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Theory of ultrasonic attenuation in impure anisotropic p-wave superconductors
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The longitudinal ultrasonic attenuation for impure anisotropic superconductors in the axial and
polar phases is calculated using the deformation-potential approach. Impurity effects are treated by
the self-consistent Born method. For realistic values of ql and co~, good agreement is obtained be-
tween theory and experiments. This is the case for the exponents describing the intermediate temper-
ature dependence as well as the peak observed in the sound attenuation just below T, . The behavior
of the peak that is calculated in this theory is examined and discussed.

INTRODUCTION

Recent experiments' on longitudinal ultrasonic at-
tenuation [a(T)] in the heavy-fermion superconductors
UPt3 and UBe» have yielded results that differ markedly
from the predictions of BCS theory. The low-temperature
(T) behavior of a(T) has either a T (Refs. l and 2) or a
T (Ref. 3) dependence rather than the exponential behav-
ior of BCS theory. These results are interpreted as evi-
dence for an anisotropic order parameter in these materi-
als. Furthermore, the experiments' have observed a
pronounced peak in a(T) just below the superconducting
transition temperature T, . The experiments are all car-
ried out in the hydrodynamic regime judging by the cu

dependence of many of the experimental features. Here co

is the sound-wave frequency.
Several theoretical studies, ' some using group

theoretical techniques, have led to conclusions concerning
the nature of the anisotropic superconducting order pa-
rameter in these materials. One conclusion of these stud-
ies is that while p-wave superconducting states can have
order parameters with point zeros on the Fermi surface
(axial), order parameters with line zeros (polar) appear to
be ruled out when considerations of crystal symmetry are
taken into account. The hope has been to use studies of
transport properties, in particular ultrasonic attenuation,
to lend support to these conclusions. Another goal is to
get a more accurate picture of the anisotropy of the order
parameter beyond the simple generic polar and axial type
phases.

The first theoretical analysis' of the a(T) data for UPt3
fitted the observed low-temperature T dependence by
means of a polar state. The same data was later reinter-
preted" using a Boltzmann-equation approach in terms of
an axial state. A further complication was introduced
when a simple Born-approximation study of impurity
scattering concluded' that the quasiparticle mean free
paths (I) appear to diverge at low energies in both the axi-
al and polar phases. When this effect is included in the
Boltzmann equation approach, a nonzero sound attenua-
tion at zero temperature [a(0)] is obtained in the super-
conducting state, equal to the normal-state sound attenua-
tion (a„).

A way to prevent this low-energy divergence of the
mean free path and to support the conclusions of Ref. 11
is by means of resonant impurity scattering. ' This ap-
proach builds in the effect of multiple scattering and
makes use of the important assumption that the normal-
state phase shift due to impurity scattering 5„, is close to
~/2. The same approach to impurity effects has been im-
plemented self-consistently' in a general survey of
thermal and transport properties. The conclusion of that
work' is that the superconducting phase that best ex-
plains the experimental results is a polar phase.

Subsequent studies of a( T) in the axial and polar
phases, using the resonant impurity scattering technique,
have yielded mixed results. Without vertex corrections, '

it was concluded that the experiments could be described
best by a polar phase, although that work did not rule out
the possibility of axial-type phases with certainty. Howev-
er with the subsequent inclusion of vertex corrections, ' it
was concluded that an axial phase described the data best.
Both of these calculations examined the U, /U+ ——0 limit,
where v, is the sound velocity and UF is the quasiparticle
Fermi velocity in the superconductor. The latter calcula-
tion plotted results for the ql=0.0 case only, where q is
the sound wave vector. Neither of these studies observed
a peak in a(T) below T, .

However, an examination' of both phases in the clean
limit detected a peak in a(T) whose shape and position
depended on the choice of parameters in the theory. One
parameter whose importance is pointed out in that work
is the ratio of the superconducting critical temperature
(T, ) to the Fermi temperature (TF). For a heavy fermion
material this parameter is chosen to be 0.1, among other
values. The shapes of the curves obtained depend quite
markedly on this ratio. However a related ratio, v, /UF, is
still chosen to be zero, which is somewhat inconsistent.

It has also been proposed recently' that the experimen-
tally observed peak in a(T) is due to a Landau-
Khalatnikov relaxational mode of the order parameter.
The scattering time associated with nonmagnetic impurity
scattering (r) plays a very important role in establishing
this mechanism.

