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We present a first-principles approach to deriving the relative energies of valence and conduction
bands at semiconductor interfaces, along with a model which permits a simple interpretation of
these band offsets. Self-consistent density-functional calculations, using ab initio nonlocal pseudo-
potentials, allow us to derive the minimum-energy structure and band offsets for specific interfaces.
Here we report results for a large number of lattice-matched interfaces, which are in reasonable
agreement with reported experimental values. In addition, our systematic analysis leads to the im-
portant conclusions that, for the cases considered, the offsets are independent of interface orienta-
tion and obey the transitivity rule, to within the accuracy of our calculations. These are necessary
conditions for the offsets to be expressible as differences between quantities which are intrinsic to
each of the materials. Based on the information obtained from the full interface calculations, we
have developed a new and simple approach to derive such intrinsic band offsets. We define a refer-
ence energy for each material as the average (pseudo)potential in a “model solid,” in which the
charge density is constructed as a superposition of neutral (pseudo)atomic densities. This reference
depends on the density of each type of atom and the detailed form of the atomic charge density,
which must be chosen consistently for the different materials. The bulk band structures of the two
semiconductors are then aligned according to these average potential positions. For many cases,
these model lineups yield results close to those obtained from full self-consistent interface calcula-
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tions. We discuss the comparison with experiments and with other model theories.

I. INTRODUCTION

It has become technologically possible to grow high-
quality epitaxial interfaces between two different semicon-
ductors, using techniques such as molecular-beam epitaxy.
The most important parameters characterizing such
heterojunctions are the valence- and conduction-band
discontinuities. These discontinuities can form a barrier
for carrier transport across the interface; the knowledge of
these quantities is therefore essential for calculating the
transport properties of the interface, or the electrostatic
potential in a heterojunction device. Examples of such
novel semiconductor structures include quantum-well
lasers, high-speed modulation-doped field-effect transis-
tors, and superlattice photodetectors. Measured experi-
mental values for band lineups are not well established
yet, even though considerable progress has been made in
growth and analysis techniques. In this paper, we will
present a theoretical approach to deriving the band
offsets.

Let us suppose we know the band structures of the
semiconductor bulk materials 4 and B. We now want to
figure out what the band structure looks like around an
interface 4 /B. It is only in a very narrow region around
the junction that the potential will be changed from its
shape in the respective bulk materials, as we will show.
Band bending caused by space-charge layers occurs on a
length scale that is much larger than the atomic distances
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over which the band offsets occur; therefore, the bands
can be considered to be flat on this scale, except for the
sharp discontinuity at the interface. We are then con-
fronted with the problem of how to line up these bulk
bands with respect to one another, which amounts to
determining the lineup of electrostatic potentials. This
type of information cannot be obtained from regular bulk
calculations alone. For an infinite solid, no absolute ener-
gy reference is provided by the calculations (i.e., no “vacu-
um zero” is present to which other energies could be re-
ferred).! Therefore one cannot compare separate calcula-
tions on different solids. The fundamental reason for this
is the long range of the Coulomb interaction: the charge
distribution at a surface or an interface will determine the
position of the energy levels deep in the bulk.

A number of model theories?~® have been developed
which attempt to predict the lineups from information on
the bulk alone; they necessarily rely on certain assump-
tions to establish an absolute energy scale, to which values
for different materials can be referred. The electron affin-
ity rule? assumed that the energy difference between the
conduction band and the vacuum level, as measured at a
surface, would be fixed, and derived conduction-band
discontinuities in this fashion. Frensley and Kroemer? at-
tempted to identify a reference level in each semiconduc-
tor that would correspond to the vacuum level.
Harrison’s theory of natural band lineups* established an
absolute energy scale by referring everything to energy
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eigenvalues of the free atom. A very different approach
has been developed by Tejedor and Flores,® and more re-
cently, by Tersoff.® Their model is based upon simple
screening arguments to define a “‘neutrality level” for each
semiconductor, which will be aligned when an interface is
formed.

All of these model theories rely on information about
the bulk alone, and do not provide a complete description
of the electron distribution at the interface. The only way
to obtain a full picture of this effect is to perform a calcu-
lation in which the electrons are allowed to adjust to the
specific environment created by the interface. This can be
accomplished by performing self-consistent calculations,
which will correctly describe the electrostatic potential
shift that determines the lineups. Density-functional
theory provides a fundamental theoretical framework to
address this problem, and has the advantage that one can
use the same methods which have been applied to a wide
variety of solid-state problems.” Pickett et al.® and Kunc
and Martin® have performed calculations which followed
this approach; however, they used empirical pseudopoten-
tials instead of the more recent ab initio pseudopotentials,
and they only studied a small number of interfaces.

In this paper, we will carry out a systematic study of
the band offset problem for a large number of heterojunc-
tions; preliminary results for some of these systems have
been reported elsewhere.'® Our calculations are per-
formed on a superlattice geometry, and based on local-
density-functional theory,!! applied in the momentum
space formalism,'>!* and using nonlocal norm-conserving
pseudopotentials.'* From the self-consistent potentials we
obtain information about potential shifts at the interface.
Combining this with bulk band-structure calculations will
allow us to derive values for valence- and conduction-
band discontinuities. Spin-orbit splitting effects in the
valence bands are added in a posteriori. We also need to
address the “band-gap problem,”'*~!7 and examine to
what extent the local-density approximation (LDA) is able
to produce a reliable description of these heterojunction
systems. Our discussion will indicate that for the semi-
conductors studied here the lineup of the bands should not
be greatly modified by the known corrections to the
local-density approximation.

