose the simplest possible model which con-
tains all the essentials of the translation-rotation coupling
(the "hydrogen atom" of this problem) and to solve it ex-
actly numerically and also to compare this result with
that of the de Raedt scheme of Mori theory, and with
another scheme we devised. " Our model leads to a gen-
eralized Langevin equation, in which a one-dimensional
rotor is coupled to Debye oscillators of one, two, and
three dimensions. It, therefore, is different from the work
of Cxerling and de Raedt, ' which concerns a two-
dimensional rotor whose coupling to translations is
neglected; it is subject to random potential fluctuations
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from a thermal bath and frequency-independent damping.
This work, therefore, leads to an ordinary, rather than a
generalized, Langevin equation. Also, they calculate
time-dependent correlation functions, rather than their
Fourier transforms, and comparison with our results is
not possible.

A matter of particular interest for us is what we call the
strong-coupling limit. For a certain value of the
translation-rotation coupling parameter the effective po-
tential well vanishes. This, however, does not mean that
the rigid potential and the translation-rotation interactions
do not have a residual dynamical effect. These terms can-
cel each other in the rotational equation of motion only in
the adiabatic limit, i.e., for a rotor of zero angular veloci-
ty.

We have earlier solved a linear version of this problem
in which the rotor itself is replaced by an oscillator. '

One advantage of the oscillator problem is that it can be
solved analytically as well as numerically. A comparison
of the solution of the rotor and oscillator problems allows
us to assess the effect of nonlinearity on several funda-
mental properties such as the nature of the dynamic
response, approach to thermodynamic equilibrium, etc.

The outline of this paper is as follows: In Sec. II we in-
troduce the model Hamiltonian, transform to dimension-
less variables, and describe the equations of motion in two
forms: the coupled rotor and oscillator differential equa-
tions, and the integro-differential equation for the rotor
from which the oscillators have been eliminated, except
for initial conditions, i.e., the generalized Langevin equa-
tion. In Sec. III we describe two Mori-theory approxima-
tion schemes. In Sec. IV we give the molecular-dynamics
results for a system with 100 or 1000 oscillators (and, as
always, a single rotor), for various dimensionless values of
the coupling parameter, rotor moment of inertia, and tem-
perature. These are the only three numerical parameters
in the system after dimensionless parameters have been
introduced. In addition, there is the parameter of the
bath dimensionality (bath density of states). In Sec. V we
consider systems with only 10 oscillators to analyze the
origin of zeros in the spectral functions of certain rota-
tional variables. In Sec. VI we compare the rotor results
with those for an oscillator. Section VII is a comparison
with the Mori-theory results and Sec. VIII with experi-
ment.

II. THE MODEL

The Hamiltonian of the translation-rotation coupling
model is chosen' as

H = —,'IO —D cosO

+ g [—,'M;x;+ —,'k, x; —3, /&Nx; sin(9/2)] . (2. 1)

Here, 0 is the rotor or pendulum angle and the x s are
the coordinates of the N oscillators. The interaction is
such that the displaced harmonic-oscillator approximation
yields a potential-energy term of the form cosO and thus
may partially or totally cancel the rigid potential (we as-
sume D &0). We assume, for sake of simplifying the
equations of motion, that 3; /E; are independent of i and
introduce

N
W'~= —g A, /4K; .

i =1
(2.2)

Using this quantity we define the dimensionless coupling
constant u= 8'z /D. The dimensionless time is ~=cuzt,
where co& is the Debye frequency of the oscillators. We
also define the dimensionless uncoupled oscillator fre-
quencies 0; =co;/~z, dimensionless oscillator coordinates
X; =+M;/Dconx;, velocities X, =dX, /d~, and moment
of inertia for the rotor p=Icoz/D. In terms of these di-
rnensionless quantities, the equations of motion can be
written as

pO+sinO —&a/N g II;X; cos(9/2) =0 (2.3)

and

X;+0;X; 2&a/N II; sin(9—/2) =0 . (2.4)

In the molecular-dynamics calculations we solve Eqs.
(2.3) and (2.4) with a harmonic-oscillator density of states
which, in the continuum limit, corresponds to the n-
dimensional Debye density of states p„(Q),where

p„(Q)=nfl" ', n =1,2, 3 and 0&II(1 (2.5)

The harmonic-oscillator equations can be solved analyti-
cally and the solution substituted into Eq. (2.3), leading to
the integro-differential equation

