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Quantum theory of positronium formation at surfaces
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A quantum-mechanical theory of positronium formation at surfaces is presented. The neutraliza-
tion probability of positrons implanted into solids escaping from a surface is calculated. The theory
of the resonant neutralization of ions at a surface is improved for positrons by taking into account the
quantum effect of the motion of the positrons near the surface. The angular distributions and the en-

ergy distributions of the emitted positronium are calculated. We give the relationship of the posi-
tronium energy distribution and the density of states at the surface.

I. INTRODUCTION

It has recently been recognized that low-energy posi-
tron beams provide a powerful probe for analyzing the
surfaces of solids. ' Various characteristics of positrons,
such as their positive charge, their light mass, and their
ability to annihilate and emit gamma rays, enable us to
obtain information concerning surfaces which cannot be
obtained by other methods using electrons, ions, and pho-
tons.

The main purpose of the present paper is to develop a
theory of positronium (Ps) formation at surfaces and to
show how the electron density of states at surfaces can be
extracted from the positronium (Ps) energy distribution.
The history of a positron implanted into solids can be di-
vided into three stages; its thermalization, its diffusion,
and its annihilation. In the process of thermalization, the
energy of the positron is reduced to the thermal energy
due to inelastic scattering from electrons and phonons.
During the process of diffusion, positrons at the surface
escape spontaneously if the work function of the positron
is negative. The surface-emitted positrons possess an in-
teresting property qualitatively different from a low-
energy electron beam, namely, the formation of a positron
atom or positronium. In this paper, we discuss the prob-
lem of the formation of the positronium (Ps) Aux out of a
surface. Since the electron-positron bound state does not
exist in an electron gas of the density corresponding to
that of real metals, ' Ps formation occurs only outwards
from the surfaces of metals. We will recall how the mea-
surement of the Ps flux provides a tool in order to charac-
terize the surface. Here, we investigate theoretically the
formation of the positronium out of a surface.

The elementary process of Ps formation has been dis-
cussed by various authors, in analogy with the ion-
neutralization problem. Nieminen and Oliver discussed
Ps formation using the formula of Bloss and Hone,
which was originally derived for the ion-neutralization
probability. In this way, however, the mass of the posi-
tron is assumed to be infinite and the quantum recoil

effect is ignored. Recently, one of the present authors
improved this theory to take into account the quantum
recoil effect. Nevertheless the motions of the positron and
of Ps were assumed to follow classical trajectories.

The purpose of the present paper is to describe Ps for-
mation in terms of the wave function of the motion of Ps
instead of the previously used classical trajectories. In-
stead of the semiclassical time-dependent Anderson-
Newns Hamiltonian, we describe the neutralization prob-
lem by using the optical-potential method. ' Our quan-
tum approach is a quantum-mechanical extension of the
semiclassical theory developed for the ion-neutralization
problem. The angular distributions and energy distribu-
tions of the emitted positronium (Ps) are calculated using
this theory. The relation between the energy distribution
of the Ps and the surface density of states is discussed.

II. ANGULAR AND ENERGY DISTRIBUTION
OF Ps EMITTED FROM SURFACES

Positronium formation is described here using the two-
step model, where the escape process of the positron from
the surface and the positronium formation process are
separately discussed. When the positron's work function
from the surface is negative (this is the case for almost all
metals), the escape probability of positrons impinging at
the surface is unity, from the classical mechanic point of
view, and the kinetic energy of the escape positron is the
negative value of the positron work function ( —P~ ), if the
temperature of the solid is not too high.

It is well known that there are two mechanisms allow-
ing the electron exchange between surfaces and adparti-
cles, namely the Auger process and the resonant process.
In the case of positronium formation, the resonant process
is dominant because the energy level of the positronium is
located inside the surface band. Then the probability of
positronium formation at a surface is given by the
golden-rule formula" for resonant charge exchange. In
the first Born approximation, it becomes
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where T is the temperature of the solid, kz the Boltzmann
constant, and P, is the electron work function.