Self-consistent calculations such as those performed in
the present study provide a way to take all the effects of
the electronic structure of the interface into account. This
also implies that the results do not immediately tell us
what physical mechanisms are dominant in determining
the lineups. It is therefore important to systematically
analyze a large number of interfaces, which will allow us
to extract some general features of the lineup mechanism.
In particular, we study the dependence of the lineups on
interface orientation, and also examine to what extent the
lineup mechanism can be considered to be linear. Lineari-
ty can be tested by checking whether transitivity is
obeyed; it implies that the lineups can be obtained as a
difference between quantities which are intrinsic to each
semiconductor.

Based upon the information obtained from the full
self-consistent calculations, we have developed a simple
model to derive the lineups. We divide the problem into

one part which can be expressed as the difference between
quantities which are intrinsic to each of the materials, and
another which involves corrections due to the detailed
electronic charge density at the interface. To define ap-
propriate intrinsic quantities, we choose to describe the
bulk solids by a superposition of neutral atoms. The aver-
age potential in such a “model solid” can be found on an
absolute scale from atomic calculations, and is not influ-
enced by boundary effects. At the junction between two
model solids, a shift in the average potentials occurs,
which we take as the reference with respect to which any
additional dipole corrections will be measured. The bulk
band structures of the two materials are then aligned ac-
cording to these average potential positions. A short
description of this model was given elsewhere.!® For non-
polar interfaces, the model lineups yield results close to
those obtained from full self-consistent interface calcula-
tions, and to reported experimental values. This indicates
that for these interfaces the additional dipole contribu-
tions are small. Furthermore, these lineups are indepen-
dent of interface orientation and obey the transitivity rule,
corresponding to what was found from the ab initio calcu-
lations.

We have applied our methods to both lattice-matched
and strained-layer interfaces between pairs of group-IV
elements and III-IV and II-VI compound semiconductors.
Interfaces between materials which are lattice mismatched
are receiving considerable attention nowadays; the strains
which are present in such strained-layer structures have
important effects on the electronic structure.!* We have
performed extensive calculations for such systems, in par-
ticular for the Si/Ge interface, the results of which have
been reported elsewhere. !®2%2! In this paper we will con-
centrate upon lattice-matched systems. In the next sec-
tion, we will describe the self-consistent calculations, and
illustrate them with the example of a GaAs/AlAs inter-
face. In Sec. III, we will give an overview of the broad
range of lattice-matched systems that we studied, and
derive some important and general conclusions. Section
IV contains a description of the model solid approach that
allows us to determine the lineups in a simpler way. We
present a comparison with other theories and with experi-
ment in Sec. V. Section VI concludes the paper.

II. SELF-CONSISTENT CALCULATIONS

A. Derivation of band lineups

In this paper, we will be reporting results for lattice-
matched interfaces. We consider two semiconductors to
be matched if the difference in lattice constant is less than
0.5%. We then fix the materials to have the same lattice
constant in the interface calculation; the values we have
used are listed in Table I. The geometry we use for the in-
terfaces in this study is an ideal structure, in which the
zinc-blende (or diamond) structure is continued
throughout the system, with an abrupt change in the type
of material right at the junction, and no displacements of
the atoms from their ideal positions. We have performed
density-functional total energy calculations for representa-
tive cases (GaAs/AlAs, and closely related checks?' on
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TABLE 1. Lattice constant a, spin-orbit splitting (Ref. 25) and configuration (Ref. 35) used in atomic

calculations for selected semiconductors.

Spin-orbit
Semiconductor a (A) splitting (eV) Configuration
Si 5.43 0.04 s 1.46p2.54
Ge 5.65 0.30 g1-44,2.56
AlAs 5.65 0.28 Al 31.11p1.89; As, s1,75p3.25
AlP 5.43 0.04 Al slpls p, §175p325
AlSb 6.08 0.65 Al SI.IIPLS‘); Sb, 51.75p3.25
GaAs 5.65 0.34 Ga, s'Bpl7%; As, §175p3:25
GaP 5.43 0.08 Ga, Sl.23p1.77; P, 51.75P3.25
GaSb 6.08 0.82 Ga, s"23p1'77; Sb, Smsps.zs
InAs 6.08 0.38 In, Sl.38p1.62; As, s1.75p3.25
ZnSe 5.65 0.43 Zn, s'92p0%; Se 51865414

Si/Ge) to examine the validity of this assumption. We
found that the ideal structure is very close to the
minimum-energy configuration, with very small forces
acting on the atoms. More importantly, we studied what
effect the small displacements that might occur (on the
order of 0.05 A) would have on the band offsets. For
nonpolar interfaces as studied here we found the effects to
be negligible. However, we should note that displace-
ments of charged atoms at polar interfaces would be ex-
pected to produce dipole shifts, as was indeed found in the
studies in Ref. 9.

A major problem that has to be faced in calculating the
electronic structure of an interface is the loss of transla-
tional symmetry, which is essential for using a reciprocal
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FIG. 1. (a) Schematic representation of a GaAs/AlAs (110)
interface. The supercell used in the interface calculations is in-
dicated in dotted lines; it contains 12 atoms and 2 identical in-
terfaces. (b) Variation of the /=1 component of the total poten-
tial V(z) [as defined in Eq. (1)] across the (110) interface. The
dashed lines represent the corresponding potentials for the bulk
materials. These coincide with 7(z) in the regions far from the
interfaces. However, the average levels of the two bulk poten-
tials (dashed horizontal lines) are shifted with respect to one
another.

space formulation of the problem. The actual calculations
are therefore performed on a superlattice, consisting of
slabs of the respective semiconductors in a particular
orientation. A typical (110) interface between two semi-
conductors, GaAs and AlAs, is sketched in Fig. 1(a). We
also indicate a supercell appropriate for calculating the
properties of this interface; it contains 12 atoms and 2
identical interfaces. Of course, what we emphasize here
are the results for an isolated interface. These can be de-
rived from our calculations to the extent that the inter-
faces in the periodic structure are well separated. We will
establish a posteriori that this is the case, by examining
charge densities and potentials in the intermediate regions,
and showing them to be bulklike.