It has been experimentally observed' that the
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Griineisen parameter g has values ranging from 10 to 100
in heavy-fermion materials. The implications of this for
sound attenuation in the normal state have been investi-
gated recently. This study concluded that the iso-
thermal sound velocity is much smaller than the adiabatic
sound velocity because of the large values for both q and
the quasiparticle e6'ective mass m,*. Furthermore, there
will be a large contribution from heat conduction to a(T)
The implications of this for sound attenuation in the su-
perconducting state are unclear at the moment. The
present study does not incorporate any such mechanism
due to heat conduction in a(T) arising from the larger
than usual value for q.

In the present work a careful numerical study of the
longitudinal ultrasonic attenuation [a(T)], using the con-
ventional deformation potential approach, is carried out.
Impurity scattering is treated within the standard self con-
sistent Born approximation. ' Thus the present calcu-
lation avoids any dependence on the normal-state phase
shift 5&, or the assumption that it should be close to m./2,
as occurs in the resonant impurity scattering approach. '

The self-consistent Born approximation was chosen since
it is the conventional formalism within which to treat im-
purity scattering in these problems ' and the final re-
sults of the present calculation for a( T) appear to justify
this choice. The theory is set up for numerical computa-
tion in suf5ciently general form to allow ql and co~ to be
varied from values much larger to values much smaller
than unity. Here q is the sound wave vector, l is the
mean free path of quasiparticles due to nonmagnetic im-
purity scattering, co is the sound wave frequency and ~ is
the scattering time due to impurities.

The calculation reproduces accurately the conventional
BCS and normal state results for cc(T) in the ql « I and
ql »1 limits. The theory is based essentially on the cal-
culation of two dynamical electronic conductivities which
arise in the formulation of the problem and which are in
turn determined by the impurity averaged density-density
correlation function. '

Very striking agreement is obtained between the
theoretical results for a(T) in anisotropic superconducting
states and the experimental observations. This is achieved
in the hydrodynamical regime with realistic values for the
parameters ql and co~. Not only are the observed low-
temperature exponents in a(T) reproduced but so also is
the peak in a( T) seen just below T, .

Possible effects on cc( T) due to inelastic electron-
electron scattering processes are not included in the
present calculation. These may be relevant in UBe&3.
Furthermore the superconductivity is treated in the weak
coupling approximation.

Apart from the Introduction, this paper is divided into
two main sections. The first contains a general descrip-
tion of both the general theory for calculating cc(T) and
the treatment of impurity scattering. The second section
presents and discusses the numerical results obtained
from the present approach for both axial and polar
phases. Suggestions for experimental tests of the predic-
tions of the present calculation are also put forward in the
second section. Finally a brief summary is provided in a
concluding section.

GENERAL THEORY

This calculation, based on the conventional deformation
potential idea, assumes that the ultrasonic attenuation is
purely electronic in origin at the low temperatures under
consideration. ' The electrons in the material move in
response to the time and spatially dependent electric field
set up by the motion of the ionic lattice as the sound wave
passes through. An energy balance is achieved in the
electron gas in that the energy transferred to the electrons
by this process is equal to the amount lost through Joule
heating. Thus the ultrasonic attenuation coeScient is
defined as

cc( T) = —,'Re[j,*.E)/ —,'pu*. uc, ,

where j, is the electronic current, E the macroscopic elec-
tric field in the solid, p the ionic density, u the ion veloci-
ty, and c, the sound velocity.

The impurities move with the lattice and, in order to
treat impurity scattering elastically, a unitary transforrna-
tion is made to a rest frame moving with them. ' In this
rest frame the electrons respond to a perturbation due to
the electromagnetic potential P(q, co ) [where E
= —VP(q, co)] and to a new perturbation described by

P+ 2
u p++

2
—u- p+

2

where q is the sound-wave vector and p is the electron
momentum vector. The electronic current is then given
by

m,*u
j, =o(q, co)E(q, cu) — cr (q, co) .

e~
(3)

nm, *
cc( T)= Re

pCs&

Oo —0 I
(4)

where o.o ——ne ~/m, *. The explicit collision drag term,
nm,*u" ((v) u)/r, which—appears usually in a(T) is
neglected since its contribution for the longitudinal case is
of order co/4' ro (cRef. 25) and is negligible. For trans-
verse attenuation this term would have to be included as
it usually leads to the residual low-temperature sound at-
tenuation in superconductors. The derivation of Eq. (4)
does not depend on the use of the Boltzmann equation or
the relaxation-time approximation which are used in Ref.
11.

