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We have studied the correlations between an Anderson magnetic impurity and its surrounding
conduction electrons using a Monte Carlo simulation technique. Results for spin and charge correla-
tions for a symmetric Anderson impurity in a free-electron continuum are presented. Our results
show the spatial structure of the spin-compensation cloud that forms around the magnetic impurity
as the temperature is lowered, and the suppression of the charge-density correlations caused by the

Kondo effect.

I. INTRODUCTION

While renormalization-group calculations! and Bethe-
ansatz solutions? have provided detailed information on
the thermodynamic properties of magnetic impurities in
metals, these methods so far have been unable to provide
information about correlation functions involving an im-
purity and the surrounding conduction electrons. On the
other hand, perturbation theory has predicted results for
the structure and temperature dependence of the spin-
compensation cloud surrounding the impurity that are
controversial,? so that a nonperturbative approach to com-
pute these quantities is desirable.

In this paper we describe a quantum Monte Carlo pro-
cedure for obtaining these correlations. Previous quan-
tum Monte Carlo calculations either were unable to
achieve sufficiently low temperatures for interpretive study
of the scaling (Kondo) regime,* or while achieving low
temperatures, focused mainly on the self-correlations of
the impurity.> Here we point out a procedure, implicit in
Ref. 5, that generates a straightforward algorithm for go-
ing beyond self-correlations and permits the calculation of
the spatial dependence of the correlations between the
spin and charge at the impurity with those in conduction
states. In Sec. IT we present the method, and in Sec. III
we present results for the symmetric Anderson model.
We conclude in Sec. IV with a short discussion of the
significance of these results.

II. FORMULATION

We consider the single-impurity Anderson model:

H=3¢erchocro+ S Vilchdod, +H.c.)
k,o k,o

+eqd Dhao+Unaing, . (D

In a path-integral formulation of its thermodynamics,® we
divide the temperature axis into L slices of size Ar=8/L
and eliminate the interaction term in the Hamiltonian by
introducing auxiliary Ising variables o (/) (one per time
slice).” The partition function becomes

Z=Triopexp [— > Tring,[o] |, (2)
p==x1

where g, (u==1 denotes electron spin) is the Green’s
function. Different Ising configurations give rise to
different potentials. The Green’s functions for two
diﬂ'esrent configurations are connected by the Dyson equa-
tion

V-V

g'=g+(g—1)e —1)g’ (3a)
and its transpose
g'=g+(g —11—eV+Vg . (3b)

The potentials act only on the impurity orbital |d) and
are given by

VE=huoD)|d){d | )

with cosh(A)=exp(A7U /2).
slice index, 1 </ < L.
Equations (3) are matrix equations in space and imagi-
nary time. From them we can obtain arbitrary correla-
tion functions in terms of the d-electron Green’s function
844 for the fully interacting case and the Green’s functions
g% in the absence of the Coulomb interaction Ungng,.
Taking one of the potentials in Eq. (3) as zero and the

other due to an actual spin configuration, we have

Here, !/ denotes the time-

gia =85 +ge” —1)gu , (5a)
84i =83 +(8aa _1(1—e~")gd | (5b)
gi=g0+gueV—1)gy , (5¢)
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where i and j refer to positions in space around the im-
purity. Equations (5) are matrix equations in the time
variables (L X L matrices). From these Green’s functions
one can obtain all spin and charge correlations. For ex-
ample, the correlation between the impurity spin and
conduction-electron spin at position 7; is given by

D=LoZo¥Hr) N
=(dld, —dld,)clei—clei) ) . (6)

Here the double angular brackets represent a trace over
the fermion variables and an average over o
configurations. Using Wick’s theorem to carry out the
trace over fermion variables, we obtain
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where the single angular bracket denotes an average over
the o configurations. For charge correlations we have
C(ri)=Lngnc(r;)) ) =

<(2—gddr—gddl)(Z—gm_giu))

—(8id18air +8id 8ai1) - (8)

As discussed elsewhere,>® the Monte Carlo procedure
attempts flips at each time slice / of the o field and ac-
cepts or discards the flip depending on whether the ratio
of the determinant R =R ;R , with

R, =1+[1—gh(LD]{exp[ V{0 ) —VI'(a)]—1} 9)