The self-consistent calculations are performed within
the framework of local-density-functional theory,'! ap-
plied in the momentum space formalism.!>!'3 We use
nonlocal, norm-conserving, ab initio pseudopotentials;'*
this term indicates that these potentials are generated us-
ing only theoretical calculations on atoms, without intro-
ducing any type of fitting to experimental band structures
or other properties. All elements are therefore treated in
the same way, which is particularly important when we
want to include different materials in the same calcula-
tion, as for an interface. This is not true for the empirical
pseudopotentials which have been used in previous inter-
face calculations.®® For Zn, the pseudopotential includes
the 3d electrons as part of the core. We obtain self-
consistent solutions for the charge density and the total
potential, which is the sum of ionic, Hartree, and
exchange-correlation potentials. The latter is calculated
using the Ceperley-Alder form.?? The first cycle requires
a trial potential, a possible choice for which is the ionic
potential screened by the dielectric function of a free-
electron gas. An even better choice in many instances is
the potential corresponding to a superposition of free-
atom charge densities. Convergence of the self-consistent
iterations is obtained with the help of the Broyden
scheme.?

We include plane waves with kinetic energy up to 6 Ry
in the expansion of the wave functions (corresponding to
more than 650 plane waves in some cases). A set of 4 spe-
cial points was used for sampling k space.’* We will
show later that these choices are sufficient for deriving
the quantities we are interested in here. In the final self-
consistent solution, a redistribution of electrons occurs in
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the interface region. The resulting self-consistent poten-
tial across the supercell is plotted in Fig. 1(b), for the ex-
ample of GaAs/AlAs. Because the ab initio pseudopoten-
tials are nonlocal, the total potential consists of different
parts corresponding to different angular momenta /. We
only show the /=1 part of the potential here; this is the
most important one in determining the lineup of the p-
like valence bands. In the plot, the variation of the space
coordinate r is limited to the component perpendicular to
the interface, and values of the potentials are averaged
over the remaining two coordinates, i.e., in the plane
parallel to the interface:

Vio)=[1/(Nad)] [ [ V(ndxdy . (1

In the regions far from the interface, the crystal should
recover properties of the bulk. Therefore we also plot
(broken lines) the potentials determined separately from
calculations on bulk GaAs and AlAs. One sees that al-
ready one layer away from the interface the potential as-
sumes the form of the bulk potential. Similar results hold
for the charge density. This confirms, a posteriori, that
the two interfaces in our supercell are sufficiently far
apart to be decoupled, at least as far as charge densities
and potentials are concerned. The average levels of the
potentials which correspond to the bulk regions are also
indicated in Fig. 1(b). We denote these average levels by
Vgaas and Vajas, and define the shift AV="Vg,a,
— Vaias-

To get information about band discontinuities, we still
have to perform the band calculations for the bulk materi-
als. These were carried out with a 12-Ry cutoff; tests
have shown that the choice of this cutoff is not critical for
deriving the valence-band lineups. We find that the
valence-band maximum in GaAs is 9.60 eV above the
average potential Vg,a;. In AlAs, the valence band
occurs at 9.29 eV above Vajas. From Fig. 1(b), we find
AV=0.035 eV. Figure 2 illustrates the resulting band
lineups; we find a discontinuity in the valence band of
AE,=0.34 eV (upward step in going from AlAs to
GaAs). We did not include spin-orbit splitting in our
density-functional calculations. These effects can be add-
ed in a posteriori, by using experimental values for spin-
orbit splittings.?> For GaAs/AlAs, this brings the discon-
tinuity to a value of AE, =0.37 eV.

B. Accuracy

We estimate the inaccuracy of our calculations to be on
the order of 0.05—0.10 eV. We have checked the conver-
gence with respect to energy cutoff by increasing the cut-
off to 9 Ry; this caused a change in AV of less than 0.03
eV, in the direction of shifting AE, towards higher values.
We have also performed test calculations, using a local
potential, to determine whether the interfaces in our su-
percell are sufficiently well separated. Increasing the
number of atoms in the supercell to 16 resulted in a negli-
gible change (less than 0.02 eV) in AV, thus confirming
that a cell with 12 atoms suffices for our purposes. We
also checked how good an assumption it is to put the
atoms in the ideal structure. We calculated the forces on
the atoms, for a GaAs/AlAs(110) interface, with 12
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FIG. 2. Derivation of band lineups: relative position of the
average potentials Vajas and Vgaas, and of the AlAs and GaAs
valence and conduction bands. All values shown are derived
with the /=1 angular momentum component chosen as the
reference potential; the band lineups, however, are unique and
independent of this choice. Valence-band splittings due to spin-
orbit splitting are indicated separately. Experimental band gaps
were used to derive conduction-band positions.

atoms in the unit cell; they turned out to be smaller than
0.03 mdyne. This would lead to changes in the atomic
positions smaller than 0.03 A. We have checked that dis-
placements of this size have a negligible effect on the
band lineups. All this confirms that our choice of param-
eters allows us to obtain a numerical accuracy in deriving
the lineups of 0.05—0.10 eV. Similar results were found
for the Si/Ge interface.?!