The calculation of Eq. (1) is, in principal, possible if
every wave function is known. However, since little is
known about the electron's and the positron's wave func-
tions at a surface, we assume that the matrix elements
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in order to facilitate the theoretical description.
An equivalent assumption was used in theories of the

ion-neutralization based on the Anderson model. Thus
we can split the matrix element of the positronium forma-
tion into that of the inner degrees of freedom and into the

In this formula, e, represents an energy level of the posi-
tronium associated with the wave function

~

a ); EI is the
kinetic energy of the emitted positronium from the sur-
face; the wave function of the positronium is denoted by

~ f ); ek is the energy of an electron at the surface; p~ is
the positron work function;

~

k ),
~

i ) represent the initial
states of the electron and positron, respectively. This first
Born approximation can be improved by taking into ac-
count the optical-potential effect in the wave function
describing the motion of the positronium, which will be
done in the next section.

V in Eq. (1) is the Coulomb interaction between the
positron and the electron:

V= —e~/(
~
r, —r~

~
),

where r, and rz denote the coordinates of the electron
and the positron, respectively. In Eq. (1), N is the
Fermi-Dirac distribution function

motion of the center of mass. After the theoretical inves-
tigation of the many-body problems of positrons in met-
als, ' positronium formation can occur only outwards of
a surface since the stable positronium state does not exist
inside metals. The density of electrons decreases out from
the surface, and we assume a surface exponential decrease

u(R)= exp( —aZ)0(Z),

where R is the coordinate of the center of mass of the
positron and the electron R=(r, +r~)/2, and Z is the
normal component; we assumed that the solid is located
at Z & 0 and Z & 0 corresponds to the vacuum region.

From the above-mentioned assumptions, the transition
probability P of Eq. (1) can be rewritten as

p=(2/iri) f de N(e)A(e) g ~
u;r

~

5(( itiz)+—e E/ —e—, ) .
f

(6)

h(e) appears in Newn's theory' of chemisorption and
represents the lifetime broadening of the atomic level at
surfaces

~(e) =~ X I
V.k l

fi(e ek)
k

N(e) was defined in (3). Let us explicitly write the sum
over f in Eq. (6) as

g = Vo f dP/ /(2ir) f dP/ /(2ir) f dP/ /(2ir),
f

where Vo is a normalization volume element and Pf is the
center-of-mass momentum of Ps. By using now the
normal-momentum integral to eliminate the energy 5
function

f dPI 5(E —(API ) /(2M))=M/(Piiri ),
where M is the mass of the positronium, i.e., twice the
electron mass M =2m and Pi=(2MEcos 9/fi )'~, and
by transforming the transverse momentum integration
into the external angle of emission, 0, measured from the
surface normal

f dPI f dP& ——f (2M/iri )E/cos8dQ,

we obtain

g ~
u/;

~

5(( P~)+e EI e,—)= f—dE—/(2ir)VO f dQ6{(—Pz)+e E —e, )
~

up
~

(Mlfi Pi)—(2') [2MEcos(6)/h' ],
f

where P~ is the normal component of the positronium's
momentum and u p = & P

~

u
~

i ) . Thus, the total transi-
tion probability P can be expressed as an integral over en-
ergy and solid angle of the differential probability
d'P ydEd g.

P= f dE f dQ(d P/dE dQ),

where

d P/(dE dQ) = Vo(2/iri)N(p +e, +E)b, (p +e, +E)
X

~
up

~

[M/(2iriii Pi )]

X [2ME cos(8)/(2m+)i] .

Now, we rewrite Eq. (9) using the fact that u(R) in Eq.
(5) depends only on the normal coordinate Z, which

yields
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we rewrite Eq. (9) as

(10)
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By normalizing this by the initial flux of the center of
mass of the relevant positron and the electron, (u;So/Vo),
we obtain the angular and the energy resolved neutraliza-
tion probability as follows:

d n/dEdA, =SO(2/A'u, )Np (e, +E+Pp)
II

x&p (e. +E+@p )
l up, l

'

X [MI(2m% Pg)][2ME cos8(2M) ],
(12)

where u; =
l
2( —Pz)/M

l

' because there is no electron
flux from the surface into the vacuum. It is noted that
the direction of the positron escaping out of a flat surface
is perpendicular to it.