S(r)={( _ Wgiir —gii)) is larger or smaller than a random number between O and
! Bad1 = 8ad1 [\8iir &t 1. If the move is accepted, all time components of the d
—(8ia18adi1 +8id 8air) (7)  Green’s function are updated through the relation
|
, (1, =8, D" ™" —1)ggq(l 1)
8dd(I1,12)=8aal1,13)+ [aa(ly Ll - 8dd 572 (10)
1+ [1—gaa(l,D][exp(V/ —V})—1]
-
The unperturbed Green’s functions are given by . k? u
k=5 _ _ — ’
—iw =1 2
=TSe g%, ), (11) "
n one obtains
with Vi3 il
For oy )= — F [+, /) [ kpr | (15)
0 (s 1 4m(kprip
gadliw,)=— , (12a)
iw,— |e +£ +Aliw,)
T T ©n III. RESULTS
gdliwy)=fr(riiw, )gllin, ) =gdilio,) , (12b) Here we report results for the particle-hole symmetric
Anderson model in which ¢;=—U/2. We used units
gyliwy)=—f1lio,) such that the full width of the resonance
2 . .
(rii —ri 0 (; , 12 2A=27N(0)| V' |“=1. Simulations fqr values of U=0,
+alriion)f2(=rpion)gaalion) (120 1, 2, and 4 were done. The corresponding Kondo temper-
where atures for the U > 0 cases, obtained from the Bethe ansatz
V12 solution,? are Tk =0.169, 0.0865, and 0.0216, respective-
Aliwp, )ZEf}—’f—'— , (13a) ly. A typical Monte Carlo run involved 5000 sweeps
k 1On —Ek through the lattice, and the statistical error for the quanti-
ties measured was negligible except where shown. The
filiog)= 2 > (13b) finite time slice At introduces a systematic error. Simula-
feon — ek tions with A7=0.25 and 0.5 gave results which only
Vi o ki differed by a few percent.
folriog)=—=3F ——— (13¢) As the temperature is lowered, charge fluctuations are
VN 4 ion —¢x suppressed, and the d electrons start to localize and devel-

These functions were evaluated in the following manner.
For a wide structureless band with ¥V independent of k
(Vi=V/V'N), we have

Aliw,)=imV>N(0)sgn(w,) , (14a)

filio, )= —i7N(0)sgn(w,) , (14b)

with N (0) the energy density of states per spin at the Fer-
mi energy. For f, we need the energy dispersion relation.
For an isotropic case with Vj independent® of k
(Vi =V /V'N ) and for an electron dispersion relation:

op a moment. This is shown in Fig. 1(a), where we plot
(od)?) =((ngy—nq)?*) (16)

versus temperature. The local moment forms at a temper-
ature T ~A and is stable below that temperature. Its
magnitude is a smoothly increasing function of U and
tends to unity as U-> oo for T small compared with A.
For U =0, {((0%)?)=0.5 at all temperatures since we are
treating the symmetric case.

For a wide, flat band, where 3, | Vi | 2/(iw, —&x)? is
negligible, the total conduction-electron spin polarization
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in the presence of a small magnetic field H is unaffected
by the presence of the impurity and one finds that

2 [ e

—n(rd’r

H=0

3 [ mn)

Here ( )o implies an average for a free-electron system.
This is the Clogston-Anderson compensation theorem.® Tt
implies that the total magnetic susceptibility due the im-
purity can be written as

Xa= [ldr(otnot0) (18)

)()d ¥ (17)

H=0

where X is in units of(gu,,»/Z)2 and 0%=ny, —ngy,.
Figure 1(b) shows TX; versus 7. As T decreases below
A and the moment ((0¢)?) forms, the susceptibility due
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FIG. 1. (a) Local magnetic moment {(c¢)?). (b) T times the
spin susceptibility and (c) contribution to effective moment from
spin compensation cloud [Eq. (21)] for a single symmetric An-
derson impurity; A=0.5, U=0, 1, 2, and 4. The arrows indi-
cate the corresponding Kondo temperatures. The Monte Carlo
data are obtained at temperatures S=2", n is an integer.
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to the impurity initially varies as ((o¥)?/T. However, as
T approaches the Kondo temperature T, correlations be-
tween the d-electron spin and the conduction-electron
spins start to screen the impurity moment and as 7—0
the susceptibility vanishes. It is important to realize that
Egs. (16) and (17) do not imply an absence of correlation
between the localized spin and the surrounding
conduction-electron spins. On the contrary, it follows
directly from them that

1 d
Xd=? {((02)2)+f(0§oz(r)>d3r . (19)

Thus, an effective moment
— (e + [ (oo,

is formed from the impurity moment and its spin compen-
sation cloud.

