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Landau parameters of almost-localized Fermi liquids
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We derive partial sum rules for the intraband contributions to the charge and spin conductivities
for almost-localized Fermi liquids in a lattice. From this we conclude that the l=1 Landau parame-
ters have small values.

I. INTRODUCTION

Fermi liquids in which there are strong correlations so
that they are almost localized have been the subject of
renewed interest lately. Examples of such Fermi liquids
are believed to be the metallic state of V203 close to the
metal-insulator transition, ' He close to the crystallization
transition, and the f-electron bands of the heavy-electron
systems. The features of this state are a strongly
enhanced mass and spin susceptibility. The charge sus-
ceptibility depends on the particular form of the almost-
localized Fermi liquid, i.e., whether there is an exactly in-
tegral number of fermions per site or not. The values of
the isotropic Landau parameters are determined by these
susceptibilities, but the higher-order Landau parameters
require extra consideration. In this paper we show that
from the sum rules it is possible to make general state-
ments about the I =1 parameters (F", in the standard no-
tation).

There has been in the literature some confusion over
the values that should be expected, particularly for F ]. In
a translationally invariant system (e.g. , He) the current-
carrying mass m, is the bare mass (m, =m), so that in
the case of a large mass enhancement, i.e., m*/m »1,
the value of F~ must be large also. Some authors have
proposed that in lattice systems [e.g. , Vq03 (Ref. 7) on
heavy-electron metals ' ] the current-carrying mass is the
band mass mb and this type of cancellation should still
approximately occur. Since experimentally m * /mb is
large, this would imply that F'~ should be large also. In
this note we show, using the dipole sum rule on the con-
ductivity for the Hubbard model, that a Fermi liquid in a
lattice does not have such a cancellation in the almost-
localized limit. Instead, m, =m* and F] is small.

The case of He is special since here the lattice is ficti-
tious, introduced to describe short-range order and there-
fore can move along with the Fermi liquid. In the true
lattice case, the conductivity describes the motion of the
Fermi liquid through the lattice and not the combined
motion of the lattice and the Fermi liquid.

The result m, =m * has a simple interpretation. A
small number of effective carriers (empty or doubly occu-
pied sites) carry the current and it is possible to reconcile
these with the large Fermi surface (containing all the fer-
mions due to Luttinger's theorem) only if m, is large.

The result can be extended easily to the spin conduc-
tivity and therefore to a discussion of F]. In fact, in the
absence of spin-orbit coupling the results for the charge
and spin conductivities are identical. In this case there is
no distinction between real and fictitious lattice systems
since a spin current, unlike a charge or mass current, is
not carried through the motion of the lattice as a whole.
We can therefore conclude quite generally that F

&
is small

in an almost-localized Fermi liquid —a result which is in
agreement with experiment in He. '

In Sec. II the sum rules are derived for the Hubbard
model. The implications for the Landau parameters are
discussed in Sec. III. The periodic Anderson model,
which requires special treatment, is considered in Sec. IV.
Some concluding remarks are made in Sec. V.

II. SUM RULES FOR THE HUBBARD MODEL

We consider the standard Hubbard model

H = t o g [c ( n, s )c (—n+ n, s ) +H. c. ]
n, a, s

+ Ugn(n, t)n(n, l),

and the spin-density operator at n,

cr, (n) =gsn (n, s ), (3)
S

we define current operators by invoking the discretized
version of the continuity equation,

—j'~'(n —n ~n, t)], (4)

where the vectors n=(n, n~, n, ) number the sites of a
simple-cubic lattice, n (a=x,y, z) are the three unit vec-
tors (1,0,0), (0,1,0), and (0,0,1), c (n, s) and c(n, s) are
creation and annihilation operators, respectively, for elec-
trons at site n with spin projection s, and
n(n, s)=c (n, s)c(n, s) is the electron-density operator at
site n with spin s. We assume periodic boundary condi-
tions Introducing the charge-density operator at n,

p(n) =pen (n, s ),
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—c (n, s)c(n+n, s)] .

.(~, )The corresponding equations for the spin current j ' are
obtained by substituting p by o., and e by s. The current
density in the a direction is then defined by

j~' =—yj "(n n+n. ),
n

(6)

where V is the total volume, both for charge (i=p) and
spin (i =o', ) transport. It is easy to convince oneself that
the time-dependent current operators can be written as
derivatives:

where

qa ='
1—gn p(n), i =p

n

1

V „
n o., n, i=cd, .

Equation (7) is the lattice version of the relation between
current and velocity in the continuum theory.

The Kubo formula for the conductivity at zero temper-
ature is given by

0"(co) =i Vf "dt e ' '( [q "(t),j"] ) .