fhe two dynamical conductivities cr(q, co) and o. (q, co)
are calculated in linear-response theory using a diagram-
matic formalism. o (q, co) depends on the impurity-
averaged density-density correlation function p(q, co)
which is defined as

In Eq. (3) o(q, co) and o (q, co) are the dynamical conduc-
tivities describing the response of the electron density (p, )

to P(q, co) and HI, respectively.
A self-consistent solution of j, and E from both the

Maxwell equations and the continuity equation for p,
yield
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p(q, ~) = —i, f ~'+ — f —co' —— Il p+, p —;co'+—+i5,co' —— i5-
d p op dco, co, co Ii), co . , co

(2m)3 — 2~ 2 2 2 2
'

2 2

where

II'" p++, p +—;~'+ +—i5,~' ——i5—2' 2' 2 '
2

G p+, co'+ —+ i 5 G p—,co' ———i 6 —F p+, cu'+ —+~6 F p—,co' ———i 6
2 2 2 2 2' 2 2 2

(6)

where

co(co)+ g~G (p, co) =

d26

—Ap
F(p, )= (8)

and f (co) is I/(e~ +1). co(co) and Az will be discussed presently.
The second conductivity, which arises in response to HI, depends on the impurity average of the product of the

density-density correlation function and the vertex (1/m, co)(q.p)(u p) —(u p), where terms of order q/k~ are ignored.
This impurity-averaged product pI(q, co) is defined as

pl(q, co)=i f ",f" " f co'+ — f co' ——— 111" p+, p —;co'+—+i5, co' — i—5—
(2')3 — 2m 2 2 2 '

2
'

2
'

2

where

III p+ +,p —+;co +—+i5, co — i5—
2 2' 2

'
2

1
q'p u'p

P71e Ct)

G p+, co'+ —+i 6 G p ——,co' ———i 52' 2 2' 2

Fp+ +,ra'i —y—i5 F p —&,m' ———i5
)2' 2 2' 2

r

[(u.p)] G p+, co'+ —+i5 G p—,co' —— i5 +F—p+, co'+ —+i 5 F p—,co' ——i5—2' 2 2' 2 2' 2 2' 2

(10)

In Eqs. (6) and (10), the complex conjugation operator on
the last F ( p, co ) Green's function only refers to the
momentum dependence of the order parameter A~. The
conductivities o (q, co) and o (q, co) can then be written as

lQ)
o (q, co) =—,p(q, co),

q

duced by impurity averaging, impurity eAects are also in-
cluded through co(co) in G(p, co) and F(p, co). The tem-
perature dependence of the order parameter depends on
the level of impurity scattering also.

For the axial superconducting phase the renormalized
frequencies co(co) are given by

cr (q, co)= — pI(q, co) .
m, u

(12)
II . 1 I i co sco —b.( T)

co co+ —+i 6 =co+ —+i 6—— ln
2 2 2 b,(T) sco+&(T)

Impurity averaging results in a set of coupled linear
equations for H'" and Hl" which are written out fully in
the Appendix. Apart from the vertex corrections intro-

where s =sgn Re(co+,s) and I = 1/2r. For the polar
phase co(co) is calculated from
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b,(T) i—[co —5 (T)]'
s'( —i)co

(14)

where s ' =sgn Im(co+, s).

The temperature-dependent order parameters for both phases, b, (T), are obtained by solving the following coupled
equations. For the axial phase

1=mNOVT —' 1

2h( T)
co„; i ~co„~ b.(T)—

1 — —ln
b, (T) 2 i

~
co„~ +A(T)

where No V is the superconducting coupling constant and co„ is the impurity renormalized Matsubara frequency given by

co„ i
~
co„~ —b,(T)

co„(co„)=co„iI— ln
2&(T) i

~
co„~ +h(T)

(16)

where co„=(2n + 1)nT.
For the polar phase, 6( T) is obtained from

1 =mNOVT. 1

n

1+ ~n

b,(T)

2 1/2 2
6(T)+[6 (T)+co „]'»

(17)

where

co„b(T)+[6(T)+co „]'
co„(co„)=co„+I ln

b, ( T)

(18)

Similar equations are defined for co[co—(II/2) —&&].
the numerical computation it is always assured that
co(co+i') =co '(co i 5) and—that

[co (co+i5)—b (T)]'» = —[[co (co i5) b, —(T)]'—

The equations for co(co) are solved iteratively.
The superconducting density of states N, (co) can be ob-

tained directly for both the axial and polar phases by

1
N, (co)=No Im(co+;s) . — (19)

Numerical results for N, (co) for both of these phases have
been presented before. A small degree of impurity
scattering produces a rounding off of the peak in N, (co)
near A(T). As the level of impurity scattering increases,
N, (co) fills in at low frequencies. For a sufficiently high
level of scattering a pronounced nonzero density of states
exists at zero frequency. For the polar case, N, (0) is
nonzero for any value of I while for the axial state
Ns(0)&0.0 only for I ) (2/~)b. However for any
I )0.3b, , a large filling in of Ns(co) at low frequencies
occurs in the case of both phases.

