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The electronic and structural properties of graphite have been determined in the local-density ap-
proximation with our precise total-energy full-potential linearized augmented-plane-wave method.
We confirm the presence of a low-lying unoccupied I

&
interlayer state, which is of importance for

intercalation compounds. A careful study of the convergence of the numerical results was needed in

order to obtain reliable data for the total energy. Our values of the lattice parameters and their pres-
sure dependence are in good agreement with experiment. The values of the elastic constants

Cl)+Cl2 and C33 agree with their experimental counterparts. The experimental value of C»
differs from our result, and is also inconsistent with the experimental results for the lattice parame-
ters under pressure; new experiments are suggested to resolve this inconsistency.

I ~ INTRODUCTION

Even today, the electronic structure of graphite presents
a challenge for solid-state theory because of the presence
of two distinct and completely different types of inter-
atomic bonding. Many calculations have been devoted to
this material. The differences between the results demon-
strate the importance of the numerical approximations
made in most of these studies, which focused only on the
electronic band structure of graphite. ' Reliable calcula-
tions pertaining to structural properties derived from a
knowledge of the total energy have only been possible in
the last few years; ' their results also show the effects of
the numerical problems related to the open atomic struc-
ture of graphite.

As previously described, our full-potential linearized
augmented-plane-wave (FLAPW) method, like most
modern methods, enables us to study the electronic prop-
erties for any structure with full control over the numeri-
cal approximations. The numerical noise in the total-
energy data in this work is less than 1 mRy. As a conse-
quence, the inaccuracies of the results mainly reflect the
effects of the local approximation within density-
functional theory on the structural properties of graphite.
Additionally, these results will serve as a reference for our
work on thin films and graphite intercalated com-
pounds. A further benefit of this study is that a compar-
ison with the results of Yin and Cohen (YC) allow a
determination of the effects of the pseudopotential ap-
proximation. Finally, we are able to extend the previous
results of YC (Ref. 5) and to obtain values for some of the
elastic constants and the pressure dependence of the lat-
tice constants.

Following Sec. II, which presents a brief description of
the method used, some band-structure results are present-

ed in Sec. III. A total-energy study of the cohesive energy
and related properties is given in Sec. IV. Detailed total
energy determinations of the a and c lattice constants are
presented in Sec. V and their pressure dependence in Sec.
VI. Results for the bulk modulus and elastic constants
are compared with experiment, and discussed in detail in
Sec. VII. Numerical details of the precision of the calcu-
lations are given in Appendix A and a careful analysis
and derivation of the interpolation of the enthalpy is
presented as Appendix B.

II. METHOD

The principles of our all-electron FLAPW method are
described in detail elsewhere. Here we focus on one im-
portant feature of the method which allows comparisons
to be made with the results obtained with the pseudopo-
tential method by YC. Following the traditional APW
approach of Slater, space is divided into two regions by
constructing (non-overlapping) spheres around each nu-
cleus; we expand quantities such as charge density and po-
tential in spherical harmonics inside these spheres and in
plane waves outside these spheres. Since the radial equa-
tions are solved numerically inside the spheres, the basis
functions contain more information than the plane waves
used in the pseudopotential method. In the case of gra-
phite this results in a smaller numerical basis (between
500 and 600 functions) and, compared to the pseudopo-
tential method as applied in YC, the loss of time in con-
structing our basis functions is compensated by the large
gain due to the diagonalization of a smaller matrix. This
is opposite to the more familiar situation known in simple
metals, where basis sizes are much smaller and the pseu-
dopotential method is much more efficient.

Details pertaining to the numerical convergence of our
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results are found in Appendix A. Since energy differences
turn out to be small, such a study is very important.
Surprisingly, the most sensitive parameter governing the
relative convergence of our results for different values of
the lattice constants is the number of k points inside the
irreducible wedge of the first Brillouin zone (IBZ) at
which the energy bands are evaluated. For each set of
values of the lattice parameters we employed up to 140 in-
dependent points in the IBZ in the final self-consistent
iterations in order to establish the rate of convergence and
to be able to extrapolate to a converged result with a pre-
cision better than 1 mRy.

