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Spin and charge correlations around an Anderson magnetic impurity
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%'e have studied the correlations between an Anderson magnetic impurity and its surrounding
conduction electrons using a Monte Carlo simulation technique. Results for spin and charge correla-
tions for a symmetric Anderson impurity in a free-electron continuum are presented. Our results
show the spatial structure of the spin-compensation cloud that forms around the magnetic impurity
as the temperature is lowered, and the suppression of the charge-density correlations caused by the
Kondo effect.

I. INTRODUCTION

II. FORMULATION

We consider the single-impurity Anderson model:

H =g ck ci ~ck~+ g Vt (ci ~d ~ +H. c. )

k, cr k, o

+Edmund

+ Und ndi

While renormalization-group calculations' and Bethe-
ansatz solutions have provided detailed information on
the thermodynamic properties of magnetic impurities in
metals, these methods so far have been unable to provide
information about correlation functions involving an im-
purity and the surrounding conduction electrons. On the
other hand, perturbation theory has predicted results for
the structure and temperature dependence of the spin-
compensation cloud surrounding the impurity that are
controversial, so that a nonperturbative approach to corn-
pute these quantities is desirable.

In this paper we describe a quantum Monte Carlo pro-
cedure for obtaining these correlations. Previous quan-
tum Monte Carlo calculations either were unable to
achieve suKciently low temperatures for interpretive study
of the scaling (Kondo) regime, or while achieving low
temperatures, focused mainly on the self-correlations of
the impurity. Here we point out a procedure, implicit in
Ref. 5, that generates a straightforward algorithm for go-
ing beyond self-correlations and permits the calculation of
the spatial dependence of the correlations between the
spin and charge at the impurity with those in conduction
states. In Sec. II we present the method, and in Sec. III
we present results for the symmetric Anderson model.
We conclude in Sec. IV with a short discussion of the
significance of these results.

where g„(p=+1 denotes electron spin) is the Careen's
function. Different Ising configurations give rise to
different potentials. The Green's functions for two
different configurations are connected by the Dyson equa-
tion

g'=g+(g —1)(e — —1)g' (3a)

and its transpose

g'=g+(g' —l)(1 —e +
)g . (3b)

The potentials act only on the impurity orbital
~

d) and
are given by

VP=kpcr(l)
~

d )(d
~

with cosh(i(, ) =e p(xb, Ur/2). Here, l denotes the time-
slice index, 1 &l (L.

Equations (3) are matrix equations in space and imagi-
nary time. From them we can obtain arbitrary correla-
tion functions in terms of the d-electron Green's function
gdd for the fully interacting case and the Green's functions
g in the absence of the Coulomb interaction Und, nd $.
Taking one of the potentials in Eq. (3) as zero and the
other due to an actual spin configuration, we have

g'd —gid +g'd(e 1 )gdd
0 0 V

gdi gd'+(gdd —1)(1 e )gd'

0 0 V
gij =gij +gid(e 1 )gdj

(Sa)

(Sc)

In a path-integral formulation of its thermodynamics, we
divide the temperature axis into L slices of size Ar=P/L
and eliminate the interaction term in the Hamiltonian by
introducing auxiliary Ising variables a.(l) (one per time
slice). The partition function becomes

Z= Tr( it~}exp —g Tr Ing„[cr]

35 8478 1987 The American Physical Society



35 SPIN AND CHARGE CORRELATIONS AROUND AN ANDERSON. . . 8479

where i and j refer to positions in space around the im-

purity. Equations (5) are matrix equations in the time
variables (L &&L matrices). From these Green's functions
one can obtain all spin and charge correlations. For ex-
ample, the correlation between the impurity spin and
conduction-electron spin at position r; is given by

S(r; ) = « o d o'( r; ) »

= «(d, d, —d, d, )(c;,c, t
—c;,c;, ) » . (6)

Here the double angular brackets represent a trace over
the fermion variables and an average over o.