It is also appropriate to consider what effects the use of
the local-density approximation (LDA) has upon the ac-
curacy of our results. It is well known that the LDA
severely underestimates the magnitudes of band gaps in
semiconductors. More generally, the positions of the bulk
bands with respect to the reference potential ¥ can be sub-
ject to significant corrections, which can only be obtained
by going beyond the LDA. This has been the subject of
extensive recent theoretical investigations.!>~!” Precise
information about the required corrections to the LDA
for all semiconductors is not yet available at this time.
Such corrections would need to be taken into account in
the derivation of AE, and AE,. We expect, though, that
for many of the systems that we studied the value of AE,
will not be significantly affected. From our comparison
of LDA eigenvalues with experimental band structures,
and from theoretical analysis,'’ there is evidence that the
corrections needed to bring the conduction bands into
agreement with experiment are fairly uniform for all
conduction-band points (except for the I' point, which,
however, bears little relation to the conduction band as a
whole, and has little weight in the Brillouin zone). As
long as these corrections to the LDA are similar for the
two materials on either side of the interface, the relative
positions of valence and representative conduction bands
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are still given reliably by our lineup scheme. This seems
to be true for most of the materials in Table I. The
discrepancies tend to be larger between narrow-gap and
wide-gap semiconductors (such as Ge and ZnSe), in which
case somewhat larger errors (up to 0.3 eV) may occur.

In addition, the change in reference potential AV con-
tains long-range electrostatic dipole terms. Since these are
given strictly in terms of the ground-state charge density,
they would be correctly given by the exact density func-
tional. However, the LDA may introduce errors, which
one would expect to affect the interface dipole if the er-
rors are different on the two sides of the interface. We
have argued?' that our results for AV for Si/Ge are not
greatly affected because the LDA errors are similar in the
materials. Thus, just as in the previous paragraph, we
conclude that corrections to the dipole terms should be
small for interfaces between similar materials, such as
most of the cases studied here, but may be larger effects
for interfaces between more dissimilar materials.

In terms of deriving values for AE,, we are confronted
with the problem that many of the materials we are study-
ing are direct gap semiconductors. The conduction band
at " is not representative for the conduction-band struc-
ture as a whole, and may show large discrepancies; it is
also quite sensitive to the energy cutoff, and to the in-
clusion of relativistic effects.?® Because of these uncer-
tainties in the gap at I, we will use experimental informa-
tion about band gaps®® to include conduction bands into
the picture. We thus report our ab initio results for
valence-band offsets, and find the conduction-band lineup
by subtracting the valence-band discontinuity from the ex-
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perimental band-gap difference. For the GaAs/AlAs in-
terface this leads to AE,=0.34 eV (higher in AlAs, with
the lowest conduction band in AlAs situated at A).

III. RESULTS FROM SELF-CONSISTENT
CALCULATIONS

A. Overview of results for lattice-matched interfaces

We have studied a variety of lattice-matched (110) in-
terfaces, the results for which are given in Table II. In all
cases, the convention is used that a positive value for the
discontinuity at a junction A4 /B corresponds to an upward
step in going from A to B. For interfaces between a
group-IV element and a III-V compound, the (110) orien-
tation is the only one which avoids charge accumulation
without the need for mixing at the interface.?’” Our values
have been adjusted to include spin-orbit splitting, the ex-
perimental values for which are listed in Table I. The
correction to AE, due to spin-orbit splitting is typically
smaller than 0.05 eV. The only case in which it is really
sizable is InAs/GaSb, where it increases AE, by 0.15 eV.
For GaSb and AISb, there is some uncertainty in the value
of the spin-orbit splitting. The result AE,=0.38 eV in
Table II was derived using the spin-orbit values from
Table I. If the spin-orbit splittings in these two materials
were equal, the value of AE, would be 0.32 eV.

The column “empirical pseudopotentials” in Table II
contains values derived by performing self-consistent
density-functional calculations very similar to ours, but
with empirical pseudopotentials.® We notice a significant

TABLE II. Heterojunction band lineups for lattice-matched (110) interfaces, obtained by self-consistent interface calculations
(SCIC), and by the model solid approach. Other theoretical and experimental results are listed for comparison.

AE, (eV)
Model Empirical Harrison® Tersoff

Heterojunction SCIC solid pseudopotential® “Natural” “Pinned” LMTO* theory! Experiment
AlAs/Ge 1.05 1.19 0.70 0.78 0.73 0.87 0.95¢
GaAs/Ge 0.63 0.59 0.35 0.67 0.66 0.24 0.32 0.56f
AlAs/GaAs 0.37 0.60 0.25 0.03 0.12 0.49 0.55 0.558
AlP/Si 1.03 1.16 0.87 0.79 0.93 091

GaP/Si 0.61 0.45 0.86 0.69 0.75 0.45 0.80"
AlIP/GaP 0.36 0.70 0.01 0.10 0.18 0.46

ZnSe/GaAs 1.59 1.48 2.0+0.3 1.42 1.35 1.75 1.20 1.10'
ZnSe/Ge 2.17 2.07 2.0£0.3 2.09 2.01 1.99 1.52 1.52
InAs/GaSb 0.38 0.58 0.72 0.42 0.36 0.43 0.51
AlSb/GaSb 0.38 0.49 0.09 0.18 0.17 0.38 0.45*

“Reference 8.

"Reference 48.

“Reference 49.

d4J. Tersoff, J. Vac. Sci. Technol. B 4, 1066 (1986).

‘M. K. Kelly, D. W. Niles, E. Colavita, G. Margaritondo, and M. Henzler (unpublished); quoted in G. Margaritondo, Phys. Rev. B

31, 2526 (1985).

1. R. Waldrop, E. A. Kraut, S. P. Kowalczyk, and R. W. Grant, Surf. Sci. 132, 513 (1983).

eReference 39.

f‘P. Perfetti, F. Patella, F. Sette, C. Quaresima, C. Capasso, A. Savoia, and G. Margaritondo, Phys. Rev. B 30, 4533 (1984).
'S. P. Kowalczyk, E. A. Kraut, J. R. Waldrop, and R. W. Grant, J. Vac. Sci. Technol. 21, 482 (1982).