Now, let us examine each term of the right-hand side of
Eq. (11). First we discuss the parallel momentum fixed
Fermi-Dirac distribution function Np . For the solid of

II

the absolute zero temperature

Np (e. +E+P )=0

when

E& —
P~

—e, —P, .

Then, the emitted positronium energy is restricted such as

where Pp, is the positronium work function defined by

,=e.+
In the case of the free-electron model, we may calculate

I up I

'=
I up, I

'(2~)'Sofi'(k~~ —P~~) Vo

where So is the normalization area of the surface electron
and So ' is the surface electron density.

Here, it is assumed that the conserved momentum
parallel to the surface of the positronium corresponds to
that of the sole surface electron; this assumption is valid
only if the positronium work function is much larger than
ks T (so that the corresponding component of the positron
momentum is negligible), and if the surface is fiat enough.
By introducing the functions Np (e) and hp (e) taking

li II

into account this momentum conservation

When the matrix element V,k is a constant with respect to
k, this becomes

&p„(e, +E+P )=
l

V. l'pp„(e. +E+P ), (13)

where pp is the parallel momentum fixed surface density
II

of states. Then the surface density of states is proportion-
al to the energy distribution of the positronium flux.

This presents us with a method for measuring the elec-
tronic structure of surfaces which has some advantages in
comparison with other methods such as photoemission or
Auger emission spectroscopy. ' First, positronium forma-
tion occurs outwards from the surface, that is, positrons
pick up the electrons from the sole surface. Then the en-
ergy distribution of the positronium represents the elec-
tronic density of states at surfaces, kll resolved or integrat-
ed, according to the experimental set up. Second, it is not
necessary to consider the effect of the final electron densi-
ty of states. The final-state effects do not appear in the
positronium kinetic-energy distribution because the final
electron state is a well-defined bound state of the posi-
tronium and no longer an electronic state. For an elec-
tron emission method such as photoemission, the electron
current involves the final electronic states, which makes it
a difficult task to extract the initial density of states from
the measured spectrum of the electron current. Therefore
we have shown that it is possible to determine the surface
density of states directly, from the precise measurement of
the kinetic-energy distribution of the emitted positronium.

We can also represent Eq. (12) in terms of the perpen-
dicular and normal energy variables (E~ =E cos 8), which
are used by Mills et al. ' to describe the time-of-flight ex-
periments. According to the relation

d n /dE dQ=(E cos8/vr)d n/dELdE~~

the normal energy distribution of the positronium
dn /dE& becomes

the integration of Np (e, +E+Pp ) over P~ as

J dP&Np~~~(e, +E+qbz)=
l

kg —
P~~ l

'

where kF is the Fermi momentum. The energy cutoff
created by the Fermi-function will be sensitive in the an-
gular distribution of the positronium flux, if the condition

( —pp, )) (fikF) /2M

is satisfied. However, the positronium work function Pp,
is much smaller than the Fermi energy for almost all real
metals. Therefore Np (e) is nearly constant with respect
to the emission angle 0.