@9+sin[9(r)]—2a cos[9(r)/2] f K(r r') sin[9(~')/2]d—r'

—V a/N cos[9(r)/2] g [II;X;(0)cos(Q;r)+X;(0) sin(II;r)] =0, (2.6)

where, in the N~ao limit,

K(~)=n f dQ, A" sin(Qr) . (2.7)

The initial values for the oscillator coordinates and veloci-
ties are chosen from a thermal bath of dimensionless tem-
perature, T*=k&T/D, and the initial rotor coordinate

and velocity are chosen zero. With this choice of initial
conditions for the rotor, the oscillators initially have zero
interaction energy with the rotor, making the assignment
of initial oscillator energies unique. This also simplifies
the following equation. Integrating the third term in Eq.
(2.6) by parts leads to the generalized nonlinear Langevin
equation

pO+ ( I —a) sin[9(~)]+a cos[9(r)/2] f 8 (r r') cos[9(~')/2]9(r')—dr' —&a cos[9(r)/2]F(r) =0,
0

(2.8)
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where If one now assumes that the ratio of 6„'sconverges to un-

ity, although this is, in general, not assured, i.e., that
F(r) = —g [0;X;(0)cos(Q;r)+X;(0) sin(Q;r)],

I

(2.9)

2~2 +i ~1, m —+ (X) (3.8)

and

H( r)=n f dAI2" 'cos(Qr) .
0

(2.10)

In Eq. (2.8) the rigid force term is renormalized to
(1—a) sinO. Thus a= 1, our strong-coupling limit, corre-
sponds to a "free" rotor, which is still coupled to its own
past via the velocity-dependent term, and to the initial
conditions of the bath oscillators in the last term
(random-force term).

III. MORI THEORY

A„=LA„i
—h~ —i An —2 (3.2)

In studying the dynamics of molecules in solids, the
Mori theory' ' is frequently used. In this theory one
calculates the relaxation function associated with the dy-
namic variable of interest using a continued-fraction
scheme. The continued fraction has to be broken at some
stage (except for the few cases where an exact solution is
possible) and a suitable approximation to the memory
function has to be made at this stage. In a scheme due to
de Raedt and de Raedt, and to de Raedt and Michel,
one introduces a set of orthogonalized dynamical vari-
ables,

A) ——LAO, (3.1)

(L A 11,L Ap)B =QLQLA2 ——QL Ap — A2 .
(A1, A1)

(3.9)

The approximation scheme now replaces the first term on
the right-hand side by an imaginary number, this number
being determined by the coefFicient of A2 in the second
term. An alternative way of writing the last equation is

A4+(~1+~2+~3)A2 (~1+~2)A2 (3.10)

where the last term on the right-hand side contains the
imaginary number that replaces the first two terms. This
latter form of the equation shows that there are an infinite
number of ways in which 8 can be written as a sum.
There is no unique choice, but a plausible one is

then one finds that the ratio of even- to odd-order Npp(0)'s
goes to 2. Thus the relaxation function oscillates with the
order of the approximation. This circumstance suggested
to us that the approximation scheme may not be unique
and that di6'erent ways of determining the memory func-
tion may exist.

The above approximation scheme exhibited in the
lowest sensible order makes use of the projection opera-
tors P and Q, where P projects onto the subset of variables
A p and A 1, while Q projects onto A 2, A 3, etc. The
operator that occurs in the memory function is

where L is the Liouville operator and the 6„'sare given

by the ratios of moments ( A„,A„),i.e.,

B =QL'A2 QLPLA2, —

which can also be written as

(3.1 1)

6„=(A„,A„)/(A„1,A„1). (3.3) B = A4+(b, 2+6,3)A, b, 2A2 . — (3.12)

The relaxation function for the variable A is then given by

(Ao Ao)
Q2

Q2

z +X„„(z)

(3.4)

Here, X„„(z)is the memory function and in Ref. 9 it is

approximated as

Q2
X„„(z)=-

(g2 + g2 )1/2
(3.5)

@pp(0)=i (Ap, Ap)
Q2

2
1

1+~v

Evaluation of Npp(z) at z =0 for odd and even orders of
the approximation scheme, respectively, yields

ancl

yMK( )
z +ih2

(3.13)

where the first one is the result of the de Raedt —Michel
scheme and the second one is ours. " In the second
scheme there is no problem with the factor of 2 and the
width is determined by the last A„alone instead of the
last two.