’Reference 43.
kJ. Menéndez and A. Pinczuk (private communication).
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difference with our values, due to our use of ab initio
pseudopotentials, compared to their empirical pseudopo-
tentials (fitted to reproduce experimental band structures).
If we use those same pseudopotentials in our calculations,
we reproduce their result (within the numerical accuracy
of 0.05 eV). This indicates that the essential difference is
in the choice of the pseudopotential—the ab initio pseudo-
potential providing a better justified starting point. We
will discuss the other entries in the table after we have
presented the model solid approach.

B. Dependence on interface orientation

For the GaAs/AlAs system, we have also studied other
interface orientations. In particular, for the (100) inter-
face we find a valence-band discontinuity of 0.37 eV, the
same as the value for the (110) interface. For (111), we
find AE,=0.39 eV. This indicates that AE, does not de-
pend on interface orientation, a result that was also found
experimentally.?® Let us note that this is not necessarily
valid for pseudomorphic strained-layer systems, in which
different strains associated with different interfaces can
have sizable effects on the lineups, as discussed in Refs.
20 and 21. It also has been shown that rearrangements of
atoms at polar interfaces can change the offsets.” Within
such limitations, we believe that the result that the offset
is orientation independent can be considered an important
general result for suitably chosen lattice-matched inter-
faces.

C. Pressure dependence of the lineups

We have also performed self-consistent interface calcu-
lations for GaAs/AlAs interfaces under hydrostatic pres-
sure. Two groups® have performed photoluminescence
experiments on GaAs/Ga;_,Al,As heterojunctions, in
order to vary the band offsets and to use this information
to determine their magnitudes at zero pressure. In the in-
terpretation of the experimental results, it was assumed
that AE, remains constant under pressure. It is appropri-
ate to examine the validity of that assumption. Since the
bulk moduli of the two materials are very similar (784
kbar for GaAs, and 733 kbar for AlAs), it is safe to as-
sume that the only effect of hydrostatic pressure will be to
decrease the lattice constant of the overall system, accord-
ing to the relation:

P=—BAV/V=—-3BAa/a,

where P is the pressure, B is the bulk modulus, ¥ is the
volume, and a is the lattice constant. We have therefore
performed interface calculations at four different lattice
constants, ranging from 5.65 to 5.50 A, as well as the cor-
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responding bulk calculations for the compressed solids.
We found that

AE,=AE2—0.64AV/V
=AE?+0.82x1073P ,

where AE_ is the valence-band discontinuity at zero pres-
sure, and P is expressed in kbar. This is to be compared,
for instance, with the change in the GaAs direct band gap
under pressure, which we calculate to be

AE,=AE]—8.33AV/V
=AE;+10.6x107°P .

We see that the change in AE, is more than an order of
magnitude smaller than the change in the gap; a pressure
change of 10 kbar will increase the gap by 0.1 eV, but
only change AE, by less than 0.01 eV.

D. Transitivity

It is interesting to examine our results to establish the
extent to which theory supports the proposition that the
band offsets for any pair of semiconductors can be ex-
pressed as a difference of numbers intrinsic to each ma-
terial. This has been observed from experiment,*®*! and
is an implicit assumption in theories such as Refs. 2—6.
It is clear that our full interface calculations do not as-
sume linearity, i.e., we do not postulate that our hetero-
junction lineups be given by the difference of two numbers
which would each be characteristic for a particular semi-
conductor, independent of which heterojunction it is used
in. A posteriori, however, we can check how close our re-
sults are to linearity, by examining transitivity, i.e.,
whether the following equation is satisfied:

AE,(A4,B)+AE,(B,C)=AE,(A,C) (2)
where
AE,(A,B)=E,(B)—E,(A) .

In Table III, we list values for these quantities, which al-
low us to conclude that the transitivity rule [Eq. (2)] is sa-
tisfied to better than 0.06 eV, which is on the order of the
numerical accuracy of the calculations. It is interesting to
note that transitivity also holds for strained-layer inter-
faces, taking the appropriate strains into account to con-
struct pseudomorphic interfaces. We have checked this
for Si/Ge/GaAs (results for Si/Ge and Si/GaAs were re-
ported in Ref. 18) where Eq. (2) turned out to be satisfied
to within 0.01 eV. The fact that transitivity is satisfied
shows that the deviations from linearity are small. To-
gether with the orientation independence, we believe that

TABLE III. Examination of transitivity [Eq. (2)] for various sets of systems. AE, values are from
Table II. The values in the last two columns are equal to within the numerical accuracy of the calcula-

tions, showing that transitivity is satisfied.

A B C AE,(A,B) AE,(B,C) AE,(A4,B)+AE,(B,C) AE,(A4,C)
AlAs GaAs Ge 0.37 0.63 1.00 1.05
AlP GaP Si 0.36 0.61 0.97 1.03
ZnSe GaAs Ge 1.59 0.63 2.22 2.17
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this is indicative of the intrinsic nature of the band offsets
for large classes of lattice-matched systems.

Our general conclusions regarding orientation indepen-
dence and linearity indicate that in principle it is possible
to derive the lineups by determining a reference level for
each semiconductor, and lining up the band structures ac-
cording to these reference levels. In the next section, we
will describe how we define an appropriate level for each
material.