Now, we discuss the structure of Eq. (11) arising from
the Ap, is defined by

II

dn/dE~=(2/Au;)( I ~~) J dE~~~Np (e, +E~+E~~+P~)bp (e, +Ej+E~~~+P~) l
up

l
(1/2M)

l
2M/A E~

l

' (14)

where E~~ ——(2M /MSO) is an upper limit of E~~~. The upper limit of the integration over E~~ in Eq. (14) is also aff'ected by
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the geometrical condition of the measurement. The acceptance half angle of the detector is denoted as y. In the case of
the wide band limit, where hp (e) is independent of e and Pll, the result of the integration of the right-hand side of Eq.
(15) becomes

(1/Ell) f dE lNlpll(e, +Ei +Ell+pi )=8( imp—, Ei—.—Ell )8(Ei tan 6—
Ell )

+(Ei tan y/Ell 8 pp, —Ei sec y)8( Ei t—an y+E

+ [(—tt'p —El )/E
ll
]8(fp +Ei sec 1 )8(4'p +Ei +E (15)

When Ell is larger than pp„ this expression is equivalent
to that of Mills et al. ,

' which explains well their experi-
ments. In fact, the structure of the normal energy distri-
bution of formed positrons dn/dE& is dominated by the
one-dimensional free particle density of state associated
with the motion of the positronium out of the surface and
by the geometrical condition of the measurements given
by Eq. (15) if the initial electron density effect appearing
in b, and the transition matrix effect u of Eq. (14) can be
ignored. However the effect of

~
up

~

cannot be neglect-

ed in the structure of dn/dEi of Eq. (14), which is dis-
cussed in Sec. III.

III. OPTICAL-POTENTIAL METHOD

The motion of the center of mass of the positron and
electron out of the surface is assumed to be described by a
plane wave, which is a solution of the Schrodinger equa-
tion for free particles

2

fi (2M)
i
pi) =Ei iP, ) .

dZ

In the first Born approximation,
~

up
~

is calculated as

~
u, ~'=

~ f "dZexp( iP;Z)ex—p( aZ)exp—(iP~Z)
~

i(p p )2+ 2i —i (16)

Let us examine the contribution of this factor to the
structure of dn /dEi of Eq. (14) using the typical value of
cx, P;, and P~. Since the attenuation length of electrons

0
from the surface is about 1 A, a is 0.5 (a.u. ). The value
of the positron work function is about 0.01 (a.u. ) and P;
[=2M( —Pz)/vari ]' is 0.2 (a.u. ). The positronium work
function is 0.1 (a.u. ). Then Pi varies from 0 to 0.7 (a.u. ).
Therefore

~
up

~

of Eq. (16) varies by a factor of 2 in the

typical range of measured Pj. This variation is important
for the energy distribution of the positronium. However
the calculation based on the Born approximation is not
sufficient for the quantitative purpose.

The validity of the Born approximation is examined by
calculating the total positronium formation probability. If

is constant and if the positronium work function is
infinite, the total positronium formation probability n is
given by

propriate for treating the positronium formation probabili-
ty.

The optical-potential method has been introduced in or-
der to describe the charge exchange scattering of atoms at
surfaces by one of the present authors. ' We will extend
it here to the positronium formation. The optical poten-
tial due to the electron exchange between the ion (or posi-
tron) and the solid, W, is added to the Schrodinger equa-
tion for the wave function describing the motion of the
center of mass of the positron and the electron as follows:

2

/(2M)+ W
i
Pi) =E

i
Pi)dz (18)

where
~
Pi ) is the modified wave function taking into

account the optical potential. The Born approximation of
Eqs. (1) and (16) can be modified' by using

~
P~) in-

stead of
~
Pi ):

(19)

The optical potential W due to the resonant charge ex-
change is given by'

u
I

f'& &f'
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u
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1 ~ u
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u
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(20)

T= V+ WGpT, (21)

where

We show here that the optical-potential method for the
neutralization probability, Eq. (20), is a generalization of
the time-dependent Anderson-Newns model method,
which has been widely used for the ion-neutralization
problem, in order to take into account the quantum
effect of the motion of the atoms (or positrons). The
scattering T matrix is written in terms of the optical po-
tential as'

n =b, /Rua(—:g) . (17) '2

Since 6 is of the order of 0.1 a.u. , this quantity exceeds
unity; this indicates that the Born approximation is ap-

Go —— — iii (2M) —Ed
dz
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We note that T matrix in the interaction picture.