III. BAND STRUCTURE

The energy levels of graphite have been studied and dis-
cussed by many authors. We therefore only compare our
results in Table I with the most recent theoretical work of
Refs. 2 and 3. The data of Holzwarth et al. presented in
this table are based on the same form of the exchange and
correlation potential (Hedin-Lundqvist) as we have used;
Tatar and Rabii employed the Slater Xa form. In gen-
eral, the qualitative agreement between the results of these
three different calculations is good. We clearly confirm
Holzwarth et al. 's result for the first unoccupied o. band,
whose position was the only major discrepancy between
the work in Refs. 2 and 3. The nature of this state, which
is very important for the graphite intercalation process,
has been discussed previously.

It is, however, clear that for a more quantitative
analysis, we cannot compare with Ref. 2, since these re-
sults are based on a different form of the exchange and
correlation potential. Instead, we focus on the results of
Ref. 3. Comparing with their results (cf. the first two
columns in Table I), we see a large difference between the
eigenvalues at the top of the o. band. We found that the
energy levels in this case are very sensitive to the number
of k points used in the iterations, with errors of about 1

eV for the number of k points used in Ref. 3. For all oth-
er entries in Table I we confirm a numerical precision of
0.2—0.3 eV for the results of Ref. 3 and find our precision
to be 0.1—0.2 eV.

The remaining discrepancy for the states far away from
the Fermi level between our results and the pseudopoten-

tial results of Ref. 3 is not due to any systematic error in
the FLAPW method. In this context, we carefully inves-
tigated errors connected to the use of an (t-dependent) en-
ergy parameter in the numerical integration of the radial
Dirac equation. The energy eigenvalues are precise near
the middle of the occupied band (corresponding to the po-
sition of the energy parameters pertaining to the self-
consistent solution). Near the top and bottom of the band
we introduce systematic errors, which compensate each
other in the evaluation of the total energy and charge den-
sity. We have examined this effect by repeating our
band-structure calculations, using the same self-consistent
density, for values of the energy parameters ranging from
—1 to + 1 Ry relative to the middle of the occupied
band. Changes in the eigenvalues are at most 0.02 eV,
much less than our precision of 0.1—0.2 eV.

Two factors are important in making quantitative com-
parisons between theory and experiment. " First of all,
we use a local-density approximation to the true exchange
and correlation potential ~ Secondly, the measured excita-
tion energies are to be obtained from Dyson's equation,
which essentially adds self-energy corrections to the true
exchange and correlation potential. In graphite it is a
priori not clear which of those two effects will be the most
important. Therefore graphite is an extremely interesting
case to treat with improved, nonlocal approximations to
the exchange and correlation potential; this should lead to
a better understanding of the effects of the two correla-
tions mentioned above.

IV. TOTAL ENERG Y

Comparing the total energy of graphite with its atomic
counterpart gives the cohesive energy. It is known, how-
ever, that because of multiplet effects the local-density ap-
proximation underestimates the total energy of a carbon
atom, leading to an overestimate of the cohesive energy by
about 1.3 eV/atom. A direct comparison with the total
energy of a free monolayer, however, is meaningful and
gives the interplanar binding energy. Our experience with
other materials indicates that in comparing the converged
values of the total energy of the bulk and film FLAPW
codes we find a difference of at most 4 mRy per atom,
and that the total energy calculated with the bulk pro-

TABLE I. Band energies with respect to the Fermi level at the I point of graphite (in eV).

Bottom o. band

Bottom m band

Top o. band

Unoccupied o bands

This work

—19.6
—19.3
—8.7
—6.7
—4.6
—4.6

3.8
8.3
8.4

Ref. 3'

—20.8
—20.5
—9.1

—7.1

—3.4
—3.3

3.7
9.0
9.3

Ref. 2

—19.5
—19.2
—8.2
—6.5
—4.3
—4.3

7.1

7.3
7.3

—20.6

Expt.

8 lb 8 5d

—7.2" —5.7' —6.6
—4.6",—5.5

'Hedin-Lundqvist exchange and correlation.
Reference 9 (angle-resolved photoemission).

