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A self-consistent linear-combination-of-Gaussian-orbitals (SCLCGO) method for calculating elec-
tronic properties of semiconducting crystalline polymers is presented. The method is based on the
division of the electron density p into the sum po of spherically symmetric atom densities compensat-
ing the nuclear charges and the neutral deformation density Ap. po is expanded in terms of atom-
centered Gaussians and Ap in terms of plane waves. This procedure avoids the multipole expansion,
keeps the effective potential (in the local-density approximation) fully general, and allows the analyt-
ic calculation of the matrix elements between the LCGO's. The SCLCGO energy bands and p are
presented for the dimerized all —trans-polyacetylene chain. Close agreement with optical and x-ray
photoemission spectroscopy experiments is found. The results are also compared with those of other
calculations.

I. INTRODUCTION

Polymers are attracting extensive interest as a result of
their unusual combination of electrical, magnetic, and op-
tical properties under doping. ' This has increased
theoretical efforts to understand the basic electronic struc-
ture of crystalline polymers. Such knowledge has been
obtained from both semiempirical and nonempirical cal-
culations of restricted Hartree-Fock (RHF) type as well as
from band calculations based on the local-density approxi-
mation. The traditional linear-combination-of-atomic-
orbitals (LCAO) RHF approach of quantum chemistry
suffers from describing the energy spectra of extended
systems insufficiently because of the missing correlation.
As a consequence, e.g. , the RHF gaps are far too large.
Although the local-density approximation improves the
description of the combined exchange and correlation,
there still remains the difficulty of representing the aniso-
tropic bonding of crystalline polymers. Methods based on
muffin-tin-type approximations [like the cellular,
augmented-plane-wave (APW), and Korringa-Kohn-
Rostoker (KKR) methods] are not expected to be suitable
for this purpose. The orthogonalized-plane-wave (OPW)
method is not expected to converge well because of the
lack of p states in the atomic cores of light polymers. The
pseudopotential (PSP) method suffers from using the
pseudo-electron-density instead of the true electron densi-
ty p.

The purpose of this paper is to present a self-consistent
(SC) linear-combination-of-Gaussian-orbitals (LCGO)
method for calculating the electronic structure of semi-
conducting crystalline polymers and to apply it to a

dimerized all —trans-polyacetylene chain, which is a much
studied fundamental polymer system of wide interest.
Our method is based on the exact division of p into the
sum po of the spherically symmetric atomic densities com-
pensating the nuclear charges and the neutral deformation
density Ap. '

po is expanded in terms of atom-centered
Gaussians and Ap in terms of plane waves.

This procedure avoids the multipole expansion, "'

keeps p and the effective potential (in the local-density ap-
proximation) fully general, and allows the analytic calcu-
lation of the matrix elements between the LCCxO's.

The format of this paper is as follows. The basic for-
malism is presented in Sec. II, the numerical methods are
presented in Sec. III, the energy bands and p for the
dimerized all —trans-polyacetylene chain are presented and
analyzed in Sec. IV, and the conclusions are drawn in Sec.
V.

II. FORMALISM

The effective Schrodinger equation reads, in the local-
density approximation,

H'pt, „(r ) =&g„+g„(r ),
where the effective Hamiltonian H in Hartree atomic
units is of the form

H = ——'V + Vc[p(r)]+ V„,[p(r)] .

Vc in Eq. (2) is the Coulombic potential

(3)

35 8177 1987 The American Physical Society



8178 J. von BOEHM, P. KUIVALAINEN, AND J.-L. CALAIS 35

p =2+'4.+k.
k, n

(4)

The Gaspar-Kohn-Sham exchange approximation' ' is
used for the exchange-correlation potential V„, in Eq. (2)

1/3
3p(r)

(5)

where Z; is the nuclear charge of the atom at site ~; of the
primitive unit cell at R and p is the electron density

6 V„„.(r) =gA V„,( G)e
G

(19)

The Fourier coefficients b, Vc(G) in Eq. (18) are obtained
for Cx&0 via Poisson's equation,

6 V„,(r) = V„,[p(r)] —Vo „(r) .

The relatively smooth AV [Eq. (11)] having the symmetry
of the crystal is expanded in terms of plane waves:

a Vc(r) =ga Vc(G)e —'o',
G

The main idea of the present method is to divide p exactly
into two parts, 6 Vc(G) = &p(G),