(Pi(a
~

V
~

k)i)=(Pi(a (T ~k)i) U= 1 —(i/h') f dt'T (t') . (22)

and (P(a
~

V
~

k)i) is given by Eq. (1). The time-
evolution operator U(t) is given as the integration of the

The matrix element of U satisfies the following integro-
differential equation:

r

U.k
———(t I&)T.'„(t)=—(i/&) V,ku (t) —f W (t, t')Ugk(t')dt'

= —(i/h) V,ku (t) —(i/M) f de b(e) f ' dt'exp[ i (e——e, )(t —t')]u (t)u (t')U, k(t') (23)

If u (t) is the classical c-number function of time such as
u (t) =u[Z(t)] [ where Z(t) represents a classical trajec-
tory], this integro-differential equation is nothing but the
equation obtained from the time-dependent Anderson-
Newns model' in the limit of the one-electron theory.
Therefore our optical-potential approach is a quantum-
mechanical extension of the semiclassical trajectory ap-
proximation using the time dependent model. It is noted
that the equation (23) is difficult to solve even by numeri-
cal methods because u is an operator. Then we will
present several approximations for

~

Pi )

A. WKB approximation

W = i b, u (Z)— (24)

The wave function
~

Pi ) satisfying Eq. (18) can be cal-
culated with the Wentzel-Kramers-Brillouin (WKB) ap-
proximation for the optical potential of (24) as

The optical-potential given by Eq. (20), which is nonlo-
cal in general, becomes a local imaginary potential in the
case of the wide-band limit

(Z
~

Pi) = exp(iP&z) exp —f dZ'u(Z') Mb, lfi Pi = exp(iPiz) exp[ —exp( —2az)Mb /(2irt Pia)] .
Z

Using this wave function, uP can be calculated by

(25)

up = f dZ exp[i(Pi P; )Z] e—xp( —aZ) exp[ —exp( —2aZ )gf l2] (26)
0

where gf ——AM/fi Pia. Two approximations are introduced to facilitate the integration of Eq. (26). The first one is the
Bloss and Hone approximation, which is obtained by changing the variable Z of Eq. (26) into rI = exp( —2aZ )gf /2,

E [2 +&(P; —P )/(2a)]
up —— f drilil exp[ —il](2'/g'f )

' (27)

If the upper limit of the integration of (27) gf is replaced by infinity, the result becomes

—[ 2 +i(P,. —P~)/(2a)]
up ——(1/2a)l [—,'+i (P; Pi)l(2a)](2'—)

where I is the Gamma function. Substituting back into Eq. (14), we obtain the total neutralization probability n:

n =( —,'priv;a) f dF. K(e, +E+pp)sech[sr(pi p; )l(2a)] . — (28)

Iup, I'= f"dZ f' dZ'exp~ t(P, P, )Z'~ exp —f— —
0 —Z Z+ (Z'/2)

)& exp — dZ"a f exp —2aZ" exp —2aZ
Z —(Z'/Z)

dZ "agf exp( —2aZ "
)

This result is equivalent to that originally obtained by Blandin et al. , Bloss and Hone, and Brako and Newns for the
ion-neutralization problem. In fact, since the value of gf is much larger than unity for the charge exchange of slow
atoms (ions), near surfaces, the domain of validity of this formula for the neutralization probability is broad. On the oth-
er hand, Niemminen and 01iva and one of the present authors applied equation 28 to positronium formation. However
the assumption of gf~co, which is valid for the slow ion-neutralization problem, fails for positronium formation be-
cause gf is of order of unity. The second approximation of Eq. (26) is the rate-equation approximation, where

~
up

~

is

calculated as

—= f dZ exp( —2aZ ) exp[ —(f exp( —2aZ)]2 sin[(P, P )Z]i/(P, Pi ) . — —
0

(29)
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When the positronium work function Pp, is infinite and b,

is constant, the total neutralization probability n is ob-
tained from Eq. (29) as

n =N(e, )[1—exp( —g)] . (30)

This result is identical to the rate equation in the ion-
neutralization problem. ' At any rate these two approxi-
mate solutions of Eq. (26) (both of which being used to
discuss the ion neutralization probability at surface) can-
not be appropriate for the quantitative discussion of the
neutralization probability of positrons. In Fig. 1 we com-
pare

~ up ~

obtained from the direct calculation of Eq.].