It is ~orth noting that the effect of pairbreaking on
Ns(co) due to impurity scattering will increase strongly
near T„even when the level of impurity scattering is
weak, for example I (O.lb(0). This is due to the fact
that near T, b,(T) becomes very small and so the effective
pairbreaking parameter I/2rh(T) in the calculation on
Ns(co) increases dramatically.

NUMERICAL RESULTS AND DISCUSSION

In order to generate a(T) curves, the values of the pa-
rameters v, /vz and T, /Tz must be specified first. This is
similar to Ref. 17. For heavy fermion materials, v, /vF
and T, /Tz would be expected to be of order 1.0 and 0.1,
respectively. For most of the ultrasonic attenuation
curves presented here v, /vz was chosen to be —', and
T, /TF to be 0.04 for the polar and 0.05 for the axial
phase. Qther values have been investigated and are dis-
cussed.

Ultrasonic attenuation results for the polar case with
b~=b(T)p, and q~~z are plotted in Figs. 1 to 5. The ql
and ~~ values are indicated on the figures and range from
0.045 to 15.0 and from 0.03 to 10.0, respectively.

Results for the axial phase with b, ~
= b, ( T)(p„+ip» )

and q~~x are plotted in Figs. 6 to 8. The corresponding ql
and co~ values range from 0.15 to 4.5 and 0.10 to 3.0, re-
spectively. In all the figures, a(T) is plotted in units of
nm,*/pc, r which is defined in Eq. (4).

The values of ql and v, /vz chosen in this calculation
are in the same range as experimentally observed values
for these quantities. For example, attenuation measure-
ments' on UPt3 at 500 MHz yield a sound wavelength of
10 pm. The mean free path is thought to be greater than
1000 A in this case, thus giving a ql value of 0.06 or
more. In UBe&3, attenuation measurements have been
carried out at 1.7 GHz, yielding a ql value of 0.2 or more.

Furthermore, recent de Haas —van Alphen measure-
ments on UPt3 have indicated measurements of the cy-
clotron mass to be 25 —90 times the bare electron mass.
These measurements indicate 8 pockets of electrons and
holes for UPt3. Using 20 gcm as an estimate for the
density of UPt3, these observations yield kz to be
0.4& 10 cm ' and v+ ——Ak+/m, * to be between 0.18& 10
cmsec ' and 0.05&10 cmsec '. Taking v, for UPt3 to
be 4)&10s cmsec ' (Ref. 18) yields values of v, /v~ rang-
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FIG. 5. a( T) for the polar state with qllz, ql= 0.045,
cur=0. 03, EFr= 150, and 6(0)r=15.0.

FIG. 7. a(T) for the axial state with qlIx, ql=0.9, nor=0. 6,
EFr= 3000, and 4(0)r=300.0.

processes other than this mechanism are contributing to
the peak in a(T). Thus the Landau-Khalatnikov mecha-
nism does not seem to be the complete explanation for the
whole peak.

An interesting point highlighted by Ref. 18 is the im-
portance of the pairbreaking time ~ due to impurity
scattering. If ~ plays a major role in producing the peak,
as suggested by Ref. 18, then such a peak should also be
observable in magnetically impure superconductors where
the pairbreaking time due to magnetic scattering would
play the role of ~. Such an observation could test the im-
portance of the Landau-Khalatnikov mechanism in pro-
ducing a peak in a( T).

However the existence of the peak could be due to a
combination of factors. Close to T, the effective pair-
breaking parameter that enters the calculation of N, (co),
that is I = I/2b. (T)r, will increase dramatically. The re-
sulting filling in of the low frequency N, (co) could then
lead to a large contribution from Cooper pairbreaking by
the sound wave, that is excitation of quasiparticles across
the "gap, " thus producing a peak near T, .