configurations. Using Wick's theorem to carry out the
trace over fermion variables, we obtain

S(r; ) = & (gdd, —gdd, )(g;;, —g;;, ) &

g'd tgdit +gid tgd' t&

where the single angular bracket denotes an average over
the o configurations. For charge correlations we have

C(r; )= «ndn, (r;) » = &(2—gdd, —gdd, )(2 —
g»»r giit) &

& gidtgdi t +gid tgdi t &

As discussed elsewhere, ' the Monte Carlo procedure
attempts flips at each time slice I of the o. field and ac-
cepts or discards the flip depending on whether the ratio
of the determinant R =R,R, with

&~ = 1+[1 gg~(i—, i)]{exp[ Vi"(oi) —'Vi" (cr i )]—1]

is larger or smaller than a random number between 0 and
1. If the move is accepted, all time components of the d
Green's function are updated through the relation

I

[gdd (it, 1)—5(l t, 1)](e ' ' —1)gdd (I, l2 )
gdd 1» 2 gdd 1» 2 + 1+[1—gdd (1,1)][exp( Vi' —Vi ) —1)

(10)

The unperturbed Green's functions are given by

g (l, l')=Tge "
g (ico„),

with

gdd(iCOn )
Uico„— ed +—+ bL(i co„)

(12a)

k8k= —P ~2'
one obtains

f ()F»[1+(»co»» /p)]krrVk

4'(kFr )p

III. RESULTS

(15)

gt'd(icon ) =f2(r;, icon )gd'd(icon ) =gd't (ico. ),
g;~ (ico„)= ft (ico„)—

+f2(r;,ico„)f2( r~ ,ico„)gdd (i co—„).,
where

i5.(ico„)=g
IVkl'

Lan —Ck

1 1ft(ico„)=—gN k l~n Ek

ikr;

f2(r;,ico„)=
V N k icon —ek

(12b)

(12c)

(13a)

(13b)

(13c)

These functions were evaluated in the following manner.
For a wide structureless band with Vk independent of k
(Vi, =V/'t/N ), we have

b, (i co„)=im V N(0)sgn(co„),

f, (i co„)= i m N(0)sgn(c—o„),
(14a)

(14b)

with N (0) the energy density of states per spin at the Fer-
mi energy. For f2 we need the energy dispersion relation.
For an isotropic case with Vk independent of k
(Vk = V/'t/N ) and for an electron dispersion relation:

&( .')'&=&( „—d, )'& (16)

versus temperature. The local moment forms at a temper-
ature T-6 and is stable below that temperature. Its
magnitude is a smoothly increasing function of U and
tends to unity as U~oo for T small compared with A.
For U =0, &(o., ) & =0.5 at all temperatures since we are
treating the symmetric case.

For a wide, flat band, where gk ~

Vk
~

/(ico„—Ei, ) is

negligible, the total conduction-electron spin polarization

Here we report results for the particle-hole symmetric
Anderson model in which cd ———U/2. We used units
such that the full width of the resonance
2b, =2trN(0)

~

V
~

=1. Simulations for values of U=O,
1, 2, and 4 were done. The corresponding Kondo temper-
atures for the U & 0 cases, obtained from the Bethe ansatz
solution, are Tz ——0. 169, 0.0865, and 0.0216, respective-
ly. A typical Monte Carlo run involved 5000 sweeps
through the lattice, and the statistical error for the quanti-
ties measured was negligible except where shown. The
finite time slice A~ introduces a systematic error. Simula-
tions with 6~=0.25 and 0.5 gave results which only
differed by a few percent.