(26), the Bloss-Hone —type approximation of Eq. (28), and
the rate equation approximation of Eq. (29).

B. Normalized Born approximation

This approximation has been proposed by one of the
present authors to describe the ion-neutralization proba-
bility using the optical-potential method. ' According to
this, the wave function

~

P) is written by

(Z ~pt) = e xp(ip tZ)[1+i(pt
~

W ~pt)M/(2A'Pt)]

(31)

where (Pt
~

W
~
Pt ) is the diagonal matrix element of the

optical potential 8' which is calculated in the wide-band
limit

(P,
~

W
~

P, ) = y (1/~) f d, g(e)
1&Pi I

u If'&
I

'

f' E+e, —e —E +t6

By using Eq. (31),
~

up ~' becomes

2 1

J.
i
(p p )2+ 2

1

~

I+ i (P,
~

W
~
P, )M/(2g'P, )

~

' (33)

This approximation is valid when g& is of order of unity,
which is the condition of positronium formation. In fact,
the WKB approximation of Sec. III A cannot be applied
for the narrow-band case where the nonlocality of the op-
tical potential becomes important. On the other hand, the
normalized Born approximation, which does not require
the assumption of the locality of the optical potential, is
appropriate for the narrow-band case. Therefore, this
method may be useful to analyze the energy distribution
of the positronium formed at surfaces.

In Fig. 1, we show the calculation of
~
up

~

using the

normalized Born approximation of Eq. (33). It should be
emphasized that the WKB and the normalized Born ap-
proximations give quite close results in the wide-band lim-
iting case. The Born approximation, which may be better
in the region of large P)., gives too large a value of

~
u~ j

. The two approximations introduced for the ion

neutralization, the Bloss-Hone —type of Eq. (28) and the
rate equation of Eq. (29), are not appropriate for the posi-
tronium formation. Figure 2 shows the Ps energy distri-
bution, dn /dEi for an Al(111) surface. The collimator's
open-angle y of Eq. (15) is chosen as (m/2). The Born
and the normalized Born approximations are used for the

= —(i b, /2a)[ —,
' +( I /rr) tan '(Pi /a)] . (32)

C&

1

~ Bof fl

B.H. . .

R.E.

/
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I
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FIG. 1.
~

u~
~

as a function of Eq[=(a?Pi) /(2~)] The Pa
rameters are Pp, = —0. 1 a.u. , P~ =0.01 a.u. , 6=0.2 a.u. , and
o.'=0, 5 a.u. . Dashed line corresponds to the Born approxima-
tion [Eq. (16)], dotted line to the WKB approximation [Eq. (26)],
double-dotted-dashed line to the Bloss-Hone approximation [Eq.
(28)], dotted-dashed line to the rate equation approximation [Eq.
(29)], and solid line to the normalized Born approximation [Eq.
(33)], respectively.

FIG. 2. Normal energy distribution of the formed positroni-
ums dn/dE&. Solid and dashed lines are calculated using the
normalized Born and Born approximation, respectively. The pa-
rameters are the same for Fig. 1. Total escaped positronium
yield n is calculated as 0.165 from the normalized Born and 0.40
from the Born approximations, respectively. Experimental ener-
gy spectra of the positronium emitted from A1(111) surface by
Mills and Pfeiffer (Ref. 18) are marked by )& and o, for temper-
atures 692 K and 303 K, respectively.
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calculation. This calculation is compared with the experi-
mental Ps energy spectra of Fig. 3 of Ref. 18. A qualita-
tive agreement is obtained between our calculation and
the temperature independent (or high-energy) part of the
experimental spectra. This indicates that the change of
b, (e) with respect to the energy is not so important in this
restricted energy range near the Fermi level. However
knowledge of the surface density of states is needed for
quantitative comparison with experiment.