Furthermore a role may be being played by the sound
attenuation coherence factor, (1—

I h~ I
/E~). For those

regions of the Fermi surface where Az is small, this factor
is larger than the conventional BCS value. Near T„
where the number of thermally excited quasiparticles is

appreciable, the peak in N, (co) may be rendered visible as
a result. Normally in the BCS ease the smallness of the
coherence factor cancels out the peak in N, (co) and no in-

crease is seen in a( T) below T, .
One other test of the predictions of the present theory

would be to examine experimentally the behavior of the
peak as ~ is decreased. This calculation predicts that the
peak in cr(T) should sharpen up considerably and move
closer to T, .

The effect of strong pairbreaking due to impurity
scattering on a(T) in the polar phase can be seen in Fig.
9. Here b,(0)r=1.7 q1=0.15, and cur=0. 1. The peak
height has diminished and a large nonzero sound attenua-
tion is visible at zero temperature. This effect is a
refiection of the filling in of N, (co) at low frequencies due
to the smallness of ~.

Allowing U, /Uz and T, /Tz to both approach zero has a
considerable effect on the shape of the a(T) curve. This is
shown for the polar case in Fig. 10 for b,(0)r=1.5 and
the q/ and co~ values indicated on the figure. The values
of v, /vz and T, /Tz here are 2&(10 and 1.2/10, re-
spectively. Choosing these parameter values necessarily
forces one into the strong pair-breaking limit. This is due
to the fact that for reasonable mean free paths (1=1000
A), kzl is of the order of 1000 and thus EFr of the order
of 500. Thus for T, /Tz of the order of 10 this requires
b(0)r to be of the order of 1.0. As can be seen in Fig. 10
the curves generated for these values look totally unlike

3.0—

2.0— 0.02—

l.o— 0.0 I

0.0 0.2 0.4 0.6 0.8
Tl Tc

l. 2 0.0 0.2
I

0.4 0.6
T/Tc

FIG. 6. a(T) for the axial state with qllx, ql=4. 5, car=3.0,
EFr ——1.5)& 10, and 6(0)r= 1500.0.

FIG. 8. a(T) for the axial state with qllx, ql=0. 15, roe=0. 1,
EFr——500.0, and b,(0)r=50.0.
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TABLE I. Exponents characterizing the longitudinal ultrasonic attenuation curves in Figs. 1 —8, along
with the corresponding values of ql, co~, b, (0)~, and T/T, .

Temperature
range ( T/T, )

Polar
0.045
0.15
0.9
4.5

15.0

0.15
0.9
4.5

0.03
0.1

0.6
3.0

10.0

0.1

0.6
3.0

0.35—0.75
0.30—0.8
0.10—0.8
0.30—0.85
0.20—0.5

0.30—0.7
0.30—0.7
0.10—0.7

Axial

15.0
50.0

300.0
1500.0
5000.0

50.0
300.0

1500.0

0.00045+ 0.00018(T/T, )

0.0025+ 0.0049( T/T, )

0.27( T/T, )

3.94(T/T; )'"
5.75( T/T, )

0.0038( T/T, )"
0.1290(T/T, }
2.1860(T/T, )

'

the experimental observations. The choice of v, /vF and

T, /TF used in Figs. 1 —8 is necessary in order to obtain
good agreement with experiments. This choice fits in with
the simple interpretation that the quasiparticles taking
place in the sound attenuation process are heavy fermions.

Ultrasonic attenuation curves for the polar state were
examined choosing v, /vF to be small while keeping
T, /Tz to be of the order of 0.1. Results qualitatively
similar to those of Ref. 17 were obtained with a(T) in-

creasing to large nonzero value at T=O.O if q was along
z. With q displaced slightly away from z, a(T) has a
broad maximum and drops to zero at zero temperature.

Finally, the effect on a of q vectors along arbitrary
directions on the Fermi surface has not been examined
completely yet. However preliminary results for the polar
phase with qIIx and b~=b(T)p, indicate no major quali-
tative change in a( T). The curve obtained is quantitative-
ly similar to that for qIIz and there is still a peak below
T, . Further investigations of arbitrary directions for q
will be carried out.

CONCLUSIONS

able agreement with experiments. This is the case for
physically realistic values of ql and co~. Furthermore, this
is true not only from the point of view of the exponents
describing the low to intermediate temperature depen-
dence but also concerning the peak near T, . In the ab-
sence of experiments carefully determining the parameters
in the calculation, it is dificult to distinguish at the mo-
ment which of the two types of anisotropic superconduct-
ing phases, polar or axial, best fits the data. The different
temperature exponents seen for different samples of the
same superconductor, that is UPt3, are explicable as an
impurity effect. Furthermore, it seems reasonable that the
peak in a( T) is due to the combination of increased Coop-
er pairbreaking and coherence factor effects discussed ear-
lier in the presentation of numerical results. Finally the
need to choose v, Iv~ and T, /TF to be of the order of 1.0
and 0.1, respectively, rather than the normal values, in or-
der to achieve agreement with experiments, lends support
to the idea that the quasiparticles taking part in the at-
tenuation process are heavy fermions with v, comparable
to vF. Further studies are to examine the effects on a(T)
of choosing directions for q other than those considered
here.