We have shown in earlier papers' that the spectral dis-
tribution for the relaxation function (normalized to unity)
in this order can be written in the form

Again, the last term contains the imaginary number that
replaces the first two. The results for the memory func-
tion in the two schemes are

Q2
KRM(2)

(g2+ g2)1/2

and
Q2

@pp(0) = i ( A p, A p)
Q2

n =2m +1 (3.6)

(g +g )1/2
n=2m .

Q2

(3.7)

1 A I 1 Xy —Y(co+6)
p3 + I ' 2 (p3+5)'+)/

X) + Y(p3 —5)+ — 2 2(co —6) +y
(3.14)
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where the parameters 3,I,X, F, y, 6 are functions of R,
and where

R = (c04&1/2/(Q)2& and co=co/(c02&1/2 (3.15)

AD=sin(8/2), Ao=cos(9/2), Ao ——& . (3.16)

The results for the two parameters which occur in the re-

( co"
& being the nth moment of the spectral function

which can be calculated exactly. If these approximation
schemes are applied to the relaxation function of coordi-
nate of an harmonic oscillator with the coupling of this
oscillator to some external system going to zero, then the
first scheme leads to 3~0, I ~ 1, while the second
scheme leads to 3 ~0, I ~0. Utilizing Schwinger's' ex-
act treatment of the Brownian motion of a quantum oscil-
lator, we find that the second result is compatible with it,
but the first is not. When the coupling goes to zero, both
the amplitude and the width of the central peak should go
to zero, not just the amplitude. The detailed differences
can be seen in Fig. 1, where (a) refers to the first scheme
(RM) and (b) to the second (MK). The quantitative be-
havior of all parameters is changed between the two ap-
proximation schemes. It is to be kept in mind that the
weight of the central peak is A =1—X.

We shall apply both the approximation schemes to the
Hamiltonian of Eq. (2.1), with the dynamical variable Ao
chosen in three different ways:

(AO, AO)s(n)=

where

8
(n —A)'+B' (3.17)

(n'&[n —x (n)]
[n —x'(n) ]'+[x"(n, )]'

(n'& [x "(n)]'
[n —x'(n)] + [x"(n)]

Here, (n & is the average value of n over the Debye
spectrum, and the real and the imaginary parts of the
complex self-energy X(n)=X'(n) —iX"(n) can be ob-
tained from the following two expressions for X(n):

(3.19)

R —1x(n) = (n'&
n+iR((n &)'

in the first scheme (RM), and

(3.20)

laxation functions are given in Table I for general values
of the coupling strength a, for coo=( (co & /ct)D ), which are
the second moments in Debye-frequency units, and the di-
mensionless quantity R, which has been defined in Eq.
(3.15). In Table II these values are given specifically for
the strong-coupling limit a=1. The spectral representa-
tion of a particular relaxation function in the dimension-
less units introduced for the Hamiltonian can be written
in the form

1.4i

1.2

R —1x(n) = (n'&
n+i [(R —1)(n &]'

in the second (MK).

(3.21)

1.0 IV. MOLECULAR DYNAMICS

0.8

0.6

0.4

0.2

1.4
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0.4

0.2

FIG. 1. Parameters of the (a) first (RM) and (b) second (MK)
schemes of the Mori theory.

The dimensionless equations of motion (2.3) and (2.4)
were solved for different values of the parameters n, p,
and T. One Debye period was subdivided into 64 time
steps and 128 periods were run. Our experience has been
that transients usually play no role in the results and
therefore no parts of the MD runs have been discarded.
The thermal bath was represented by 1000 oscillators (oc-
casionally by 100) and an ensemble of 100 systems were
averaged over. The initial thermal energy was distributed
among all the oscillators. The rotor was invariably start-
ed with 0=0 and 0=0, so the rotor has no kinetic or cou-
pling energy and its potential energy was at a minimum.
In most of the calculations, the bath density of states was
chosen to be 2D Debye [n =2 in Eq. (2.5)], but we have,
for comparison, taken also 1D and 3D densities of states
on occasion. The quantities calculated are the power
spectra of the rotor velocity 8, sin(0/2), and cos(0/2).
The latter two, respectively, correspond to the Eg and T2~
symmetries in a cubic crystal-field potential when the po-
tential minima are along the [111] direction and its
equivalent directions. In the central oscillator case, where
the rotor itself is replaced by a harmonic oscillator, ' we
calculated only the power spectrum of the velocity. We
note that the power spectra of different time derivatives of
the coordinate do not yield substantially new information
because they are related simply by powers of the frequen-
cy. The sine and cosine functions there are meaningless,
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TABLE I. The spectral parameters of Mori theory, coo= (co ) /coD and 8 [see Eq (.3.15)], for the relaxation functions of the three
dynamic variables. T, p, and a are, respectively, temperature, moment of inertia, and coupling constant, all dimensionless.