IV. DEFINITION OF A REFERENCE MODEL SOLID

As we already pointed out, a pure bulk calculation can-
not provide information about absolute energy positions.
An absolute energy scale only enters into the problem if
one does not deal with an infinite solid, but instead the
crystal is terminated—i.e., by a surface. A particular
choice of reference surface must be made, which will then
allow us to express all energies with respect to the vacuum
level. Our choice for terminating the solid should corre-
spond as closely as possible to the situation at an inter-
face; this immediately excludes using the structure of a
real surface, which might involve complicated relaxation
and reconstruction. Also, we do not want to perform a
complete self-consistent calculation for a surface—since
that would be computationally even harder than an inter-
face calculation. We have therefore developed a model
theory, which allows us to calculate the reference energy
for a particular choice of reference surface. The model
corresponds to a superposition of atomic charged densi-
ties, which is known to give reasonable results for a num-
ber of bulk properties. Mattheiss, for instance, used it to
study energy bands of transition metals.’> Here it turns
out to be particularly suited to the derivation of semicon-
ductor interface properties. The model will be used only
to find a value for the average electrostatic potential (on
an absolute scale) for each semiconductor. The positions
of the bands with respect to this average potential are still
obtained from self-consistent calculations for the bulk
crystals, as was described in the last paragraph of Sec.
II A. Within this model we can thus line up the band
structures for different crystals without the need for a
self-consistent interface calculation of the type described
in Sec. ITA.

We construct the model solid by taking a superposition
of neutral atomic spheres. The potential outside each
such sphere goes exponentially to (an absolute) zero; this
will be the zero of energy for the model solid. When we
use such neutral, spherical objects to construct a semi-
infinite solid, the presence of a surface will not induce any
shift in the average potential, since no dipole layers can be
set up. This feature of the model was also stressed in ear-
lier work that used the overlapping spherical atomic
charge-density approximation, for instance to calculate
work functions.* This also means that the potential shift
between two solids will only depend on “bulk” properties,
and not on the specific arrangement of atoms at the inter-
face.

One has to check, of course, that such a model solid can
adequately represent the real crystal. This is not difficult
to imagine in the case of elemental semiconductors, but

somewhat harder to understand for materials in which the
bonds have more of an ionic character, such as the III-V
or even the II-VI compounds. Apart from the a posteriori
justification that the obtained results are quite good, we
can also rely on information obtained from pseudopoten-
tial** or tight-binding® calculations on bulk materials.
Examination of the distribution of electrons in the bonds
shows that the number of electrons around each atom is
approximately equal to its nuclear charge, i.e., one can
still talk about “‘neutral spheres.”

Full information about the atomic potential can be ob-
tained by performing an atomic calculation (of the
Herman-Skillman type). Since all our calculations for the
solid are based on pseudopotentials, we actually perform
the atomic calculations on the “pseudoatom.” The choice
of pseudopotential for this purpose is arbitrary, so long as
the same ionic potential is used throughout the calcula-
tions. We now must find the average potential in the
model solid, which is a superposition of atomic charge
densities. The total potential is the sum of ionic, Hartree,
and exchange and correlation potentials:

VI: Vion,1+ VH+ch . (3)

The superscript [ on V%! reflects the fact that we are
working with nonlocal pseudopotentials.'* The choice of
angular momentum component does not influence the fi-
nal results, so long as we consistently use the same angu-
lar momentum component of the pseudopotential as our
reference. The first two terms in (3) are linear in the
charge density, and can therefore also be expressed as a
superposition of atomic potentials. Their average value in
the solid is

vl vi= 3 (1/Q) [ iy vihar, @

1

where () denotes the volume of the unit cell, and the index
i runs over all atoms in the unit cell. Convergence is no
problem in the numerical integration, since for each neu-
tral atom the long-range part of the ionic potential (which
is the same for each /) is canceled by the Hartree poten-
tial. The exchange and correlation potential V*° is not
linear in the charge density, and can therefore not be ex-
pressed as a superposition of atomic potentials. This con-
tribution, however, is local in nature and does not depend
upon the specific way in which we terminate the solid. It
can easily be calculated for a bulk solid, and added in
afterwards.

We illustrate the procedure with the example of an
AlAs/GaAs interface. To perform the atomic calcula-
tions, we have to choose a configuration, i.e., the occupa-
tion x and y of the s and p orbitals: s*p” (the d character
of the bonds is small in the semiconductors that we stud-
ied here). Naturally, we want this choice to be as close as
possible to the configuration that an atom would have in
the solid. It is not easy to extract this type of information
from pseudopotential calculations on the bulk crystal.
Since angular momentum is not a good quantum number
in the solid, there is no straightforward way to distinguish
between s or p character of wave functions. We therefore
extract these values from tight-binding calculations,*® in
which the choice of basis set provides a natural separation
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between s and p states. We used s'Zp!77 for Ga,
st Up18 for Al and s'7°p*2° for As. The atomic charge
density does not vary much when the configuration is
changed; still, the average potentials tend to be rather sen-
sitive to the choice of configuration. Although a change
in configuration causes only small shifts in the long-range
tail of the wave function, these changes at large r values
may have a significant effect on the average. For Ga, go-
ing from an sp? to an s2p configuration shifts the average
potential up by 0.72 eV; the variation is close to linear.
An analogous change for Al introduces a shift of 0.70 eV.
This indicates that the uncertainties become less severe
when we look at potential differences. For example, the
lineup in the GaAs/AlAs system will be determined by
the difference in average potential between Ga and Al; it
is to be expected that the configurations will be similar for
these atoms in GaAs and AlAs. Making the same change
in the configuration on both sides will have no effect on
the potential difference. We establish as our convention
that atomic configurations will be used which are ob-
tained from tight-bonding theory* for all systems that we
study.