As the temperature is lowered, charge fluctuations are
suppressed, and the d electrons start to localize and devel-

op a moment. This is shown in Fig. 1(a), where we plot
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in the presence of a small magnetic field H is unaffected
by the presence of the impurity and one finds that

n, r —n, r dr
BH

n, , r —n, r odr
BH

(17)

1.0

Here ( )o implies an average for a free-electron system.
This is the Clogston-Anderson compensation theorem. It
implies that the total magnetic susceptibility due the im-

purity can be written as

Xd = f dr(cr, (r)o, (0)), (18)

where Xd is in units of (gp&/2) and o, =nd, n„, . —
Figure 1(b) shows TXd versus T. As T decreases below

b, and the moment ((cr,") ) forms, the susceptibility due

(19)

Thus, an effective moment

p,', (T)=&(,')')+ f &,', ( ))d' (20)

is formed from the impurity moment and its spin compen-
sation cloud.

Rewriting Eq. (18) we have for the contribution to this
effective moment from the spin compensation cloud

S(T)=f (o,cr, (r))d r=TXd —((o, ) ) . (21)

to the impurity initially varies as ((o, ) /T H.owever, as
T approaches the Kondo temperature T~, correlations be-
tween the d-electron spin and the conduction-electron
spins start to screen the impurity moment and as T~O
the susceptibility vanishes. It is important to realize that
Eqs. (16) and (17) do not imply an absence of correlation
between the localized spin and the surrounding
conduction-electron spins. On the contrary, it follows
directly from them that

A

V'

0.5

0.5—

U=4

U=O

(b)

Figure 1(c) shows S(T) versus T. At temperatures well
below Tx, TXd ~0 and S ( T) approaches —( (o ~ ) ) . In
this limit, the spin compensation cloud quenches the local
moment leaving a ground-state singlet. For U=O, the d-
orbital moment ((od) ) =0.5 of the resonance is also
quenched as T~O by Fermi hole correlations in the sur-
rounding conduction-electron sea. In this case, these
correlations vanish on a temperature scale set by the
width of the resonance A. For U) 0, there are dynamic
correlations as well as Fermi hole correlations which drive
S to the significantly more negative T =0 value which is
needed to quench the d spin. Figure l(c) shows that the
part of the spin compensation cloud produced by dynamic
correlations evaporates on a scale set by Tz and, in fact,
S(T) is actually reduced from its U =0 value at inter-
mediate temperatures. This latter feature reflects the
Coulomb modification of the d-electron spectral weight
which we will discuss further in our analysis of charge
correlations.

In order to examine the spin and charge correlations in
more detail, we have numerically calculated S ( r ) and
C(r). Before examining these results for U&0, it is useful
to consider the U =0 case for which

0—-0.5—

and

C(r)=S(r)+ (n (r))

)
8vrb. N(0) F2( )

(22)

(23)

10 i0 10 10

FIG. l. (a) Local magnetic moment ((cr, ) ). (b) T times the
spin susceptibility and (c) contribution to effective moment from
spin compensation cloud [Eq. (21)] for a single symmetric An-
derson impurity; 6=0.5, U=O, 1, 2, and 4. The arrows indi-
cate the corresponding Kondo temperatures. The Monte Carlo
data are obtained at temperatures P=2", n is an integer.

with y=kFr and

iy[1.+(i~n Ip) j
F(y)=Im T g

co~ +6 (24)

d~ e'y~'+" "'~
F(y) = Im

0 2& cc)+6 (25)

Here n 0 is the conduction-electron density (kz /3m. ),
b =m V N(0), and pkF /2m. When T~0,



35 SPIN AND CHARGE CORRELATIONS AROUND AN ANDERSON. . . 8481

y Ihi2 )E (g /2 )
2&

(26)

Here Ei (x) is the exponential integral which has the limit-
ing forms

Ei(x)=@+in(x), x ((I
r

(27a)

eEi(x) = 1 2! 3!
1 ——+ — +.

x x
(27b)

with y=0. 577, Euler's constant. Equation (27b) leads to
the asymptotic result'

S(r) =—2 sin2(kFr)
4 (28)

which is valid when kFr is large compared to 2p/A.
In Fig. 2(a) we have plotted 4m(kFr) S(r)/no versus