sin(0/2)

2
Ct)o

T' (cos'(0/2))
4p (sin (0/2))

R

(sin (0/2) )
—,
' (3—cos0) + „(—1+2 cos0+3cos 0) + „((1+cos0))1 —a a 2

cos'( 0/2 )

cos(0/2)
T* (sin (0/2) )
4p (cos'(0/2) )

—(cos0+ a sin (0/2) )
p

( cos'(0/2) )
z (3+cos0)+ (1+2cos0—3cos'0)+ (sin'0)1 —a a

sin (0/2) T* T*
r

(1—a(cos 0)+a(cos0)+a'(sin (0/2))

(sin'(0/2) )+ap(II') (cos'(0/2) )
4

(cos0+a sin'(0/2) )'

thus making the rotor problem much richer. It is also not
obvious that for the rotor problem which quantity, the
power spectrum of the velocity or the sine, or both,
should be the analogue of the velocity for the oscillator
(see discussions below).

0 012

A. Strong-coupling limit (a=1)
In Fig. 2 we exhibit the results for the parameter values

a=1, p=1, and T =1 for the 2D density of states
(n =2). The velocity-power spectrum P, shows a broad
central peak and another broad peak somewhat below the
Debye frequency of unity. The sine-power spectrum has a
dominating low-, but not zero-, frequency narrow peak,
and another weak and broad one above unity. The cosine
power spectrum has also a low-frequency peak, although
not as low as the sine one, but it has no high-frequency
peak. In comparison with Fig. 2, Fig. 3 shows the role of
dimensionality of the bath. As for the n =2 case, P, can
be represented by two broad peaks for n =1,3, although
for n =1 the central peak is dificult to extract visually.
The high-frequency peak shifts towards lower frequency
with decreasing dimensionality (II,„=1,0.9,0.6 for
n =3,2, 1, respectively). The central peak, particularly its
shape and width, are dimension sensitive, the latter in-
creasing with n. For n =1,2 all the peaks are nearly
Gaussian, but the central peak for n =3 deviates consider-
ably from a Gaussian shape. Furthermore, the central-
peak weight increases with n, dominating the velocity-
power spectrum for the 3D density of states. The sine
and cosine both have central peaks in one dimension, the
first one narrow and the latter broad, while in three di-
mensions the low-frequency peaks are more decisively
noncentral than for two dimensions. For the above set of
parameters and two dimensions, we have also carried out
calculations at different temperatures. The effect of in-

0.004—

0. 008

0.004—

0.012

0.008—

I

0.012

f

(c)

TABLE II. Same as Table I, but with a=1.
R

0.000
0. 00

I

0.25 0.50 0. 75 1.00 1.25 1.50

sin(0/2)

cos(6I /2)

T*/4p

T*/4p

T*/2p

—,
' {1+1/T*)

3(1+1/3T*)
—', (1+&'/2+ —', p(&') )

FIG. 2. Power spectra (in arbitrary units) for (a) 0, (b)
sin(0/2), and (c) cos(0/2) of a rotor with a=1, p=1, and
T = 1, with a 2D Debye density of 1000 oscillators.
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creasing temperature in the "free-rotor" (a = 1) limit is
basically to broaden the spectrum with little or no spectral
weight shifting from one peak to the other. There is also
hardly any thermal shift of the peak positions.

Figure 4, together with Fig. 2, offers a comparison of
the effect of the moment of inertia (p) in two dimensions,
again in the strong-coupling limit with the smaller one
(p, =0.5) on the left. Comparing the frequency depen-
dence of P, (0) for @=0.5, 1, and 2, we see two charac-
teristic features. The high-frequency peak shifts towards a
lower frequency with increasing p. The structure in the
lower-frequency region is quite unusual for @=0.5; there
is apparently no central peak which is seen for p=1, 2.
The power spectrum can be approximated by two finite-
frequency peaks and possibly a very weak central peak.
The low-frequency peak in P„which dominates the power
spectrum for all values of 0, moves to lower frequencies
with increasing p. The cosine power spectrum for p =0.5

resolves into two peaks, one of them central. The other

peak moves to higher frequencies, as compared to the
higher-p cases, thereby revealing the hitherto hidden cen-
tral peak.