The spin conductivity can be interpreted as the response
to a potential which acts oppositely on the two spin com-
ponents, e.g. , for i =o., a spatially varying exchange field

~~z. Since in the real part of the conductivity is an even
function of co, we find

where a is the lattice constant. This defines the current in
the a direction,

atoj~~'(n~n+n )=i ge[c (n+n, s)c(n, s)

by 1. The sum rules on charge and spin transport are
essentially identical.

We emphasize that, since the absolute value of the ki-
netic energy will decrease with increasing U, our sum rule
depends on the strength of the interaction. This is a
consequence of the model Hamiltonian which contains
only a single state per site and thus allows only intraband
transitions. The complete f-sum rule includes all allowed
interband transitions and depends neither on the periodic
potential nor on electron-electron interactions. In this
sense Eq. (11) is to be interpreted as a partial sum rule.
Experimentally the intraband contributions are indeed
often well separated in energy from all the other contribu-
tions.

III. CONSEQUENCES FOR FERMI-LIQUID
PARAMETERS

In the following we discuss the sum rule in the limit of
large U. We must distinguish the case of a half-filled

band, where no empty sites are available, from all the oth-
er band fillings where the motion of electrons (or holes)
remains possible even as U~ oo. In the latter case there
are two contributions to the kinetic energy. The first is
associated with free motion and is proportional to 1 —no,
where no is the mean density of electrons per site. The
second contribution involves motion of electrons (holes)
through high-energy ( —U) intermediate states and is of
order to/U. It is the only way transport can occur for a
half-filled band. In general, free motion dominates the be-
havior for Ace ~& U, whereas the second contribution with
weight toiU is responsible for transitions at fico=U. In
most cases, namely for all band fillings except for no =1,
the high-frequency part is negligible and the sum rule is
nearly exhausted by the low-frequency part. A connec-
tion to Fermi-liquid theory is then possible.

We consider first the case no &1 in the limit U~ao.
All high-energy contributions with weight to/U vanish
and only the low-energy part connected with electron
motion to empty sites remains. (The treatment of hole
transport for no & 1 is completely analogous. ) In Fermi-
liquid theory the real part of the charge conductivity is
written as

(10) ( )
4~Re

m
1+ fi(co) = 5(cg ),4~Ne

3 mc
(12)

The evaluation of the commutator yields the sum rule for
the charge conductivity,

2 2

da Reo-.(P.) ~ =—
0 2A'V

where T is the kinetic energy in the a direction [we write
the first term of Eq. (1) as g T ]. This equation has ap-
peared earlier in the literature, at least for the one-
dimensional case. "' It has been used for classifying
quasi-one-dimensional conductors according to the
strength of the effective electron-electron interaction
(small versus large U). ' Proceeding in the same way for
spin transport, we again obtain Eq. (11) with e replaced m,

1 —no ~0 for no~1 .
mb

(13)

where N is the number of quasiparticles per unit
volume. ' Equation (12) relates the current-carrying mass
m, to the Fermi-liquid parameters m and F&. As shown
by Landau, m, would be identical to the bare mass if we
were dealing with a translationally invariant system. In
our lattice model, however, m, can only be defined
through Eq. (12). For U&0 m, has no specific relation to
a band mass mb, and m, can be established through the
sum rule (11). In fact, for U~oo and no&1, the kinetic
energy can operate only on empty sites and its expectation
value must be proportional to to(1 —no). Since to —mb ',
it follows that
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s=q(d, no)so+ Ud . (14)

co is the mean kinetic energy per site for U=O and d is
the fraction of doubly occupied sites which tends to zero
for U~co. In the same limit the function q(d, no) be-
comes'

2(1 no )—
q(d, no)~

2 —no
(15)

in agreement with the general arguments given above.
Within the Gutzwiller approximate formula, q measures
the discontinuity of the momentum distribution function
at the Fermi surface and thus is related to the masses mb
and m' as

q=mb/m* . (16)

On the other hand, in view of Eq. (14), q measures the ra-
tio of the expectation values of the kinetic energy as
U~ oo and for U =0, and therefore also between the cor-
responding conductivity sum rules. We use now Eq. (12)
for the conductivity in the large-U limit. For U =0,
o i(~o) is, of course, also given by Eq. (12), with m, re-
placed by mb. Therefore we find

We know from Luttinger's theorem that the number of
quasiparticles is the same as the number of particles.
Therefore the vanishing of X/m, for no~1 cannot be at-
tributed to a vanishing density of quasiparticles, but rath-
er has to be associated with a diverging effective mass,
m, ~ oo.