We then carry out the atomic calculations on the pseu-
doatom in the configuration s*p”, and obtain the charge
density and potentials. Next, we proceed with the super-
position scheme. Figure 3 shows the shape of the charge
density for an AlAs/GaAs(110) interface between two
model solids. For plotting purposes, we have averaged the
charge density in planes parallel to the interface in a
fashion similar to the potential in Eq. (1). Note that,
within the model, there is a certain amount of “spillover”
between the charge densities in the region near the inter-
face, with tails of the wave function from AlAs extending
into the GaAs and vice versa. This reflects the fact that
we do not model the interface by a discontinuous charge
density, but rather a smooth variation over a region of
atomic dimensions, which is expected to closely mimic the
situation at a real interface. The main difference between

charge density (els./unit cell)

positionz ——  (110)

FIG. 3. Superposition of atomic charge densities to form a
model solid interface. We show the plane-averaged charge den-
sity for pairs of GaAs (on the left, dotted lines) and AlAs atoms
(on the right, dashed lines) in (110) planes. The units are
(electrons/unit cell), for a supercell with 48 electrons. The ar-
rows indicate the positions of the atomic planes. The solid line
represents the superposition, which corresponds to the charge
density in the model solid. Notice that the model solid is not cut
off abruptly at the plane of the interface.

the model solid and the self-consistent charge density is
that in the real solid some charge is drawn away from the
regions near the atoms and piled up in the bonds. The
qualitative aspect of the charge distribution near the inter-
face is fairly well represented by the model solid, however.

Next, we evaluate the integral in Eq. (4). From that
equation, it also follows that the average ionic and Har-
tree potentials are proportional to Q~!. Using the values
of the volume of the unit cell in AlAs and GaAs, and
summing over the two atoms in the bulk unit cell, we can
derive the average potentials. Choosing the /=1 angular
momentum component, as before, this leads to the follow-
ing values of (Vion/=14 P H). _782 eV for GaAs, and
—8.08 for AlAs. The exchange and correlation contribu-
tions to the average potentials are V &,4s=V 3as= —8.71
eV. Finally, we add up the contributions for the individu-
al materials, and find the shift in the total potential on ei-
ther side of the interface: Vgaas— Vajas=(—16.53
eV)—(—16.79 eV)=0.26 eV. This is to be compared with
the value obtained from the full self-consistent calcula-
tions on the interface, using the supercell technique:
AV=0.03 eV. The deviation here is actually larger than it
will be in most other cases. Once we know AV, we can
line up the band structures of materials, which are ob-
tained from self-consistent bulk calculations. These band
structures are significantly more accurate than those
which would correspond to a model solid of superimposed
atomic charge densities. We will assume that they are re-
ferred to the average electrostatic potential that we calcu-
lated for the model solid. Since the charge density of the
model solid is not quite the same as that in the real bulk,
the corresponding average potential can only be an ap-
proximation to the actual quantity. The model solid,
however, enables us to obtain this average electrostatic po-
tential on an absolute scale, and we will see by examining
the results that the approximation is a good one. We have
specified above the conventions which are used in deriving
such a value; it is uniquely defined by the choice of pseu-
dopotential, local-density approximation, and atomic con-
figurations.

We have studied a variety of other lattice-matched (110)
interfaces. The configurations® that were used in the
free-atom calculations are listed in Table I, and the results
for AE, (including spin-orbit splitting) are given in Table
II. For lattice-matched systems, the model solid approach
will yield the same value for the band alignment, irrespec-
tive of the interface orientation. This corresponds to what
we found above from the self-consistent interface calcula-
tions on GaAs/AlAs. Table II only contains results for
the (110) orientation. For interfaces between a group-IV
element and a III-V or II-VI compound, or between com-
pounds which do not have any elements in common, the
(110) orientation is the only one which avoids charge ac-
cumulation without the need for mixing at the interface.?’
It has been shown® that for polar interfaces different types
of mixing can lead to different dipoles at the interface,
which significantly alter the band lineups. This effect
cannot be described by the present model solid approach,
in which the neutral spheres cannot generate any net di-
pole across the interface, and it is clearly beyond the scope
of any theory?>~® which assumes the dipole to be fixed by
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consideration of the bulk alone. Other limitations of the
model solid approach will be discussed in the next section.

V. DISCUSSION

A. Comparison with experiment

In Table II, we also list experimental data from various
sources. At the present time, not all of these values are
equally reliable. A striking example is that of the
GaAs/AlAs interface, for which “Dingle’s 85/15 rule”?®
had become widely accepted: AE,=0.15AE,, where AE,
is the difference in direct band gaps. Since last year, how-
ever, this value has been challenged and new results now
indicate that more than 30% of the discontinuity is in the
valence band.’’~* This example shows that even for this
most widely used heterojunction the correct value could
only be established by performing many experiments on
high-quality interfaces, using a variety of different tech-
niques. Since most of the heterojunctions listed in Table
II have not received such careful attention, one should be
very cautious when referring to these reported valence-
band discontinuities.

We will attempt to give a brief overview of the experi-
mental techniques which, at present, we regard to be the
most reliable ones for deriving the band offsets, and illus-
trate them by references to work on GaAs/AlAs. Photo-
luminescence experiments on quantum wells can give very
accurate results, but should be limited to cases in which
the band offsets can be derived without having to rely on
the precise knowledge of additional quantities, such as ef-
fective masses or exciton binding energies. Structures in
which a crossover of bands can be observed are most ap-
propriate, e.g., in the A1GaAs/AlAs heterojunctions as a
function of composition®® or pressure.?® I-V and C-V
measurements may or may not be reliable, depending on
the system and the procedure used. The reason is that
heterojunctions often contain charges at or near the inter-
face, which may cause significant band bending. One
should therefore either eliminate these charges,®® or use a
measurement procedure that is insensitive to these effects,
such as C-V profiling through the junction.** A promis-
ing new approach is that of charge-transfer measurements
at single heterojunctions*! or in modulation-doped super-
lattices.*? Finally, we have noticed that photoemission
spectroscopy, while in principle providing a direct mea-
surement of the valence-band discontinuity, has produced
widely varying results by different groups for the same
system. A possible reason is the technological difficulty
involved in producing high-quality epitaxial interfaces.
Measurements on lower-quality heterojunctions can lead
to a AE, value which is not representative of an ideal sys-
tem. For a more detailed evaluation of current experi-
mental techniques, we refer to the critical review by Dug-
gan.”’