B. Intermediate- and weak-coupling limit (a &0.5)

Figure 5 shows a comparison of two cases in which the
temperatures T are taken equal to half the barrier heights
of the adiabatic potential 2(1—a) for two different values
of the coupling constant but with the same p (= 1). Com-
paring with Fig. 2, we see that the high-frequency peak
structure in both P, and P, became much more pro-
nounced, representing a well-developed librational motion.
In addition, the broad low-frequency peak in P, shifts to-
ward higher frequency with decreasing a. The cosines'
low-frequency peaks have become central. The differences
between the two cases in question are only quantitative.

It turns out that, for most of the diatomic impurities
studied experimentally, p » 1. Therefore, to understand

0.012

(a)
0.016

0.008—

0.012
, III

0.008—

0.004—

0.004—

0.01e!I-

(b)
0.012

(b)

0.012
0.008— )Ii

0.008
0.004

0.004

0.012

(c)

0.000
0.012

(c)

0.008— 0.008-

0.004— 0. 004

0.000
0.00

I

0.25 0.50 0. 75 1.00 1.25
0.000

1-50 0. 00
I

0. 25
I

0. 50
I

0. 75 1.00 1.25 'J 50

FIG. 3. Same as Fig. 2, except for 1D (left-hand panel) and 3D (right-hand panel) Debye densities of states.
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the spectral properties of these heavy impurities we have
run molecular-dynamics simulations for a system with
@=4, a=0.25, n =2, and T =0.25, 0.75, 3.0, and 6.0,
and results for T =0.75 and 3.0 are given in Fig. 6. In
contrast to the p=l case, we see only one broad reso-
nance structure in P, whose shape is strongly T depen-
dent. P„onthe other hand, has one peak (broadened li-
brational motion) at T =0.25, not shown in the figure,
which is a factor of 6 smaller than the adiabatic barrier
height [2(1—a) = l. 5]. With increasing T, P, develops a
distinct two-peak structure [Fig. 6(a)], the central peak
coming from the over-the-barrier motion. Finally, at very
high T (T =3.0,6.0) only the central peak remains and
its width decreases with increasing T. P„which is dom-
inated by a slightly broadened (perhaps exponential T
dependence) central peak at low T, develops a broad
finite-frequency peak at high T [Fig. 6(c)]. One interesting
feature of our model is that even at temperatures 3 times
larger than the barrier height, P, and P, show very
different dynamic response.

V. ROTOR COUPLED TO SMALL NUMBER
OF OSCILLATORS (N = 10)

X (Q)=2 e
X

S(fl)
0, —0,

(5.1)

where S(Q) is the FT of sin(0/2). Since X;(0) must be
finite for all 0, it follows that S(Q;)=0. As the number
of oscillators increases and their frequency separations de-
crease, the molecular-dynamics calculation smooths out

Looking at P, (Q) we find that P, (1)=0 for all values of
a,p, T within numerically accuracy. To explore the origin
of this behavior, we have looked at a system of one rotor
coupled to a bath of 10 oscillators. Figure 7 shows the
sine power spectrum for this case for a=@=T =1. The
bath oscillator frequencies have been chosen as (I/10)',
I =1,10. Note that at the bare bath frequencies the sine
power spectrum vanishes. By Fourier-transforming (FT)
Eq. (2.4), we find

1/2

0.024

(a)
0.024

(a)

0.016— 0.016-

0.008 O. OOB

0.012 0.024

O. OOB 0.016—

0.004— 0.008

0.006

(c)
0.012

(c)

0.004 0.008

0.002- 0.004

0.000
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I

0.25
I

0.50
I

0.75
I

1.00
I

1.25 1.50
0.000

0.00 0.25 0.50 0.75 1.00 1.25 1.50

FICx. 4. Same as Fig. 2, except for p=0. 5 (left-hand panel) and p=2. 0 (right-hand panel).
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X;(0)=
N

1/2
8(Q)

0; —0 (5.2)

Since
'

o an only di6'er in aSince t e Fourier transforms of 0 d 0
actor of i 0, it is obvious that h

trum for the oscillator should sh
a t e velocity-power s ec-p pc-

s ou s ow some resemblance to
the sine-power spectrum of the rotor.