Rewriting Eq. (18) we have for the contribution to this
effective moment from the spin compensation cloud

S(N= [(olo.(nd r=Txs—((a?)?) . @D

Figure 1(c) shows S(T) versus 7. At temperatures well
below Tk, TX,;—0 and S(T) approaches —((c%)?). In
this limit, the spin compensation cloud quenches the local
moment leaving a ground-state singlet. For U=0, the d-
orbital moment ((03)?)=0.5 of the resonance is also
quenched as T—0 by Fermi hole correlations in the sur-
rounding conduction-electron sea. In this case, these
correlations vanish on a temperature scale set by the
width of the resonance A. For U >0, there are dynamic
correlations as well as Fermi hole correlations which drive
S to the significantly more negative T'=0 value which is
needed to quench the d spin. Figure 1(c) shows that the
part of the spin compensation cloud produced by dynamic
correlations evaporates on a scale set by Tx and, in fact,
S(T) is actually reduced from its U =0 value at inter-
mediate temperatures. This latter feature reflects the
Coulomb modification of the d-electron spectral weight
which we will discuss further in our analysis of charge
correlations.

In order to examine the spin and charge correlations in
more detail, we have numerically calculated S(r) and
C (r). Before examining these results for U=£0, it is useful
to consider the U =0 case for which

Cr)=Sr+{n(r) (22)

w2 (T (r)d3r (20)

and

87TAN(O)

S(r)=— F2(y), (23)

with y =kgr and

eiy[1+(iam/p,)]
Im (T ¥y ——— | . (24)
nis0) @ntA

F(y)=
Here n, is the conduction-electron density (k2/3m?),
A=7V*N(0), and uk?/2m. When T—0,

iy[1+iw/p)]

F(y Imfmdw L;;A— . (25)
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Over a wide range of kgr values, Eq. (25), can be approxi-
mated as

do e Y%

F(g)~siny fow Y

=S @2uE (Ay /2u) . (26)

2

Here E;(x) is the exponential integral which has the limit-
ing forms

Ei(x)=y+In(x), x<l (27a)
= 2! 3!
Eix)="* 1—i+—2__3+... Cox>s1
X X x X
(27b)

with ¥y =0.577, Euler’s constant. Equation (27b) leads to
the asymptotic result!®

l 7 sinz( kpr)

> Akp ré ’ @8

S(r)=

which is valid when kgr is large compared to 2u/A.
In Fig. 2(a) we have plotted 4m(kpr)*S(r)/n, versus

47 (k.12 S(r)/n,

4 (ker)? S(r)/ng

o] 4
Ker

FIG. 2. Spin correlation function 4m(krr)2S(r)/no vs ker for
A=0.5and T =0. (a) Here u=1 and the solid curve is the spin
correlation function, the dot-dashed curve is the envelope ob-
tained from Eq. (26), and the short dashed curve and the dashed
curve correspond to the short and long distance approximate
forms, Eqs. (27a) and (27b), respectively. (b) Here u=6 corre-

sponding to a bandwidth large compared to A.
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kpr for p=1, A=0.5, and T=0. Here the spin density
has been normalized with respect to the electron density
no=kp/3m* The dot-dashed curve is the envelope of the
approximate result obtained from Eq. (26). The short-
dashed curve and the long-dashed curve correspond to the
limiting forms Eq. (27a) and Eq. (27b), respectively. We
see that the bulk of the correlations lay inside the region
where the asymptotic form, Eq. (28), is applicable. We
have also calculated S(r) at finite temperature using Eq.
(24) and find that the correlations are exponentially
damped on a length scale set by the thermal length vg/T.
Figure 2(b) shows similar results for u=6, A=0.5, and
T=0. In this case, 2iu/A=24 and the region shown is
well inside the asymptotic region appropriate to Eq. (29).
Integrating S (») we have

)=, d’rs) (29)

for the spin compensation contained inside of a radius
kpr=y. For U=0 at T =0, we have from the sum rule,
Eq. 21), I(0)=S(0)=—0.5. The function I (y) versus y
is plotted in Figs. 3(a) and 3(b) for p=1 and 6, respective-
ly. From these curves we find that of order 70% of the
spin compensation is contained inside the region
kpr=2u/A. When U0, we use the same 70% criterion
to characterize the size of the spin compensation cloud.