A completely analogous discussion can be made for the
spin current. In this case it is the spin-antisymmetric
Landau parameter F; which enters the analog of (12).
We also define a spin-current-carrying mass
m, —:m *(1+Fi l3)

In order to obtain a more quantitative estimate of the
mass m, (or m, ), we use the Gutzwiller approximation
(for the Hubbard model) where the mean energy per site
is given by

ble that F', and F] take small values. An analytical ex-
pansion for small U (Ref. 15) as well as numerical calcula-
tions for large U (Ref. 16) show that the Gutzwiller ap-
proximate formula is qualitatively correct, but that there
are small corrections which imply that the reduction fac-
tor for the kinetic energy and the step in the momentum
distribution function are not exactly equal. However, the
differences are not large and can be accounted for by Lan-
dau parameters F'i' of the order of 1.

Similar arguments can be used for the half-filled band
close to the metal-insulator transition, i.e., for U & 8

~
Eo

~

.
In this case the doubly occupied and empty sites are re-
sponsible for free motion. This part of the sum rule is
therefore proportional to d. On the other hand, for
d &&1, q=8d. ' This suggests that the sum rule is al-
most exhausted by the free-motion part. Proceeding as
above we conclude that also in the half-filled band case
m, =m*, and the Landau parameters Fi' are small, at
least in the Gutzwiller approximation as U~8

~
Eo ~, the

critical value for the metal-insulator transition.

IV. APPLICATION TO THE PERIODIC
ANDERSON MODEL

k, s n, l, s

+ —,'g g U(l, l')nf(n, l, s)nf (n, l', s')+H',
n l, s&1's'

(18)

where s(k) is the energy spectrum of the conduction band,

nf(n, l,s)=f (n, l,s)f(n, l, s)

is the number operator for f electrons at site n, in the or-
bital l, and with spin s, and U(l, l') are the on-site
Coulomb interactions. H describes the hybridization be-
tween the conduction band and the f levels,

The derivation of Sec. III can be readily generalized to
the periodic Anderson model, which we write as follows:

H =pe(k)c (k, s)c(k,s)+Ef g nf(n, l, s)

q =mb/m, and q =mb/m, . (17)
H'= g [Vif (n, l,s)c(n, s)+ VI*c (n, s)f(n, l,s)],

n, l, s

(19)

Comparing Eqs. (16) and (17), we conclude that in the
Gutzwiller approach m, =m, =m* leading to the con-
clusion that Fi ——Fi ——0. In a similar way the higher
Landau parameters are expected to vanish. This result to-
gether with current estimates for the Landau parameters
Fo' [Fo » I, Fo & —0.75 (Refs. 8 and 9)] contradicts the
forward-scattering sum rule (see, e.g., Vollhardts's review,
Ref. 2) and indicates that the Gutzwiller approximate for-
mulas are not fully self-consistent.

A key point in the above was the product form of the
approximate kinetic energy. In the Appendix we show
that this product form is exact for the Gutzwiller wave
function with a fixed value of d, when a rigid displace-
ment is made of the occupied k states. However, we have
not been able to prove that the product form continues to
hold for the case of a single particle-hole excitation which
determines the value of the Landau effective mass m'.
Therefore the result that follows from Gutzwiller's ap-
proximate kinetic energy (namely, F'i F;=0) may not-—
be exact for the Gutzwiller wave function and it is possi-

where we have assumed that the matrix elements are diag-
onal in direct space, i.e., k independent. The charge den-
sity at site n, defined as

p(n)=eg c+(n, s)c(n, s)+conf(n, l, s)
s

(20)

commutes with all terms in H except with the band term
of conduction electrons. Therefore the current operator
defined through the continuity equation (4) simply in-
volves the conduction electrons. In a tight-binding
description it is again given by Eq. (5). In this case we
can proceed as in Sec. III. One easily verifies that Eqs.
(7) and (8) still hold with p(n) defined by Eq. (20). It fol-
lows that the sum rule (11) remains valid with T„
representing the kinetic energy of the conduction elec-
trons. Therefore we do not expect strong modifications of
the sum rule due to the f electrons as long as the hybridi-
zation is weak. However, it is the Drude term which we
have to analyze in order to discuss the Landau parame-
ters. It will be shown below that the f electrons contrib-
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ute to this term. Unfortunately, in the case of the Ander-
son model it is not possible to simply consider a limiting
case where the Drude term dominates the sum rule. In-
stead we proceed by examining renormalized band
schemes which have been proposed for the Anderson
model s'7