G2
(20)

p=po+~p . (6) For b, Vc(G=0) we use the approximation

The atomic density po in Eq. (6) consists of spherically
symmetric atomic densities po.. ~Vc(G=0)= — f ~p(r)r2«

3AO ~0
(21)

po(r) =Xpo'(
I
r —R

m, i

where the po's compensate the nuclear charges

fpo(r)d r=Z; . (8)

Ap(r) = g bp(G)e
G(~0)

(10)

where the Cx's are reciprocal-lattice vectors. The division
of p [Eq. (6)] divides the crystal potential V= Vc+ V„,
[Eqs. (2)—(5)] further into the corresponding parts

V= Vo+AV.

po is held fixed during the calculation. The deformation
density Ap in Eq. (6) accounts for bonding. Ap is neutral,

Ap r d r=0. (9)

Ap is relatively smooth and has the symmetry of the crys-
tal. It is therefore convenient to expand Ap in terms of
plane waves

Vo(r) =—Z. 2 N—a&r- —a r
e '+ ce

r J =2
(22)

In this way V contains only terms of the form e
—1 —ar2 —arr 'e ", and e ' and therefore the matrix elements

between Gaussian orbitals can be calculated analytically
as will be discussed in more detail below. [One could also

2 —arinclude Gaussians of the form r e " in Eq. (22)].
The basis Bloch functions are of the form

ik.R
itk;(r) = ge X;(r—R —r;),

m

(23)

where Ao is the volume of the primitive unit cell. The
Fourier coefficients bp(G) [Eq. (10)] and AV, „.(G) [Eq.
(19)] are calculated from the respective hp(r) and 5 V„,.(r)
values in a fine regular mesh of the primitive unit cell as
will be discussed in more detail below.

The rapidly varying parts Vo [Eqs. (12)—(15)] of V
around the atom sites are expanded in terms of Gaussians:

Vo in Eq. (11) is produced by po and is of the form

Vo(r)= Vo, c(r)+ Vo, (r)

=cavo(

~

r —R —r; ),
m, i

(12)

where N is the number of the primitive unit cells in the
region defined by the periodic boundary conditions and 1;
is an atomic basis functions expressed further in terms of
Gaussian orbitals:

where

Vo(r)= Vo c(r)+ Vo „(r) (13)

N

y, ( r r; ) = g a,'G (P—,', l,', m,', n,', r; ),
s=1

(24)

and

Z r
Vo, c(r) = — ' +4~ f (r )'—Po(r')dr

r r

G(P, 1,m, n, r) = (x —r„) (y —r~ ) (z r, )"e ~" ' . —(25)

The eigenfunctions of Eq. (1) are expanded in terms of

r'po(r')dr'
r

(14)
%kn

gorki

C kni (26)

Vo „,(r) =—
' 1/3

3po(r)
(15)

The use of the Rayleigh-Ritz variational principle gives
the matrix eigenvalue equation

b. v=hvc+Av„, in Eq. (11) is produced by Ap,

~Vc(r)= f (16)

H kC kn ——Eknk kC k (27)

where the column matrices Ck„contain the coefficients
kni ~
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Ht, ;J. g——e H~) (R ),

hq;J. ——ge bj(R ),

(28)

(29)

TABLE I. The atomic basis functions g; (Ref. 17). a ana p
denote the expansion coefficients and exponents of the Gauss-
ians, respectively [see Eqs. (24) and {25)].

and

H;~(R )= &X;(r—r;)
l
HXJ(r R —~~)—&,

b, ; (R )=&X;(r r;) —lX.(r —R —r )& .