The present calculation of longitudinal ultrasonic at-
tenuation for axial and polar anisotropic superconducting
phases has yielded theoretical curves that are in reason- 0.008—
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FIG. 9. a(T) for the polar state with qIIz, ql=0. 15, car=0. 1,
EF~——50.0, and 5(0)~= 1.7.

FIG. 10. a( T) for the polar state with qII z, ql =0.15,
cue =0.003, EF~——500.0, and 6(0)~=1.5 (upper curve). a(T) for
the polar state with qIIz, ql=0.07, co&=0.0015, EFr=500.0, and
6(0)~= 1.5 (lower curve).
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APPENDIX

The coupled linear equations for the vertex corrections
arising from impurity averaging in Eqs. (6) and (10) are
written as follows. Firstly typical integrals of products of
Green's functions occurring in these equations are defined
in the following notation:

G+(co+)G (co )=n;u f G p+ —;co+—+i5
(2m )

XG p — 6)—2' 2

(Al)

where n; is the concentration of impurities, u is the
scattering potential, and Q is the sound frequency. G can
be either G(p, co) or F(p, co). So, for example,

Q
XF p+ +;co+ —+ i52' 2

Replacing f 1'p/(2m. ) with

f sinO d 814
00 4m

(A2)

where Xo is the density of states at the Fermi level, the in-
tegral over g~ can be performed in the usual way by con-
tour integration. The remaining angular integrations
over 8 and P can be performed numerically. Further-
more,

f H p+, p —;co+ + 1,6,m — —I,6
G p (&) Q Q 0 . 0

(27r)3 2 2 2 2

is written as H"' for brevity. Using this notation,

G (co )F+(co+)=n;u f G p —;co——i5-
(2m )

II"'=G ( —co )G+ ( —~+ ) F+ (c—o+ )F (~ )

+II' '6+( —m+)G ( —co )

—O' 'G+( —co+)F (co )

+ II' 'G ( —co )F (co ) —O" F (co )F (co ),

O"'= G( ~—)F (—~ ) G(~, —)F (~ )

(A5)

+O"'G (~, )G ( —~ ) —O"'G ( —~ )F, (~ )

+O"'F (~ )F (~ ) —O"'G (~ )F (~ ) .

(A6)

The complex conjugation on the F(p, co) Green's function
only means that the momentum dependence of the order
parameter in the numerator of F(p, co) should be complex
conjugated and not the whole Green's function.

The equations for HI" to Hl ' which result from the
first term in HI, i.e., (I/m, *Q)(q p)(u. p) are identical to
equations (A3) to (A6) except that the first two Green's
function products on the right-hand side of these equa-
tions are multiplied by the vertex (I/m, *Q)(q.p)(u p) be-
fore the integral over p is performed as described in (Al).
In the case of the second contribution from Hl, i.e.,—(u p) III"—III ' are again given by equations very simi-
lar to Eqs. (A3) and (A6), except that the first two
Green's function products on the right-hand side of these
equations are, before the integral over p is performed, re-
placed by

G+ (co+ )G (co )+F+ (co+ )F (co ),

(~ )F+ (~+ ) —G+ ( —~+ )F (~ ),

—G ( —co )G+ ( —co+ ) F+ (co+ )F (co ), —

( —~ )F+ (~+ ) —G+ (~+ )F (~ ),

II '= G (co )F (co )+G ( —co )F (co )

+ II' 'G (co )G ( —co )+ II"'G (co )F (co )

+O'"G ( —~ )Ft (~ )+O"'F' (~ )F', (~ ),
(A4)

II"'= G (co )G (co ) F(co )F (co )—
+II"'G+ (co+ )G (co )+O' G+ (~+ )F (co )

—II' 'G (co )F (co ) —O' 'F (ar )F (co ),
(A3)

respectively, each of these terms being multiplied by the
vertex —(u p). These coupled equations for II'"—11'~'

and HI"—HI ' are inverted using the International
Mathematics and Statistical Library (IMSL) routine
LEQT1C.
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