Let us first consider a pure band model [e.g. , Eq. (18)
with U(l, /')=0]. We assume that the f-level lies within
the conduction band and that it pins the Fermi energy.
The hybridization term leads to a spectrum with predom-
inantly f-character in the region of the bare f level and
conduction-band character outside. The conductivity
o(co) will be dominated by two contributions, a Drude
term at small frequencies due to transport at the Fermi
energy and "interband" transitions at higher frequencies
between band states across the hybridization gap. The
Drude contribution originates from intersite transfer of f
electrons which is mediated by the conduction electrons
through H'. Therefore the effective hopping matrix ele-
ments for f electrons are given by

t (1,1')= Vi* Vi'l[E(kp) Eg—] . (21)

In the weak-hybridization limit this expression is small

and thus the effective mass will be large. The Coulomb

interactions will reduce t in a way similar to the Hubbard

model. Suppose that all Coulomb matrix elements are

large and that, on the average, there is slightly less than

one f electron per site, n~ & 1. The f electrons will then

only move to unoccupied sites and the Drude term is

multiplied by a factor 1 —n,&. There is a second effect of
interactions which acts in the opposite way. It can be

viewed as a self-energy correction for the f level which

reduces the energy denominator in Eq. (21) and thus in-

creases t. The first effect proportional to 1 —n& is, howev-

er, dominant if n& is close to I. This agrees with explicit

calculations within renormalized band schemes, '5, 17—19

showing that the correlated system can be described in

terms of an effective single-particle Hamiltonian with a re-

normalized hybridization term

In view of Eq. (21) this yields a hopping matrix element

t ~(1 n&)t . —

The arguments given above indicate that heavy-electron

systems, in particular certain Ce compounds where

n~ & 1, can be described in terms of an effective

Hubbard-type Hamiltonian for the f electrons, at least

with respect to properties which involve only the states

near the Fermi energy. Proceeding as in Sec. III we con-

clude that the Landau parameters F1' are small for these

system. s. Recent experiments ' on the plasma frequency

associated with the Drude contribution in the heavy-

electron system UPt3 are consistent with this conclusion.

V. CONCLUSIONS

In this paper we examined the implications of sum rule

on the charge (or mass) and the spin conductivities for the

/=1 Landau parameters in the Hubbard model in the
almost-localized limit.

In a certain limit the sum rule is dominated by the con-
tribution of the Drude term of the Fermi liquid and in

this limit one can show that F'1 and F1 are small. This
result has a simple interpretation, namely that in the
almost-localized limit the effective number of carriers is

small but they move with essentially the bare mass. The
reconciliation of this result with the large Fermi surface
required by the Luttinger theorem is made through a
Fermi-liquid description with the usual number of carriers
and a large eifective mass (see also Ref. 3, p. 139). Thus
Fermi liquids in the almost-localized limit are far from
the Galilean-invariant limit. Within a renormalized band
approximation we can extend the description to the
periodic Anderson model and the heavy-electron system.

Note added in proof. A similar conclusion concerning
the value of F1 in heavy-electron metals has been reached
by C. M. Varma, K. Miyake, and S. Schmitt-Rink [Phys.
Rev. Lett. 57, 626 (1986)] using a diff'erent line of reason-
1Qg.
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APPENDIX

We now discuss the exact calculation of the change in

kinetic energy for a rigid displacement of the Fermi sur-

faces, for the Gutzwiller wave function.
We write the Gutzwiller wave function for the Hubbard

model, in three dimensions, as

~ QG & =g
I Po& = & g ro{at j I o{a& ] I

{at )

!~&t

where

k (k~, a

is the Fermi sea of noninteracting spin- —, fermions,

0- = &1 a~ . ~&Xo-

are configurations on the lattice,

o. , n E (a

and I o{a ] is the corresponding Slater determinant,

I o{a ] =det({e ]),
where n runs over [a ] and k over the Fermi sea. D
counts the doubly occupied sites.

Now we displace the up and down Fermi seas by p,
and p„respectively. The Slater determinants transform
as

Ip [a ]=det([e ])
e det({e ])

n~& (a~[

II e r{
n e({n j
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Notice that

and

&WG[p. ] I PGIP l & &PG I
4G&

The corresponding transformation of the expectation
value of the kinetic energy is

We want to stress the fact that this transformation law is
valid for all values of g. For the case of nearest-neighbor
hopping only and no magnetization, we get, from (Al),

-.(.p. ) &». ,
1

o,a=x, y, z

where a is the lattice constant of a simple-cubic lattice.
Since the effective mass is spin independent, it follows that

F) ——Fi

&@G[p ] I Ti~ I@GIp ] &=cos[(n —ni)'p~]

&«PG
I Tit I WG &

~,~ ) —C; ) C~ ) +C~ )C; (

(A I)

exactly for all g, or F
&

' ——0. As the transformation law
is the same for the interacting and the noninteracting
cases, and since & T &o scales with m lm *, F; and F

&

should be both small, but for any more quantitative state-
ment one would need a good estimate of & To&(m lm*).
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