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Classical transport within the scattering formalism
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The quantum composition rule for two multichannel scatterers (i.e., two pieces of a wire) in series
is used to derive classical scaling (Ohm's law). Scattering processes leading to the classical behavior
are identified and separated from quantum interference processes, which are responsible for quan-
tum localization and anomalous conductance fluctuations.

To study transport phenomena with rigor and precision
one needs an expression for the macroscopic transport
coefficients, e.g. , the electric conductance, in terms of the
microscopic Hamiltonian of the system. The two major
approaches providing such expressions are the linear
response theory' (Kubo formalism) and the scattering ap-
proach pioneered by Landauer. ' The latter approach is
particularly suitable for studying finite-size systems, e.g. ,
a piece of a wire, and it relates the conductance of the sys-
tem (sandwiched between two perfect current leads) to its
scattering S matrix.

Usually, except for some trivial cases, neither the
linear-response Kubo formula nor the S matrix in the
scattering approach can be evaluated exactly, and various
approximations are introduced. In particular, it is impor-
tant to identify the approximation which produces the re-
sults of the standard (also called "classical" ) transport
theory, based on the Boltzmann equation. Such an ap-
proximation, in addition to having conceptual signifi-
cance, represents the first step of a systematic perturbative
calculation, with respect to disorder.

There are various derivations of the classical transport
results using the Kubo formula of the linear-response
theory. Also within the scattering formalism (which,
after all, should be equivalent to the Kubo formula ' ) it is
known that a properly defined conductance, at zero tem-
perature, scales classically when the system (a wire) is
short compared to the localization length s 6' (for a long
wire quantum localization effects take over"). In this
Brief Report classical transport will be derived, within the
scattering approach, starting from the composition rule
for two pieces of a wire in series. The main purpose, how-
ever, is to identify the scattering processes leading to clas-
sical behavior and to separate them from processes re-
sponsible for quantum interference effects, such as weak
localization' ' or quantum conductance fluctua-
tions. ' ' It will thus become clear what kind of approx-
imation, or rather neglect of which scattering processes,
produces classical behavior. The approach taken in this
paper may pave the way to a systematic perturbation ex-
pansion, in weak disorder, within the scattering formal-
1sm.

Thus, I consider a disordered electronic system of a fi-
nite size (a piece of wire), connected via perfect leads to
two particle reservoirs, on the left and the right. Eigen-
states in the leads, at the Fermi energy' define the chan-

nels, for noninteracting electrons. Each channel can carry
two waves, propagating in opposite directions. For in-
stance, an electron impinging on the system from the left,
in channel a, can be reflected into some channel P or
transmitted into some channel to the right. Amplitudes
for corresponding scattering processes are denoted by r13
and t~, which are, respectively, elements of the reflection
matrix on the left, r, and the transmission matrix from
left to right, t. Similarly, one defines matrices r' and t'
on the right. Together these four matrices define the
2N)&2N S matrix, where N=AkF is the number of chan-
nels (A and kF are the wire cross section and the Fermi
wave number, respectively). This S matrix contains all
the information needed to determine the zero-temperature
dc conductance of the system. For the multichannel case
( N ))1) and when the sample length L is greater than the
mean free path I, the dimensionless (in units e /M) con-
ductance g is given approximately by

where T is=
~

t ts ~

is the transmission probability from
channel /3 on the left into channel a on the right,
R &—=

~

r & ~

is the reflection probability, and the last
equality in Eq. (1) follows from unitarity (current conser-
vation).

In order to understand the scaling properties of the con-
ductance, ' i.e., how g scales with sample length, one
needs rules for combining t and r matrices of two seg-
ments of a wire in series. These rules are easily derived.
For instance, the combined t matrix is

which is just the composition rule given, e.g., in Ref. 5
(with t i and t 2 interchanged). The first term in the series
describes direct transmission through both segments, 1

and 2, the second term describes transmission with one
scattering back and forth between the two segments, etc.
Similarly, the combined reflection matrix, on the left, r, is
given by

r =r &+t &r ~t &+t &r 2r &r 2t ~+

=r i+ t 'ir 2(1 r'ir 2) 't
i . —

Below, a small bit of wire, 5L, is taken as segment 2
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and it is added to a wire of arbitrary length L (segment 1).
5L is chosen to be much smaller than the mean free path
1, which is assumed to be large (kFl »1). The probabili-
ty that an electron gets scattered in segment 5L is small,
of order 5L/1 (the ballistic regime). The corresponding
reflection and transmission coefficients are