'Reference 10 (angle-integrated photoemission).
Reference 11 (angle-resolved photoemission).
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gram is lower. '

By carefully monitoring the total energy as a function
of all numerical parameters, we predict a value of
—302.592 Ry/cell for the total energy at the theoretical
equilibrium configuration of graphite. The fully con-
verged value of the total energy of a free monolayer is'
—302.551 Ry (4 atoms) and hence the interplanar binding
energy, which is the difference between the bulk and
monolayer energy, becomes 40 mRy/cell or 10
mRy/atom. Adjusting for the systematic difference in re-
sults obtained by using the two FLAPW programs, this
value is reduced to at most 6 mRy/atom, which still is
much larger than the experimental value of 1.5+0.2
mRy/atom, ' but comparable to the value of 8 mRy/atom
obtained in Ref. 4. Taken at face value this difference be-
tween experiment and theory indicates that the local-
density approximation is inaccurate in the low-density in-
terstitial region. However, one should also keep in mind
that the experimental value is very sensitive to the pres-
ence of stacking faults, defects, and impurities.

In addition, we calculated the total energy of graphitic
layers in the AAA stacking mode; we find a value of
—151.292 Ry (2 atoms). This leads to an upper bound on
the theoretical value of the AAA stacking-fault energy of
2 mRy/atom. The experimental value is 0.24
mRy/atom, ' which indicates that long-range effects are
important and that the proper value of the AAA
stacking-fault energy should be obtained in a calculation
where only one graphitic layer is changed from the 8 to
the A position.

V. LATTICE CONSTANTS

We have evaluated the total energy of graphite for 13
different combinations of the lattice constants a and c (see
Appendix A). The results were fitted to a second-order
Taylor expansion and the minimum of this function yield-
ed our values of the lattice constants. These numbers are
presented in Table II, together with experimental' ' and
other theoretical results. The error bars on our theoretical
values are partly due to the relative precision of our data,
but also due to the fact that in our range of values of a
and c third-order terms in the Taylor expansion are not
negligible. We do not have enough data to reliably deter-
rnine the exact values of the third-order derivatives; to do
so we should, at least, double the number of calculated
data points. We are, however, able to derive realistic esti-
mates for their magnitude when we assume that we can
neglect terms of fourth order. In this kind of analysis one
uses orthogonal polynomials —in our case Legendre
polynomials —mapped onto the ranges of a and c. As a
result, these third-order terms do directly change the
values of the lattice constants and also indirectly alter the
values for the elastic constants at zero pressure because
the position of the minimum is changed. For details we
refer to Appendix B; here we only remark that we have
included the effects of higher order terms in our error es-
timates.

As is clear from Table II, the theoretical values of the
in-plane lattice constant a are in excellent agreement with
the experimental numbers. It turns out that the minimum

TABLE II. Comparison of theoretical and experimental
0

values of the lattice constants of graphite (in A).

2.459+0.006
2.47

Theory (this work)
Theory' (pseudopotential)
Theory (Thomas-Fermi)
Theory' (FLAPW, monolayer) 2.450
Expt. (room temperature) 2.456
Expt. (room temperature)' 2.4612
Expt. (zero temperature) 2.462

6.828+0.059
6.73 (7.05)
5.60

6.696
6.7078
6.656

'Reference 5, derived with c/a ratio fixed at the experimental
value. The second value for c (given in parentheses) is derived
from an unconstrained calculation with independent variations
of a and c.
Reference 4.

'Reference 7.
"Reference 15.
'Reference 16.
Reference 17.

of the total energy is very sharp along lines of constant c,
and this leads to a small uncertainty in our theoretical
value of a. Apparently, the strong covalent bond between
the carbon atoms in a graphitic plane is fairly well
described by local-density theory. Also, since there are
only two ls core electrons per atom the pseudopotential
method should work very well, and it does.

By contrast, calculated energy differences due to
changes along the c axis are much smaller and hence the
error bar on our theoretical value is much larger. The
difference between our value and the experimental number
is about three standard deviations, and we interpret this
difference to be due to errors in the local-density approxi-
mation. The electronic charge density between the gra-
phitic planes is much smaller than in the planes, and the
Hedin-Lundqvist approximation is known to underesti-
mate the potential in such a region of low density. This
results in a weaker bonding between the planes and a
value of the lattice constant c which is too large. It would
be very interesting to see how nonlocal approximations to
the exchange and correlation potential affect this result.