(30)

(31)

III. NUMERICAL METHODS

The carbon 1s, 2s, 2p„, 2p~, 2p„and hydrogen 1s
atomic orbitals from Ref. 17 were used as the atomic basis
functions 7;. They are given in Table I in terms of the
Gaussian orbitals [see Eqs. (24) and (25)]. The long-range
Gaussian orbitals were neglected because they contribute
little to a band calculation for a crystal, cause extensive
overlap and may cause linear dependences in the basis
function set. ' The po's in Eq. (7) were calculated from
the atomic basis functions X; (Table I) in a logarithmic
mesh consisting of about 80 points. The corresponding
spherically symmetric potentials Vo were calculated with
the 50 points Gaussian quadrature formula in the same
mesh [see Eqs. (12)—(15)]. The Vo's were then fitted to
the Gaussian expansion (22) using Hartley's method. '

The resulting parameters are given in Table II. The error

H;J(R ) is the sum of its parts:

H;J(R ) =T,J.(R )+ Vo,j.(R )

+ b, Vc;~ ( R ) + b, V„, ;J(R ), (32)

where T denotes ——, V' . Since the atomic basis func-
tions 7; are expressed in terms of Gaussian orbitals
[Eq. (24)] the calculation of the matrix elements in Eqs.
(30)—(32) reduces to the calculation of the matrix ele-
ments between Gaussian orbitals of the form
&G(i)

l
GV) & &«i)

l

—
~

~'GV) & &«&)
l
G(k)G(j»

& G(i)
l
rk G(k)G(j) &, and & G(i)

l

e ' 'Gj()&. The ana-
lytic expressions for these matrix elements as well as their
detailed derivations are given in Ref. 16 and will not be
reproduced here.

In the self-consistent iteration the solution of the eigen-
value equation (27) gives a new p [Eqs. (4) and (6)] and
thus a new V [Eqs. (11), (17)—(21)] that gives again a new
eigenvalue equation to be solved. The matrix elements be-
tween the X s as well as the fixed po and Vo [Eqs. (7) and
(22)] must be calculated only at the beginning. Only the
Fourier coefficients b, Vc(G) and b, V„,(G) [Eqs. (18) and
(19)] vary during the iteration. The iteration may be start-
ed by assuming that p =pc (as we did).

C 1s

H 1s

1.309 607 06
2.206 19073
2.521 594 37
1.204 354 22

—0.437 237 286
—0.282 307 698

0.579 189 861
1.348 244 37
1.072 61991
0.579 208 747
0.163 506 877
0.277 338 720
0.315 740 334

4.869 669)& 10~

7.337 109X 10'
1.641 346 K 10'
4.344 984
8.673 525
2.096 619
6.046 513X 10
8.673 525
2.096 619
6.046 513X 10
1.300 773 x 10'
1.962 079
4.445 290 && 10

bp(G) = f [p(r) po(r)]e' 'd —r
1

Q Qo

11 11 ll

g g g [p(r;~), ) po(r;~k)]e—' Ijk,
i =1 j=1 k =1

where

(33)

6 r jk
——2~ nl + n2+ n3J

11 11 11
(34)

and n 1, n 2, and n 3 are the components of Cr. The 343
coefficients b, V„,(G) [Eq. (19)] were calculated in the
same way.

The eigenvalue equation (27) was solved with the
Cholesky decomposition, Householder tridiagonaliza-
tion —bisection —inverse-iteration method at ten regularly
spaced k vectors of the one-dimensional Brillouin zone.
The electron density p [Eq. (4)] was calculated with a sum
over these k vectors weighted with the nearest volumes in
the Brillouin zone.

The convergence was improved by mixing 70% of the
previous EVc(G) and b, V„,(CJ) coefficients into the new
ones. The neutrality condition (9) was fulfilled with the

TABLE II. The coefficients of the Gaussian expansion for
the Vo's. c, and e, denote the expansion coefficients and the
exponents of the Gaussians, respectively [Eq. (22)].

Atom

1/2

g (V(~)J' —V(), ) l(X N)—
of the fit was 0.0018 for C and 0.00046 for H.

The 7 =343 Fourier coefficients bp(G) for EVc(G)
[Eqs. (10) and (20)] were calculated from p(r) and (the
fixed) po using a regular mesh of 11 =1331 r;&k points of
the primitive unit cell with the equation

H

Zc=6
2.363 669
3.216 698
5.395 517
0.968 2283

—1.090 826
ZH=1

0.450 533
0.105 379

1.391 585
28.341 33
6.627 048
2.203 240
1.040 296
0.378 1194
0.228 747
0.791 728
0.251 564
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accuracy bp(G=O) =0.006 that should be compared with
the number of ten valence electrons in the primitive unit
cell. Typically five to ten iteration cycles were needed for
a practically full convergence.