~

(5r) p~ =(5R) p=c5L!1N,

c5L /lN, for a&P,
1 —c (5L /1N)(2N —1), for a=P,

(4)

where coefficient c is of order 1 and, for simplicity,
short-range scatterers have been assumed. The scattering
probability is then independent of the angle (i.e., of the
channel), so that all 5R p are the same and are equal to
5T p, for a&P. The element 5T is then determined by
current conservation. The matrices for reflection and
transmission amplitudes, 5r and 5t are obtained from Eq.
(4) by taking a square root and introducing corresponding
phase factors:

5r p=(c5L/1N)'~ exp(iP p),
(c5L/1N)'~ exp(i8 p), a&P,

5t~p ——

1 (c5L/21—N)(2N —1)exp(i8 ), (a=P),
where smallness of the ratio 5L/l has been used in the last
equation. Unitarity and time-reversal symmetry (if not
broken, e.g., by an external magnetic field) impose certain
relations among phases. Otherwise, the phases are arbi-

trary and, in a disordered system, should be treated as
random variables. Note that in the most general case the
coefficient c also should be allowed to fluctuate from one
member of the ensemble to another. Besides, as was al-
ready mentioned, c can also depend on channel number
i.e., generally one has a random matrix c & instead of just
a number c. This randomness (in contrast to randomness
in phases) is of no particular interest, and it is neglected
here: It can only contribute to the standard (small) resis-
tance fluctuations, of the kind one encounters in classical
resistor networks.

In order to calculate the change Ag in the conductance
under increase 5L of the wire length, one has to calculate
the corresponding change AT in the transmission matrix
(KT=TL+sL TL, an—d it should not be confused with
the transmission matrix 5T of the segment 5L). Alterna-
tively, and a bit more simply, one can calculate the change
b,R =RL+st —RL in the reflection matrix. Using Eq. (3)
and the smallness of the ratio 5L/l, one can write the re-
flection matrix r I +~L for the combined segment L +5L
in terms of the matrices describing segments L and 5L:

r L +sL =r + t (5r )t

where t, t', and r refer to the segment L. For the purpose
of this paper it is sufficient to keep only linear terms in
5r.

Writing Eq. (6) in algebraic notations and multiplying it
by its complex conjugate, one obtains

~
(rr. +sL, )~p ~

=(RL, +sL, )~p=
~

r p ~

+t';(5r)/tjp(t')'; (5r),'yt~'p+[r pt;(5r)~tjp+c c.], .

where summation over repeated latin indices is implied.
One thus has a sum of random complex numbers or, alter-
natively, a sum of real numbers with random signs (since
each complex number occurs with its complex conjugate).
There is, however, a special class of terms which do not
contain any phase factors and thus always give a positive
contribution to RL+~L. These are terms with i =i',
j=j'. Retaining for the moment only these terms (the
others will be discussed later), one has

(RL +sL )&p=R~p+ T&& (5R)&'J'TJ'p r'
where R~p—=

~

r p ~, etc. and again summation over i and
j is implied. In matrix notation,

R t. +sL ——R+T'(5R )T .

This is the same as Eq. (6) but with reflection and
transmission probabilities instead of amplitudes. This im-
mediately suggests that Eq. (9) is a classical analog of Eq.
(6), with quantum interference effects (i.e., phases)
neglected. This is an entirely reasonable result which, for
a strictly one-dimensional (i.e., single-channel) case, was
recognized already in the early work of Landauer. He
noticed that the classical Ohm's law for two obstacles in
series is obtained by combining directly the corresponding
reflection coefficients (i.e., probabilities) rather than am-
plitudes, as prescribed by quantum mechanics. Note,

however, that Eq. (9) is not yet the complete equivalent of
the Boltzman transport equation, since in general the ma-
trices in Eq. (9) are random matrices (depending on a par-
ticular realization of the random impurity potential),
whereas the Boltzmann equation operates with averaged
quantities. However, as has been mentioned above, this
randomness in probabilities (as opposed to randomness in
phases) is of little interest. It has, in fact, already been
neglected in Eq. (4) for 5R and 5T, since these equations
refer to averaged quantities. Thus, with the fluctuations
neglected, Eq. (9) should be equivalent to the classical
Boltzmann equation. This equivalence is demonstrated
below.