Table II also compares our results with those of other
theoretical calculations. The pseudopotential method
gives a slightly better (i.e., smaller) value for c, but in this
case this number is mainly determined by the value of a,
since the ratio c/a was kept fixed at the experimental
value. Varying c independently of a yielded a much poor-
er pseudopotential result (7.05 A), but the authors do not
state the size of their numerical error due to an incom-
plete basis. The very poor result of Ref. 4, derived from a
simple Thomas-Fermi model, shows that this approach is
too crude to obtain accurate values for the lattice con-
stants, although it is certainly a useful method for com-
paring the relative effects due to intercalation. Finally, a
comparison of our results for bulk graphite with the value
of a determined from an earlier thin-film FLAPW calcu-
lation for the monolayer shows very good overall agree-
ment. The difference lies outside error bars in the numer-
ical precision of both calculations and reinforces the
speculation that the difference between the calculated a
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1.00 TABLE III. Comparison of experimental and theoretical
values of the c/a ratio as a function of pressure.

( c/a)/(cp/ap)

O
C3

C3

0.99

Pressure
(kbar)

7.8
17
27
48

Experiment
(Ref. 16)

0.9839
0.9667
0.9498
0.9329

Theory
(this work)

0.986
0.970
0.953
0.916

100 200

p Ikbar)
300

FIG. l. Experimental (Ref. 16) and theoretical values of the
relative change of the lattice constant a with pressure.

value for a monolayer and experiment may reflect a real
effect. It appears to be consistent with the observed
behavior of the a and c parameters with temperature.

VI. PRESSURE DEPENDENCE
OF THE LATTICE CONSTANTS

1.00

Given the internal energy of graphite as a function of a
and c, one may easily obtain the enthalpy by adding the
product of pressure and volume. Minimizing the enthalpy
then yields the lattice constants at zero temperature as a
function of pressure. Figures 1 and 2 display the experi-
mental' and theoretical values of the relative changes in
the lattice constants as a function of pressure. Note, how-

ever, that the experimental data are taken at room tem-

perature, and that some caution is necessary before mak-

ing a comparison. Inspection of Table II shows that
changes due to cooling to 0 K (Ref. 17) are about 0.2%
for a and about 0.6%%uo for c. We can assume, however,
that the relative effect of pressure on these corrections is
much smaller. This means that the difference between the
theoretical and experimental results in Figs. 1 and 2 is

probably not due to temperature effects.
We have calculated the total energy of graphite for

values of a/ao between 0.98 and 1.04 and values of c/co
between 0.90 and 1 ~ 10 and hence our interpolation is only
valid for this region. This immediately explains why we
find a large discrepancy for c/co at pressures above 60
kbar; in this case we are outside the range of validity for
our interpolation of the enthalpy. Additionally, Figs. 1

and 2 show systematic deviations. They underestimate
the changes at low pressure and overestimate the changes
at higher pressure. These systematic deviations point to
the importance of higher-order terms in the expansion of
the enthalpy, which is consistent with what we have
found before. For this reason, we expect third-order
terms in the Taylor expansion of the total energy to be the
main cause of the difference between experiment and
theory in Figs. 1 and 2, and we think that the effects of
the local-density approximation are much less important.

When we restrict ourselves to pressures less than 50
kbar, we can directly compare the experimental and
theoretical values of the c/a ratio under pressure. As
seen from the results given in Table III the agreement
here is very good; the error is still only 2% at 48 kbar, but
then rises strongly with pressure, because our extrapola-
tion for c becomes inaccurate.

The calculated and experimental values of the deriva-
tives of the lattice constants with pressure at zero pressure
are presented in Table IV. We see that our calculated
values are smaller than the experimental room-
temperature values, consistent with Figs. 1 and 2. These
pressure derivatives, however, are directly related to the
values of the elastic constants, as will be discussed later.
The measured temperature dependence of the elastic con-
stants then allows us to derive the derivatives of a and c
with pressure at zero temperature (see below). The result-

O TABLE IV. Theoretical and experimental values of the
derivative of the lattice constants with pressure in Mbar ', at
zero pressure.