P

15-

IV. RESULTS AND DISCUSSION

Trans-polyacetylene [trans-(CH) j consists of weakly
coupled chains of CH units forming a quasi-one-
dimensional lattice. Due to the Peierls instability ' trans-
(CH)„ is expected to dimerize. The dimerization (C—C
bond alternation) was recently confirmed experimental-
ly. In this paper we consider electronic properties of a
single dimerized trans-(CH)„chain the structure of which
is shown in Fig. I. The dimensions of the primitive unit
cell in the y- and z directions, b=12ao and c=8ao (ao is
the Bohr radius =0.529 A), respectively, were chosen so
large that the chains are essentially noninteracting.

Our calculated SCLCGO band structure is shown in
Fig. 2 and the key quantities are compared with the other
calculations using local-density approximations' ' ' in
Table III."' ' The five averaged valence bands
(VB1—VB5) of the three-dimensional SC bands 33 from
I along the chain direction are used in Table III (columns
9 and 10).

The second and third columns of Table III show the ef-
fect of the self-consistency in our bands. The valence
bands VB2—VB4 (see Fig. 2) undergo a considerable
change under the SC iteration which also affects the den-
sity of states significantly (see below). Our bands agree
most closely with the "weakly alternating" bands of
Grant and Batra (fourth columns in Table III). Our up-
permost valence band (VB5) agrees closely with those of
the other SC calculations with uo ——0.03 A (columns 7
and 9—11 in Table III) whereas there are considerable
differences in the lower valence bands.

According to the orbital analysis of our eigenfunctions
the uppermost valence band (VB5) and the lowest

conduction band (CB1) are pure bonding and antibonding
carbon 2p, bands, respectively. The total width of these
bands —measuring the delocalization and mobility in the
chain —is 11 eV in close agreement with the correspond-
ing widths in Refs. 12, 28, and 29. Our minimum optical

gH

C-H

X

FIG. 1. The structure of the dimerized trans-polyacetylene
chain. The closed and open circles denote the carbon and
hydrogen atoms, respectively. The structure parameters
dc —c ——1.35 A, dc c= 1.46 A, g (C—C—C)=120', and

dc H
——1.09 A are taken from the paper of Good et al. (Ref.

23).

0-

-15—

1
it tunits of 1t/a)

FIG. 2. The SCLCGO band structure of the dimerized
trans-polyacetylene chain. VB1—VB5 denote the five valence
bands, CB1 denotes the lowest conduction band, and E~ denotes
the Fermi level.

gap (the dimerization gap) of 1.3 eV agrees within +0.5
eV with the other gaps calculated at the same degree of
dimerization uo-0. 03 A (Table III). Our gap is in good
accordance with the experimental gap of 1.7—1.8 eV for a
single isolated dimerized chain. The somewhat smaller
value of our gap is consistent with the fact that the local-
density approximation for the exchange and correlation
tends to underestimate the gap.

Our SCLCGO density of states (DOS) is presented in
Fig. 3 ~ The effect of the self-consistency on the DOS is as
follows: the peaks at 7, —5 (with a deep valley), —12,
—17, and —19 eV of the non-SCDOS become the peaks
at 6, —5 (without a valley), —9, and —19 eV of the
SCDOS. Our DOS resembles most the weakly alternating
DOS of Grant and Batra.

The positions of the peaks of our DOS agree closely
with those of the SCDOS of Mintmire and White" ' (6,
—6, —10, and —17 eV) but the heights of our peaks de-
crease less for decreasing energy due to the different
grouping of the valence bands. Our DOS also agrees
closely with the SC three-dimensional DOS by Ashkenazi
et al. except that their peaks at —5 and —10 eV con-
tain deep valleys. Figure 3 shows the close agreement of
our DOS with the experimental x-ray photoemission
(XPS) spectrum of Brundle. Even the shoulder at —1

eV, the small intermediate peak at —7 eV and the should-
er at —14 eV of the XPS spectrum can be found in our
DOS.