0

Over a wide range of kFr values, Eq. (25), can be approxi-
mated as

—yea/2p
F(g)=siny I0 2' CO+ 6

kFr for p=1, 6=0.5, and T=O. Here the spin density
has been normalized with respect to the electron density
n0 ——k+/3' . The dot-dashed curve is the envelope of the
approximate result obtained from Eq. (26). The short-
dashed curve and the long-dashed curve correspond to the
limiting forms Eq. (27a) and Eq. (27b), respectively. We
see that the bulk of the correlations lay inside the region
where the asymptotic form, Eq. (28), is applicable. We
have also calculated S(r) at finite temperature using Eq.
(24) and find that the correlations are exponentially
damped on a length scale set by the thermal length vF/T.
Figure 2(b) shows similar results for @=6, b, =0.5, and
T=O. In this case, 2p/6=24 and the region shown is
well inside the asymptotic region appropriate to Eq. (29).

Integrating S(r) we have

I(y) = J d rS(r) (29)

for the spin compensation contained inside of a radius
kFr=y. For U=O at T =0, we have from the sum rule,
Eq. (21), I( oo ) =S(0)= —0.5. The function I (y) versus y
is plotted in Figs. 3(a) and 3(b) for p= 1 and 6, respective-
ly. From these curves we find that of order 70% of the
spin compensation is contained inside the region
kFr =2p/A. When U&0, we use the same 70% criterion
to characterize the size of the spin compensation cloud.
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FIG. 2. Spin correlation function 4w(kFr) S(r)/n. o vs kFr for

6=0.5 and T=0. (a) Here p= 1 and the solid curve is the spin
correlation function, the dot-dashed curve is the envelope ob-
tained from Eq. (26), and the short dashed curve and the dashed
curve correspond to the short and long distance approximate
forms, Eqs. (27a) and (27b), respectively. (b) Here p=6 corre-
sponding to a bandwidth large compared to b.

0 4 l2
I I I

l6 20

FIG. 3. Spin compensation I(y), Eq. (29), inside a sphere of
radius r =y/kF for (a) p=1 and (b) p=6. For p=1 and
6=0.5, 2p/5=4, while for p=6, 2p/6=24.
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finite temperature, however, charge oscillations are
suppressed also at large distances due to the temperature
dependence of the d-electron spectral weight. '

IV. CONCLUSIONS

We have studied the behavior of spin and charge corre-
lations in the compensation cloud around an Anderson
impurity. The results for the spin correlations showed the
following features. (a) The phase and period of the oscil-
lations in the spin correlations are not changed by the
Coulomb interaction. (b) The Coulomb interaction in-
duces ferromagnetic spin correlations in some regions,
which are monotonically increasing with U. (c) The anti-
ferromagnetic spin correlations can be suppressed by the
interaction at short distances at intermediate tempera-
tures. (d) The ferromagnetic spin correlations are nearly
temperature independent, while the antiferromagnetic
ones show increasing temperature dependence as U in-

creases. (e) As the bandwidth is decreased, the region of
space where the anomalous behavior of the antiferromag-
netic correlations (decreasing with increasing U) is ob-
served is reduced. (f) As discussed by Ishii, ' the spin-
compensation cloud extends over a wide region around
the impurity, set by the Kondo length p/Tz. One might
hope that neutron scattering experiments would be able to
measure the spin correlations directly and provide

confirmation of our observations. For the charge correla-
tions, we obtained a monotonic suppression with the in-
teraction which is in qualitative agreement with experi-
mental observations' as well as phenomenological calcu-
lations. "

In summary, we have shown that Monte Carlo simula-
tions can provide detailed information about spin and
charge correlations for systems of magnetic impurities.
Application of this technique to realistic band structures
is straightforward since all that changes are the quantities

f~ and f2 [Eqs. (13)] that enter into the unperturbed
Green's function. Thus, this procedure can provide quan-
titative information on correlations in specific dilute mag-
netic alloys.
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