0.90
a

Bp ap

c
BP Cp

100 200

p (kbarj
30C

FIG. 2. Experimental (Ref. 16) and theoretical values of the
relative change of the lattice constant c with pressure.

This work
Expt. ' (300 K)
Expt. (extrapo-

lated to 0 K)

0.09+0.03
0.18+0.01
0.20+0.01

l.82+0.42
2.40+0.05
2.29+0.05

'Reference 16.
Extrapolation to 0 K based on the temperature dependence of

the elastic constants as measured in Ref. 19.
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TABLE V. Theoretical and experimental values of the bulk
modulus, B, and isotropic bulk modulus, B;„,of graphite in
Mbar.

This work
Expt. ' (300 K)
Expt. b (0 K)
Expt. ' (300 K)

0.50+0.08
0.36+0.01
0.41+0.01
0.36+0.01

Biso

3.19+0.21
2.86+0. 11
3.18+0.11

'Reference 18, from elastic constants.
"Reference 19, from elastic constants.
'Reference 16, from lattice constants.

ing values are shown on the third line of Table IV. At
this point we emphasize that the difference between
theory and experiment for 8/Bp(c/co) is of the same
magnitude as the error in our theoretical value, which in-
corporates higher-order effects. The difference for
8/Bp(a/ao), however, is much larger. We will see that
this value is strongly influenced by errors in C», and that
in this case the extrapolation to zero temperature may
possibly be inaccurate.

VII. ELASTIC CONSTANTS

Table V compares theoretical and experimental values
of the bulk modulus and the isotropic bulk modulus (ob-
tained from volume changes with constant c/a ratio) for
graphite as a function of pressure. The agreement be-
tween theory and experiment' ' ' at T=O K is especial-
ly good for the isotropic bulk modulus. Now, as is well
known, both bulk moduli are linear combinations of the
elastic constants. As a result of the anisotropic nature of
the interactions in graphite the lattice is very stiff only in
the graphitic planes, and hence C» is much larger than
the other constants. Hence the good agreement found in
Table V does not necessarily imply good values for all of
the elastic constants separately.

In order to investigate the elastic constants in more de-
tail, we have fitted our total-energy data as a function of
a and c to second order. In doing so we have applied uni-
form distortions only in the graphitic plane, conserving
the overall symmetry. We did not attempt to calculate
symmetry breaking distortions because this would in-

crease the computing time beyond reasonable limits. As a
result we are only able to determine the elastic constants
C33 C]3 and the combination C

& &
+.C, 2 (which can only

be separated by deforming the carbon rings). The fifth
constant, C44, pertains to shear deformations of the
planes which also reduce the symmetry.

Table VI shows our results. As expected, our value of
C, t+C~2 agrees well (within our error bar) with experi-
ment at zero temperature (third line in Table VI). The er-
rors in C» and C33 are much larger; our negative value of
Ci3 is especially surprising (although it is zero within the
error bar). Note, however, that the error in C&3 is con-
sistent with the error in the value of c discussed earlier.
One can obtain our theoretical value of c in a hypothetical
experiment by applying a negative pressure of about 75
kbar. This would bring down the value of C» by 0.24
Mbar (Ref. 19) and yield a room-temperature value of
—0.09 Mbar. Extrapolating this value to 0 K would
make C» again positive, but its exact magnitude is uncer-
tain. ' Such a result, however, is in contradiction with
our theoretical values of a, C&2+C&2, and C33 which are
all consistent with an experiment in which we apply a
positive pressure of about 15 kbar. Hence, it is quite ap-
parent that a proper treatment of the highly anisotropic
nature of graphite plays a very important role in deter-
mining the elastic constants. As a next step we calculated
the values of the pressure derivatives of the lattice con-
stants directly from the elastic constants [see Appendix B,
Eq. (B17)]. The value of (Bc/Bp)(2. 74+0. 17 Mbar ' at
300 K) is about 15% different from the direct experiment;
this number is mainly determined by C33 A very large
difference, however, is found for Ba/Bp. The value de-
rived from the elastic constants is 0.05+0.02 Mbar ' at
300 K. At zero temperature, the elastic constants C» and

C33 are almost equal and this yields an extremely small
value for the change in a with pressure (0.00+0.02
Mbar '). This result clearly contradicts the direct mea-
surement.