(@] T T T T T T T T T
(a)
-0+ i
-0.2- —
I(y)
-0.3} -
-04}1 .
-05 1 L 1 1 1 1 1 1 1
(0] 4 8 12 16 20
y
O T T T T T T T T T
(b)
-Q.l 4
I(y)
_0_2 - —
._0-3 — -
1 1 1 1 1 1 1 1
o 4 8 12 16 20
y

FIG. 3. Spin compensation I (y), Eq. (29), inside a sphere of
radius r=y/kr for (@) p=1 and (b) u=6. For pu=1 and
A=0.5, 2u/A=4, while for u=6, 2u/A=24.
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We find, as originally discussed by Mezei and Griiner!!
for the charge correlations and Ishii!® for the spin correla-
tions, that the Kondo resonance which arises for U=£0
leads to an extension of these correlations to a region set
by 2u/Tkx when T < Tk.

Using the approach discussed in Sec. II, we have calcu-
lated S (r) for various values of the Coulomb interaction
U and the temperature 7. Figure 4 shows the spatial
dependence of the spin correlations 4m(kzr)2S(r)/ng for
pu=6and U=0, 1, 2, and 4 at temperatures =38, 16, and
32. Qualitatively, the spin correlations are not dramati-
cally changed by the presence of U; in particular, the
phase and period of the oscillations remain the same. For
U =0, the correlations are always negative, while for a
finite U, ferromagnetic correlations are induced in some
regions. At short distances a small U enhances negative
spin correlations, but a larger U actually makes them
smaller. For U =4 and =38, the spin correlations at
short distances are smaller than for U=0, and they be-
come larger as 3 increases. Only for large distances at the
lowest temperature (8=32) are the antiferromagnetic
correlations monotonically increasing with U. In con-
trast, the ferromagnetic correlations are always monotoni-
cally increasing with U. For pu=6, the range of kpr
values shown lay well inside the thermal decay length
u/T.

In Fig. 5 we plot the same data as in Fig. 4 in a way
that displays more clearly the temperature dependence.
As U increases the temperature dependence becomes
stronger, as one would expect: for U =0 the relevant
temperature scale is A, while for U540 it is Tx. However,
the ferromagnetic spin correlaticns are essentially temper-
ature independent. A direct spatial integration of
(ol0,(r)) gives results for S(T), Eq. (21), which agree
with the sum rule TX; — {(c?)?), numerically confirming
the compensation theorem. The scale over which 70%
compensation is obtained is set by 2u/Tk in agreement
with Ishii’s result.!”

We have also studied the effect of the Fermi energy
(bandwidth) on the spin correlations. Figure 6 shows re-
sults for u=1. For this value of u, the thermal decay
length is set by 3, and we see that the long-distance corre-
lations are washed out as 8 decreases from 32 to 8. We
also see that for u=1, the region in which the antiferro-
magnetic correlations monotonically increasing with U
occurs at shorter distances than in the previous case. We
find that 70% spin compensation, Eq. (29), occurs over a
range set by 2u/Tx which is approximately 12, 23, and
92 for U=1, 2, and 4, respectively.