VI. COMPARIS ON WITH CENTRAL OSCILLATOR

Comparing our present results with th fi ose o our earlier
p per in which the rotor itself is re laced b
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oscillator case with the exception of o.= 1, for which the
oscillator peak is at zero frequency. The position of the
high-frequency peak of the rotor shifts to higher frequen-
cies with increasing n and decreases with increasing p, the
way the pole frequency for the oscillator depends on these
parameters. We therefore conclude that the rotor itself
can to some extent be described as an oscillator even for
temperatures as high as half the adiabatic potential barrier
height as far as the sine power spectrum is concerned.
The analogy is not perfect, because both the dynamics
and the dynamical variable in question are periodic func-
tions of 0, which is not the case for the oscillator. The
peaks in the velocity spectrum are not easily identifiable
with those of the sine. The velocity is not a periodic func-
tion of 0, nor is it the dynamical variable coupled directly
to the oscillator coordinates. Its low-frequency com-
ponents arise from barrier crossings, the higher ones from
oscillations within one valley, to some extent. However,
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FIG. 7. Power spectra for sin(8/2) with a=1, @=1, and
T*= 1, and for a 2D Debye density of 10 oscillators.
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there is a strong infIuence due to the bath density of states
at all frequencies. Finally, we note that equipartitioning
has not been a problem with the rotor, in contrast to the
oscillator, ' suggesting that the nonlinear coupling may be
sufhcient to bring the rotor to thermal equilibrium, even
when the rotor spectral density is nonzero for 0& 1, the
highest bath frequency.

VII. COMPARISON WITH MORI THEORY

In Fig. 8 we exhibit the results of the two schemes (see
Sec. III) of the Mori theory for the parameter values
a=0. 5, p=1, and T =0.5, to be compared with Fig. 5.
The results for this case give a fair representation of the
general situation. The first scheme [Eq. (3.20)] generally
gives greater width and less features than the second [Eq.
(3.21)]. In this respect the second one is closer to the
molecular-dynamics results. The velocity is Oat near zero
frequency (a Lorentzian central peak), which does not
agree with the MD results, in general. ' The high-
frequency peaks in both schemes are at frequencies less
than 1, in contrast to the MD results given in Fig. 5. For
the sine power spectrum, MD invariably gives a high-
frequency peak above unity, which is never the case in ei-
ther Mori scheme. Mori theory gives a broad central
peak for I', which is absent in the MD results. There is
nothing remarkable about the cosine power spectrum, at
least in this case, where both Mori theory and MD give
narrow central peaks. We conclude that the Mori
schemes, at least to this order of approximation, are quite
poor, and hence, are not reliable.

VIII. COMPARISON WITH EXPERIMENT

%'e are aware of only few data with which comparison
can be made. Callender and Pershan measured Raman
scattering from CN impurities in KC1, KBr, and NaC1.
They have also studied OH and OD impurities in
these hosts, although for these impurities the classical dy-
namics approximation may not be justified. The rotation-
al dynamic correlations of T2 symmetry in the case of
CN impurities in KC1 and KBr show a central peak, as
our cosine power spectrum does for a & 1. The Eg sym-

metry, on the other hand, shows a single peak at some
nonzero frequency. Our simulations show a single finite-

frequency peak for one symmetry and a central peak for
the other symmetry in the presence of weak rotational-
translational coupling, as long as the temperature is less
than the adiabatic potential barrier. To see if this behav-
ior persists in the intermediate- to strong-coupling limit
(0.5&a &1), we have run MD simulations for a=0.75
and T =0. 1 and 0.25. In this case, again one sees a be-
havior qualitatively similar to the weak-coupling results,
but only for the sine and cosine power spectra, although
the peak positions and widths depend strongly on o..
However, the velocity-power spectrum is drastically
difterent in the strong- and weak-coupling limits. From
this we conclude that if one is only probing the sine and
cosine power spectra, as is done in the Raman scattering
experiment, it is not possible from a qualitative analysis of
the spectra to differentiate between the low-rigid-barrier
weak-coupling limit and the low-adiabatic-barrier strong-
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FIG. 8. Power spectra for 0 and for sin(0/2) with +=0.5, @=1.0, and T =0.5 for the first (RM, left-hand panel) and second

{MK, right-hand panel) schemes.
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coupling limit. One needs to probe the velocity-power
spectrum to distinguish between these two fundamentally
different limits.

In addition, it would be desirable to have more experi-
mental data, particularly for p ( 1, so that two-peak struc-
ture could be observed for P, . Also, to make the model
we have studied more realistic, it would be best to have

physical systems where the molecular rotation is confined
to one angle, as we have done above.
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