We now invert this process. We assume that the experi-
mental value of C» +C&2 is correct, but use the data on
the pressure derivatives of the lattice constants to obtain
values for C» and C33 The room-temperature results are
shown on the fourth line of Table VI. Since the measure-
ments' of the temperature effects were only relative, we
can directly use these results to scale the values to zero
temperature, and these results are shown on the fifth line
of Table VI. (These values were then used to obtain the

TABLE VI. Theoretical and experimental values of the elastic constants of graphite in Mbar. The
last two lines show rederived experimental values based on the pressure dependence of the lattice con-

stants, as described in the text.

+11+C12

This work
Expt. ' (300 K)
Expt. (0 K)
Rederived experiment (300 K)
Rederived experiment (0 K)

'Reference 18.
Reference 19.

14.3+1.7
12.4+0.4
13.3+0.4
12.4+0.4
13.3+0.4

0.56+0.09
0.36+0.01
0.41+0.01
0.49+0.03
0.56+0.03

—0.12+0.13
0.15+0.05
0.40+0.05

—0.51+0.06
—0.71+0.06
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third line in Table IV, discussed earlier, which gives the
pressure derivatives of the lattice constants at zero tem-
perature. ) The value for C33 obtained in this way is in
good agreement with our theoretical value (cf. line one).
We see that C» is negative, but again its value is very dif-
ferent from our theoretical value. A negative value of C»
is, at first sight, in contradiction with the measured values
of the thermal expansion coefficients. An analysis by Kel-
ly shows that this is not true; even with the standard
value of C» one needs a large phonon contribution to ex-
plain the observed contraction of the a axis with tempera-
ture.

We now have to ask why the values of C» shown in
Table VI are so different. When C» becomes larger than
C33 the a axis will expand with pressure, which is not ob-
served. Hence C» has to be smaller than C33. From Ap-
pendix B [Eq. (B17)] we see that for graphite we have ap-
proximately

a
Bp ao

C33 —C» 1 C33 —C»=0.08
C33 C11+C12 C33

and this indicates that C» has to be negative and of the
same order of magnitude as C33 in order to explain the
behavior of a with pressure. Therefore, the puzzle is why
the directly measured value of C» is different from the
value derived from the pressure dependence of a. If we
can solve this problem we might then be able to under-
stand why our theoretical value is exactly in between the
"experimental" numbers.

The samples from which the elastic constants were ob-
tained' are compression-annealed pyrolytic graphite
(CAPG), while the lattice constants under pressure' were
measured for natural Ceylon graphite. Compressibility
results for CAPG are in reasonable agreement with those
of single-crystalline natural graphite. ' Due to the large
anisotropy, however, most properties are mainly deter-
mined by C»+C&z and, to a smaller extent, by C33 C»
does not play a significant role. Hence, the similarity be-
tween natural graphite and CAPG is only strongly justi-
fied for the in-plane elastic properties.

Measuring C» is not easy' and the results for C» at
low temperature are not really accurate. ' But the data in
Table VI, lines 2 and 4, pertain to room temperature, and
even in this case the difference in the values of C» is
larger by a factor of 8 compared to the combined standard
deviation. Hence, an experimental error due to the extra-
polation to 0 K is not likely to be the cause of the
discrepancy.

The negative value of C» indicates that there is a com-
plicated response of the system to uniaxial stress, which is
reflected in the charge transfer between ~ and o bonds. It
is immediately clear that impurities between the carbon
layers will have large effects on this mechanism, and it is
known that graphite intercalates easily. Also, the effect
of dislocations has to be taken into account. Hence dif-
ferent samples might give different results, especially for
C~3 (but hardly for C, ~ and C~q). Experiments determin-
ing C&3 on samples with varying, but controlled, amounts
of intercalants should reveal the value of C» in the zero
impurity limit.

