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Photoemission surface core-level study of sulfur adsorption on Cie(100)
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The interaction of elementary sulfur with Ge(100)(2)&1) surfaces was investigated using low-

energy electron diffraction, Auger-electron spectroscopy, and photoemission core-level spectroscopy.
Chemisorption of sulfur results in a binding-energy shift of the Ge 3d core-level electrons of
DE=0.33+0.01 eV per S—Ge bond. The adsorbed sulfur dissociates and leads to an ordered (1&& 1)

reconstruction with one S atom per surface unit cell. The adsorbed sulfur atoms are bonded on

bridge sites. Sulfur deposition exceeding one monolayer is possible, probably due to defects; the ex-

cess can be selectively thermodesorbed. During room-temperature adsorption, no S islands are
formed. Thermodesorption is destructive, possibly etching.

I. INTRODUCTION II. EXPERIMENTAL

Stoichiometric saturation of all surface valences of a
semiconductor surface may result in a (1 X 1) reconstruc-
tion of high order and stability. Such ideally terminated
surfaces as As/Si(111)(1 X 1), As/Ge(111)(1 X 1), and
Cl/Ge(111)(1X1) attract current interest. ' On the one
hand these surfaces are simple model systems for the in-
vestigation of the bonding mechanisms which determine
the reconstruction of semiconductor surfaces; on the other
hand these ideally (1X1) reconstructed surfaces might
have applications in future molecular-beam epitaxy
(MBE) layer-growing techniques.

Sulfur and higher chalcogens are prospective candidates
as adsorbates to obtain an ideal (1X 1) termination of the
bivalent (100) surfaces of Si and Ge (oxygen is known to
penetrate and form Si02 and Ge02 instead ' ). Recently,
we investigated the interaction of sulfur with these two
surfaces. In this paper we show that sulfur adsorption on
Ge(100) can indeed yield an ideally terminated surface; an
analogous result for the Si(100) surface was not achieved.

A lot of work has been done on sulfur adsorption on
metal surfaces where the standard preparation method
uses H2S. Applying this technique to semiconductor sur-
faces leads to coadsorption of H, HS, and S. The hydro-
gen cannot be removed selectively. Some investigations
have been performed on such mixed systems. ' In order
to obtain pure sulfur adsorption we prepared our surfaces
by exposure to a molecular beam of elementary sulfur.

In this paper we show that it is possible to establish a
structural model for S/Ge(100(1 X 1) by monitoring the
Ge 3d surface core-level photoemission during adsorption
and desorption of sulfur. The conclusions are drawn from
the shifted surface contributions according to different
oxidation states of the first layer of Ge atoms. The major
results are as follows. S/Ge(100)(1 X 1) is an ideally ter-
minated surface, the sulfur coverage being one atom per
Ge surface atom. The adsorbed sulfur is bonded on
bridge sites. No large sulfur islands are formed during
room-temperature adsorption. The thermodesorption pro-
cess is destructive, possibly etching (desorption of GeS).

We used Ge samples of low n-type doping concentra-
tions in order not to affect the measured photoelectron
spectra by changes of the band bending within the escape
depth of the photoelectrons. The surfaces were prepared
with repeated cycles of mild sputtering (600—800-eV
Ar+) and heating to about 600'C. This resulted in a
(2X1) low-energy electron diffraction (LEED) pattern.
The sulfur was produced in situ under UHV conditions by
dissociation of Ag2S in a solid-state electrochemical cell'
in a separate chamber connected to the vacuum system.
All surfaces were checked before and after sulfur adsorp-
tion by LEED and Auger-electron spectroscopy (AES)
analysis.

The AES intensity of sulfur LMM emission reaches sa-
turation for room-temperature adsorption on Ge(100), the
covered surface shows a (1X 1) LEED pattern. The qual-
ity of the LEED pattern can be improved by carefully an-
nealing the sample. The sulfur covered surface is inert
with respect to residual gas contamination and does not
show any detectable changes after -48 hours in UHV.

The photoemission experiments were carried out
at the dedicated storage ring BESSY (Berliner
Flektronenspeicherring-Gesellschaft fiir Synchrotron-
strahlung) in Berlin. The synchrotron radiation was
dispersed by the torroidal grating monochromator TGM-
3." The photoelectrons were analyzed with an ellipsoidal
mirror display spectrometer' '' operated in the angle-
integrating mode with an acceptance cone of about 90'.
The Ge 3d electrons were excited in the photon energy
range hv=40 —60 eV with hv=60 eV giving the best sur-
face sensitivity.

III. PHOTOEMISSION RESULTS

A. Evaluation procedure

Figure 1 shows the spin-orbit splitting and the deter-
mination of the bulk emission line shape. Figure 1(a)
demonstrates the decomposition of an experimental Ge 3d
core-level spectrum into two equally shaped contributions
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