Our SCLCGO electron density p and the non-SC densi-
ty po are shown in Fig. 4 along the x axis of the chain (see
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I—

(Jl

CO

C3

VB
I

-20 -15 -10
I

-5 0
ENER6Y (eV)

CB

FIG. 3. The SCLCGO density of states (DOS) of the dimer-
ized trans-polyacetylene chain. The thick and thin lines
represent the SCLCGO DOS and the experimental x-ray photo-
emission spectrum of Brundle (Ref. 37), respectively.

Fig. 1). The maximum at x =1.0ao is due to the close lo-
cation of a C atom (see Fig. 1). The electron density
changes from po to p in the formation of bonding. The
electron density increases everywhere on the x axis (Fig.
4). The maximum increase occurs in the middle of the
double C =C bond where the density more than doubles.

Our p is qualitatively similar to the contour plot of the
density of Kasowski et al. ' Our p (Fig. 4) agrees closely

0.2—

0.1—

C=C
0 0

0.0 0.5 1.0
I I

1.5 2.0
x (ao)

C-C
I

2.5

FIG. 4. The SCLCGO electron density p along the x axis of
the trans-polyacetylene chain. Also the non-SCLCGO density
po is shown. The densities are given in the units electrons/ao.

with the (continued) density p of Springborg: the densi-
ties are in the middle of the C =C bond twice as large as
in the middle of the (single) C—C bond and the densities
have a maximum at the closest point to the near C atom.
Our p differs somewhat from the (three-dimensional) SC
pseudopotential (PSP) density of Grant and Batra. The
PSP density is in the middle of the C=C bond only 1 ~ 1

times as large as in the middle of the C—C bond and in
place of the maximum of our p at x =1.0ao (Fig. 4) the
PSP density has a minimum. These differences may be
due to the fact that the PSP density has a tendency to
vary too slowly.

The Hartree-Fock (HF) calculations for the isolated
trans-(CH)„chain result in band structures that are
significantly broader than those obtained using the local-
density approximation for exchange and correlation
(Table III) or the experimental band structures. For ex-
ample, the widths of the HF valence bands ' ' ' are
about 2—14 eV broader than the widths of the valence
bands obtained with the local-density approximation
(Table III) and about 7—12 eV broader than the width of
the XPS spectrum of Brundle. Specifically, the funda-
mental HF energy gaps ' ' ' of 6—10 eV are much
larger than the gap of 1—2 eV obtained with the local-
density approximation (Table III) and the experimental
gap of 1.7—1.8 eV. The necessary correlation correction
to the HF gap has been elaborated by Suhai. ' He
found that inclusion of the full correlation corrects the
gap down to -2.5 eV which is still -0.7 eV higher than
the experimental value.

V. CONCLUSIONS

We have developed a self-consistent linear-
combination-of-Gaussian orbitals method for calculating
the electronic properties of semiconducting crystalline
polymers. Our method (using the local-density approxi-
mation for exchange and correlation) is based on the exact
division of the electron density p into the sum po of spher-
ically symmetric atom densities compensating exactly the
nuclear charges and the neutral deformation density Ap.
The fixed po is expanded in terms of atom centered
Gaussians and the relatively smooth Ap in terms of plane
waves. Our method has the following advantages: (1) the
electron density and the effective potential (in the local-
density approximation) can be kept fully general, (2) the
matrix elements between the basis functions can be calcu-
lated analytically and (3) the multipole expansion is avoid-
ed. We feel that the last point is quite essential because
the LCAO results are sensitive to the truncation errors in
the multipole expansion. The method is not limited to po-
lymers but can be applied to any light periodic crystals.
The method can be straightforwardly extended to the cal-
culation of the total energy, optical response, etc.

We have applied our method to the dimerized trans-
polyacetylene chain. The band structure and the electron
density are presented for this system. Our energy spec-
trum (the fundamental gap and the density of states)
agrees closely with the experimental spectra. Our bands
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agree quite closely with the other calculations in the re-
gion of the fundamental gap whereas our lower valence
bands show considerable differences as compared with the
corresponding bands of the other calculations. According
to our self-consistent density (when compared with the
non-self-consistent atomic density) the electron density
grows everywhere on the chain axis in the formation of
bonding the maximum pileup being in the middle of the
double C=C bond.
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