VIII. CONCLUSION

We have performed a highly precise calculation of the
total energy of graphite as a function of the lattice con-
stants, preserving the D6~ symmetry. The agreement of
the calculated lattice constants with experiment is very
good, and shows that the local-density approximation
does not lead to larger than usual discrepancies for a sys-
tem like graphite, where the electron density of the
valence electrons varies strongly. A comparison of our re-
sults with the data of YC (Ref. 5) shows that the effect of
the pseudopotential approximation is very small in a sys-
tem like graphite. A major difference with experiment is
obtained for the elastic constant C», but in this case the
experimental results are also contradictory. Clearly, the
mechanism connecting the strong covalent in-plane bonds
and the weakly covalent interplanar bonds is very sensi-
tive to the presence of impurities between the graphitic
layers and dislocations of the layers. Hence there is a
need for experiments determining C» in samples with
well-controlled defect and impurity concentrations. Only
when these results are available will a comparison with
our theoretical values be able to assess the effects of the
local-density approximation on the theoretical description
of this sensitive quantity.
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APPENDIX A NUMERICAL DETAILS

As discussed in our paper describing the bulk FLAPW
method, most numerical parameters can be taken large
enough to have no significant effects on the total energy
while keeping a reasonable computation time. The upper
bound of our energy window was taken rather high, be-
cause nonspherical terms are large. It was located about
2.5 Ry above the Fermi level, giving rise to about 30
unoccupied states at each k point (versus 8 occupied lev-

els). Also the number of plane waves describing the inter-
stitial density and potential was chosen large in order to
have enough flexibility in our choice of basis size. We in-

corporated all plane waves inside a sphere whose radius,
multiplied by the muffin-tin sphere radius, was equal to
13.

The two important parameters, which had to be moni-
tored carefully, are (as usual) the number of basis func-
tions and the number of k-points inside the irreducible
part of the Brillouin zone. All our final calculations were
performed with basis functions inside a sphere of half the
radius of the sphere described in the previous paragraph,
yielding between 500 and 600 basis functions for each k
point. Even in this case, the total energy still had an abso-
lute error of 10 mRy as compared to its converged value,
but the relative error (for different values of a and c) was
less than 1 mRy.

The largest relative error was due to the k mesh used in
the Brillouin-zone integrations. We performed our final
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TABLE VII. Total energy differences (in mRy) as a function
of the lattice constants a and c (in a.u. ). These results are ob-
tained in our final iterations.

This leads to the following expression for the enthalpy H:

pVo
H =Ep+pVp+pVp(6+5)+ a+

4

4.600
4.600
4.680
4.641
4.800
4.550
4.680
4.750
4.550
4.750
4.550
4.650
4.650

12.654
12.654
12.100
12.654
12.654
12.654
12.400
11.400
11.400
13.900
13.900
13.900
11.400

—0.5
—0.7

0.8
0.0

25.9
7.9
0.2

15.1

12.7
12.2
13.6

—0.1

8.1

+(P+pVp)b5+y5 (85)

in which we define

v3
Vo = aoco

2
(86)

/3= VpCi3 (8&)

The constants a, /3, and y are directly related to the elastic
constants at zero pressure,

Vp

4
(Ci&+C&z),

iterations with 140 points inside the irreducible wedge of
the Brillouin zone, and in this case the absolute error
in the total energy was about 5 mRy, as compared to its
fully converged value. The relative error, however, was
less than 1 mRy, but was responsible for most of our nu-
merical inaccuracies, as presented in our error bars. Since
it is also comparable to the size of the anharmonic terms
(see Appendix 8), it prevented us from determining the
exact values of the higher-order terms in the tota1 energy.

Finally, Table VII summarizes our total energy results,
given relative to the value at the experimental lattice con-
stants. These results all pertain to the same numerical
precision, with 140 points in the irreducible wedge of the
Brillouin zone and a large basis.