We note that the calculated spectra in the low-energy
region is proportional to 1/Ez using the Born approxima-
tion and is constant using the normalized Born approxi-
mation. The temperature-independent part of the experi-
mental spectra is constant in the low-energy region, which
suggests the effectiveness of the normalized Born approxi-
mation. This can be confirmed from the recently mea-
sured two-dimensional momentum distributions of Ps em-
itted from surfaces by Howell et al. ' and Lynn et al. ,
which agree well with calculations based on the normal-
ized Born approximation. '

IV. CONCLUDING REMARKS

In this paper, we described theory of the positronium
formation probability at surfaces using quantum perturba-
tion theory. The energy and angular distribution of the
positronium was calculated. It was shown that the Born

approximation poorly describes the positronium forma-
tion. We presented an optical-potential method for this
problem, which constitutes an improvement to the Born
approximation for positronium formation probability
below unity. It was also demonstrated that our optical-
potential method is a quantum extension of the semiclassi-
cal time-dependent Anderson-Newns theory for the ion-
neutralization problem. Contrary to the classical trajecto-
ry approximation, which cannot be used for the positroni-
um formation, and also to the Born approximation, which
cannot be applied to this problem, our quantum theory in-
cluding the multiple charge exchange process in the form
of the optical potential seems to be appropriate for the ex-
perimental analysis.

In our approach, the energy level of the positronium,
e„ is assumed to be constant with respect to the distance
from the surface. However, the image potential acts on
the positronium to shift the energy level as a function of
the distance from the surface. This effect is handled in
the semiclassical theory of ion neutralization by introduc-
ing the time-dependent energy level e, (t). Nevertheless,
this cannot be applied to our quantum theory, where time
does not appear explicitly.

The optical-potential formalism provides a solution for
our problem. It is well known that the optical potential
for charged particles due to the surface-plasmon excitation
turns out the image potential in the low velocity limit,
that is,

wher
the Schrodinger equation with an optical potential
describing the surface plasmon, we are able to take into
account the image potential.

Now, we point out several fundamental problems in the
theory of the positronium formation at surfaces. In our
present theory, a two-step model of the positronium for-
mation is applied. The first step is the escape of positrons
out of the surface and the second step is positronium for-
mation in the vacuum. We handle the first step classical-
ly; thus the escape probability of positrons is assumed to
be unity if the positron work function is negative. In our
description of the second step, the wave function of center
of mass of electron and positron describes the state in the
vacuum region. However, in this theory it is not possible
to describe the positronium formation at the surfaces for a
positive positron work function. Experimentally, the ex-
istence of Ps formation at these surfaces has been pointed
out.

A one-step model describing the positronium formation
where the escape of the positron and the positronium for-
mation are simultaneously taken into account may be ade-
quate in both cases. However the quantum one-step mod-
el for the positronium formation contains a fundamental
difficulty, even for the negative work function case, that
the calculated escape probability of the positron from the
surface for a negative work function decreases as a func-
tion of the temperature and approaches zero as the tem-

t =4P0P; /[(Pa+P; ) ]=4[k~ T/( Qp )]'—
where PQ/(2m) =kz T is the kinetic energy of the positron
inside the solid and P; PD ——2m( —P —). This tempera-
ture dependence does not agree with the experimental fact
that the temperature dependence of the transmission in-
tensity is minor. This descrepancy of the transmission
intensity between theory and experiment exists also for
the "transmission problem" of the sticking probability of
neutral gas atoms at surfaces, which remains unsolved till
now. ' Further theoretical study is needed for the one-step
model of the positronium formation to overcome the
difficulty of the "transmission problem. "
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I

perature becomes zero. The transmission intensity of pos-
e m, is the surface-plasmon frequency. Thus, using itrons through the surface is
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