Substituting 5R from Eq. (4) into Eq. (8) and denoting
c5L/1—:b,x (a dimensionless element of length), one ob-
tains the following differential equation for R &..

dR p/dx=N ' g T'; X Tip (10)

Summing this equation over a and P and using Eq. (1)
for the conductance, one obtains

dg/dx = —g /N,
where the equality g,"TJ——g, TJ , following from uni-.
tarity (even in the absence of time-reversal symmetry), has
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been used. Equation (11) implies that the inverse conduc-
tance scales as x, i.e., it is proportional to the length of
the wire. It is also clear that g is proportional to the num-
ber of channels, i.e., to the wire cross section. Thus, the
standard classical scaling (Ohm s law) is obtained, provid-
ed that only the i =i', j=j ' terms in Eq. (7) are kept.
This is quite natural since it is just such terms that appear
in any Boltzman-type theory. Indeed, in such a theory
one always assumes, implicitly or explicitly, random un-
correlated phases for different scattering processes and
then averages over these phases at some early stage of the
calculation. It is clear that the i =i', j =j' terms do sur-
vive such averaging.

I now briefly discuss the other terms in Eq. (7), which
so far have been neglected. First, note that if time-
reversal symmetry is obeyed (i.e., reflection and transmis-
sion matrices satisfy the symmetry relations
r =r, r'=r, t=t ), then there is an additional class of
terms which survive the above mentioned averaging.
Indeed, consider a scattering process p~j ~i ~a, i.e.,
the electron is impinging (on the left) in channel P,
transmitted through the first segment into channel j, then
reflected from the second segment into channel i and, fi-
nally, transmitted back through the first segment into
channel a. The amplitude for this process is t';(5r);~t~&.
This process has its time-reversed counterpart
a~i ~j~p, with an amplitude tp~(5r)~ ;t; which. , due to
time reversal symmetry, is exactly equal to the "direct"
process amplitude t';(5r);J rj13. Therefore two processes,
a~i ~j~a and e~j~i ~cx, describing reflection in
the backward direction, are completely correlated
(coherent), rather than completely uncorrelated as a
Boltzmann-type theory assumes for different processes.
This correlation leads to the doubling of reflection proba-
bility in the backward direction. ' Correspondingly,
terms with i =j', j =i', and a=@ in Eq. (7) (the second
sum on the right-hand side) survive the aforementioned
averaging (in addition to the i =i', j=j ' terms).

Finally, the great majority of terms in Eq. (7), in partic-
ular the sum in square brackets (cross terms), do not sur-
vive averaging over random phases. It does not mean,
however, that therefore these terms can be safely neglect-
ed. The point is that the conductance fluctuations gen-
erated by these terms are not necessarily small. Moreover,
even when these fluctuations are small, they are quite dif-
ferent from the standard fluctuations in classical resistor
networks. In particular, it is these terms that produce the
recently discovered anomalously large (as compared to the
classical case) conductance fluctuations' ' ' in the me-
tallic regime.

It is perhaps worthwhile to discuss in this context the
strictly one-dimensional (i.e., single channel) case. Equa-
tion (7), in this case reduces to

Ri+gL ——R+T 5R+2T(R5R)'~ cosO, (12)

where R and T are the reflection and transmission coeffi-
cients for a chain of length L, M refers to the segment
6L, and 0 is the phase difference between r and 5r. Note
that it is only the cosO term that leads to localization and
large resistance fluctuations: Without this term a chain of
any length would exhibit classical behavior. From Eq.
(12), or from a corresponding equation for resistances [the
dim ensionless resistance p is related to R by
p=R/(1 —R)], one can derive an equation for the resis-
tance distribution PL (p). This equation describes the evo-
lution of the distribution under increase of L and it-is
given by a, aI

aL
=

ap
P +P'ap (13)

where a=5p/5L is the small-scale (average) resistivity.
For short chains, L &~1 (the mean free path l, in one di-
mension, coincides with the localization length g), one can
neglect the p term and obtain the solution
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PL, (p) = (1/Pi. ) exp( —p/pL, ),
where pL -L is the average resistance. Thus, even for
L «g, there are large (of order 1) resistance fluctuations.
In other words, classical Ohm's law is obeyed only on the
average, whereas a particular member of the ensemble
(i.e., a given chain) will typically exhibit a nonmonotonic,
strongly fluctuating dependence of p on L. When L in-
creases beyond g, the typical resistance becomes large and
the p term in Eq. (13) dominates. The distribution PL(p)
then approaches the well known log-normal distribu-
tion, ' with 1np -L.

In conclusion, the composition rule for adding two
multichannel scatterers in series has been applied to derive
classical transport within the scattering approach. Three
distinct types of scattering processes in the composition
rule have been identified: (i) processes leading to classical
scaling, i.e., Ohm s law (ii) processes responsible for
weak-localization effects, in the presence of time-reversal
symmetry, and (iii) processes related to fluctuations, i.e.,
to (sometimes broad) statistical distributions. The work
seems to provide a natural starting point for a systematic
expansion, in weak disorder, within the scattering ap-
proach.
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