These results for S (r) show that the d-site Coulomb in-
teraction U produces ferromagnetic correlations which are
independent of temperature for 7 <A and antiferromag-
netic correlations which are fully established only for
T < Tx where they lead to the spin compensation shown
in Fig. 1(c). These latter correlations are associated with
the development of the spin-compensation cloud and
eventually the formation of a ground-state singlet. In or-
der to obtain more insight into the ferromagnetic correla-
tions which arise when U=£0, it is useful to write the spin
correlation function in terms of the spin-up and spin-
down charge-density operators:
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FIG. 4. Spatial dependence of impurity-spin—conduction-

electron-spin correlations S (r), Eq. (6), multiplied by 4mk#r?/no
for u=6, U=0, 1, 2, and 4 and (a) B=8, (b) B=16, and (c)
B=32. The inverse Kondo temperatures 1/Tx are Bx =5.9,
11.6, and 46.3 for U=1, 2, and 4, respectively.
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S(r)=2[{ngn(r))—(ngn,(r)]. (30)  5(b) and 5(c). This part of the response is set by the po-
larization which, as shown in Ref. 5, reaches its low tem-

For U =0, perature value when f3 is large compared with A 1.
(g Y ny(r)y —(ng, Yn (1) =0 31) We now discuss the spatial dependence of the charge

and S(r) is determined entirely by the exchange contribu-
tion arising from the Pauli principle, Eq. (23). Thus the
structure of S(r) in Fig. 5(a) simply reflects the Fermi
hole in n,(r) created around the impurity when ny, is oc-
cupied. In the presence of U, both terms in Eq. (30) are
modified. In lowest order the correction to S(r) arises
from the second term

(ngin(P)Y={ngY{n,(r)
—U [ldr(naon (0¥ naong,y . (32

Physically, in the presence of U, the occupation of the d
site by a down spin repels d spin-up electron density, giv-
ing rise to the ferromagnetic correlations shown in Figs.
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correlations described by C(r), Eq. (8). As for the spin
operators, we normalized the charge operators by ny and
for convenience subtracted from C its asymptotic limit
(n(w))=ng so the resulting correlation function decays
to zero. Figure 7 shows that there is a large suppression
of the Friedel-like oscillations as U increases. This effect
was originally discussed by Mezei and Griiner.!! They
argued that the conduction-electron charge-density oscil-
lations are reduced due to the change in the d-electron
spectral weight in the Kondo regime. At low tempera-
tures, the d-electron spectra weight develops a narrow res-
onance having a width of order Tk at the Fermi energy.
For distances less than vg/Tg, the charge density oscilla-
tions are suppressed. They recover gradually to the full
Freidel value at large distances at zero temperature. At
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FIG. 5. Spin-spin correlations 4wk#r2S(r)/no for u=6, B=8, 16, and 32 and (a) U =0, (b) U =1, (c) U=2, and (d) U=4.
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we have subtracted off the asymptotic value so the function goes
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are monotonically suppressed as U is increased at all distances.
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finite temperature, however, charge oscillations are
suppressed also at large distances due to the temperature
dependence of the d-electron spectral weight.'?

IV. CONCLUSIONS

We have studied the behavior of spin and charge corre-
lations in the compensation cloud around an Anderson
impurity. The results for the spin correlations showed the
following features. (a) The phase and period of the oscil-
lations in the spin correlations are not changed by the
Coulomb interaction. (b) The Coulomb interaction in-
duces ferromagnetic spin correlations in some regions,
which are monotonically increasing with U. (c) The anti-
ferromagnetic spin correlations can be suppressed by the
interaction at short distances at intermediate tempera-
tures. (d) The ferromagnetic spin correlations are nearly
temperature independent, while the antiferromagnetic
ones show increasing temperature dependence as U in-
creases. (e) As the bandwidth is decreased, the region of
space where the anomalous behavior of the antiferromag-
netic correlations (decreasing with increasing U) is ob-
served is reduced. (f) As discussed by Ishii,'® the spin-
compensation cloud extends over a wide region around
the impurity, set by the Kondo length u/Tx. One might
hope that neutron scattering experiments would be able to
measure the spin correlations directly and provide
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confirmation of our observations. For the charge correla-
tions, we obtained a monotonic suppression with the in-
teraction which is in qualitative agreement with experi-
mental observations!? as well as phenomenological calcu-
lations.!!

In summary, we have shown that Monte Carlo simula-
tions can provide detailed information about spin and
charge correlations for systems of magnetic impurities.
Application of this technique to realistic band structures
is straightforward since all that changes are the quantities
f1 and f, [Egs. (13)] that enter into the unperturbed
Green’s function. Thus, this procedure can provide quan-
titative information on correlations in specific dilute mag-
netic alloys.
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