Vo

2
C33 ~ (89)

0= =p Vp+2 a+ b +(P+p Vp)5, (810)aa pVo=as= 4

aa
=pVp+(P+pVp)b, +2y5 .=as= (811)

Formula (85) does not give the derivatives of the elastic
constants with pressure: for that case higher-order terms
have to be included. The values of the lattice constants at
nonzero pressure are found by minimizing (85) with
respect to 6 and 6, which leads to the equations

APPENDIX B: INTERPOLATION OF THE ENTHALPY

We first discuss the second-order expansion of the
enthalpy 0 =E+pV. Since we will expand this quantity
in terms of the relative deviations from the equilibrium
values of the lattice constants at zero pressure, ap and co,
we define

These have the following solution:

pVp
(2y —P—pVp),

W

pVp 15= (2a —/3 ——,p Vp),

(812)

(813)

a —ap

ap

C —Cp5=
cp

with the inverse

a =ap 1+
2

(81)

(82)

(83)

pVp
1V = (/3+ p Vp ) —4y a+

4

from which we find immediately

1 = (2y —/3)/(/3 —4ay),
V, ap p=0

1 86 = (2a —P) /(/3 —4ay ),
Vo ~p

(814)

(815)

(816)

c =cp(1+5) . (84) or in terms of the lattice constants and elastic constants,

a 22 33 13)/[C13 2 C33(C11+C12)] i
Bp ap p=p

(817)

c
Bp cp

C11+C12

2
J

—C, 3 [C]3 2 C33(C)(+C)2)] . (818)
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The bulk modulus at zero pressure follows from
B = —V(Bp/c) V) and is related to the elastic constants by

2

B= (C))+C)p)C33 2C)3
(B19)

C)) +C)P+2C33 4C/3

pb, R6tt = —4X 10

y6R ——5 X 10

e=2X 10

(B26)

(B27)

(B28)

The isotropic bulk modulus is obtained by forcing 6/2=6
and we find

8;,„=—,(C„+C,~)+ 9 C)3+ —, C33 . (B20)

X =6/AR, (B21)

Higher-order elastic constants do not enter into formulas
(B17)—(B20) for the zero pressure derivatives.

In order to discuss the effects of third-order terms we
transform to new variables according to

Expression (B24) has to be minimized with respect to x
and y. The minimum occurs for x=0. 1 and y=0.04, re-
sulting in errors of about 0.2% for a and about 0.4%%uo for
c. These errors are included in Table II. Because of this
shift our values of the elastic constants are also affected
and we find an error due to higher-order terms in

C~~+C~~ of 8%%uo, in C33 of 2%%uo, and in C&3 of 25%.
These errors are included in Table VI.

Another check on the size of e comes from the pressure
derivatives of the elastic constants. From (B24) we find

(B22)

3E'= g C„'P„(x)P, „(y) .
n=0

(B23)

where AR and 6R are the ranges of 6 and 6. Hence x and

y are within [ —1, 1] and the third-order term can now be
expressed in Legendre polynomials according to

0E e

0 2 2
=2ab, tt + —(30x+6y),

a'E E
=PA, q6R + —(6x+6y),

dx By 2

O'E
2

=2y6tt+ —(30y+6x ),

which translates into

(B29)

(B30)

(B31)

(B24)

with approximately the following values of the parame-
ters:

(xAR ——2X 10 (B25)

Because of the orthogonality of the Legendre polynomials,
adding this term to the fitting function does not change
the values of the coefficients of the lower-order functions,
when they are also expressed in terms of Legendre polyno-
mials. We now replace c„by e (an assumption to be ex-3

amined later) and from our data we find that 4e is at most
1 mRy. The internal energy at zero pressure now becomes

E=abttx +/3htt ottxy+yoRy +e/P„(x)P3 „(y)

1 8
(C~~+C~q) =

z (30x+6y), (B32)
C11+ 12 p 4aaR' ~p

1 0 6'

C)3 ——— (6x +6y),
2 ~tt4 t)p

1 8 e
C33 ——

~ (6x +30y) .
C33 BP y~R P

(B33)

(B34)

From our data we find for the order of magnitude of
these deviations 8, 38, and 6 Mbar ', while the experi-
mental numbers' are 4, 21, and 27 Mbar '. This indi-
cates that the order of magnitude of e is correct, but that
not all coefficients C„have the same value of e as was as-
sumed in the derivation of (B24), etc.

'We will only compare our results with the most accurate recent
work in Refs. 2 and 3; many references to older publications
can be found in these two papers.
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