For GaAs/AlAs, our model solid result is very close to
the present experimental value; closer, indeed, than the
self-consistent calculation. Another very interesting case
is that of InAs/GaSb, in which experimentally a
“broken-gap lineup” was detected,*’ meaning that the
conduction band in InAs is lower in energy than the
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valence band in GaSb. From the self-consistent interface
calculations, we find that AE,=0.38 eV. The band gap of
InAs is 0.41 eV at 0 K, and 0.35 eV at room tempera-
ture,® which means that the conduction band of InAs al-
most lines up with the valence band of GaSb. This result
is close to that obtained from an earlier self-consistent cal-
culation on a InAs/GaSb(100) interface.** The model
solid result for AE, is 0.51 eV, which even more clearly
leads to a “broken gap” lineup.

B. Comparison with other model theories

In Table II, we have also given results from a number
of other models. We should point out that these numbers
[for Harrison’s theory, the linear muffin-tin orbitals
(LMTO) calculations, and Tersoff’s approach] do not in-
clude spin-orbit splitting. However, as we have remarked
before, these corrections are usually smaller than 0.05 eV.
We will briefly describe these models here, and point out
similarities and differences with our model solid ap-
proach. We will discuss the electron affinity rule,’ the
Frensley-Kroemer theory,® Harrison’s theory of natural
band lineups,* and the model developed by Tejedor and
Flores,® and independently by Tersoff.® We will also de-
vote some attention to a line-up scheme that occurs natur-
ally in the context of LMTO calculations.*®

Our model solid approach is in spirit related to the elec-
tron affinity rule,? in that it derives the band discontinui-
ties as a difference between quantities which are defined
for each semiconductor individually. In the case of elec-
tron affinities, the problem is that these quantities are
measured experimentally for a specific surface, and there-
fore depend on orientation, relaxation, reconstruction,
etc., which can all introduce extra dipoles that shift the
energy bands in the bulk. One could try to define an
“electron affinity” which would only take the “intrinsic”
contribution due to the bulk into account, and ignore the
surface effects. Van Vechten® has argued that such
quantities would predict the lineups reliably. The main
problem with such an approach is that the separation be-
tween the bulk and the ‘“‘surface” part is not unique, so
that it is not clear how to derive an “intrinsic electron af-
finity” from experimental information alone.

Our model solid approach defines a reference level cor-
responding to a well specified “model surface,” which, by
construction, cannot introduce any “extra dipoles.” The
reference potential can therefore in principle be considered
to be a quantity intrinsic to the bulk material (its actual
value being determined by the conventions regarding
pseudopotentials and configurations that we specified
above). Furthermore, the fact that the results are so close
to those from self-consistent calculations shows that this
model provides a good description of the charge distribu-
tion at the heterojunction. Since we do not allow any ad-
ditional charge rearrangement, we should always expect
some deviation between the model solid results and the
full self-consistent calculations. The comparison of our
results for valence-band offsets shows that these devia-
tions are fairly small, however.

Additional dipoles may be due to several different
sources. Displacements of atoms around the interface
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may in certain cases set up dipoles which shift the energy
levels. We have argued that at (110) interfaces the devia-
tions from the ideal structure will be small, and will have
small effects on the lineups. In some cases, like ZnSe/Ge,
however, the sizable difference in ionicity may introduce
more significant displacements, and consequently larger
dipoles. Also, we do not consider the model to be applic-
able to polar interfaces. As explained above, additional
dipoles which depend on the type of mixing at the inter-
face can occur in such cases.

Small deviations from our model may also be caused by
the fact that we are using neutral atoms as our building
blocks. Use of charged objects, however, would destroy
the simple, “dipole-free” picture of the reference surface
that our superposition of neutral atoms provides. Frens-
ley and Kroemer have actually constructed a model in
which they superimposed spherical ions to construct the
solid.> They chose the mean interstitial potential in the
diamond or zinc-blende structure as the electrostatic refer-
ence potential for each semiconductor. If the crystal were
viewed as a superposition of spherical charges, this refer-
ence potential would correspond to the vacuum potential,
provided the charges were so localized that the charge
density in the interstitial region was negligible. These po-
tentials were then lined up, taking a dipole shift into ac-
count, which was expressed in terms of charges on the
atoms, and subsequently in terms of electronegativity
differences. It turned out that these dipole shifts were
quite small in most cases, indicating that the intrinsic
lineups should be close to the true result. We came to the
same conclusion in the present work, using a better justi-
fied value for the intrinsic potential.

Frensley and Kroemer used empirical pseudopotentials
to generate values for the reference potentials. To really
test how good this procedure is, one should use the better
quality pseudopotentials which are available nowadays, as
we have done in our studies. Since we had the results
from bulk calculations at our disposal, we could examine
the potential values in the interstitial regions. It turned
out that the values we obtained (without the dipole correc-
tion) were quite different from Frensley and Kroemer’s
original results, and also different from the results from
self-consistent interface calculations (by more than 0.25
eV, on the average). We assumed that the qualitative re-
sult that the additional dipole shifts are small remains
valid, such that these corrections would not significantly
affect the lineups; in any case, adding the dipole shifts
suggested by Frensley and Kroemer made the agreement
with our values even worse. Inspection of the potential in
the interstitial region showed us why the results would not
be reliable. We found that the potential does not really
flatten out near the interstitial site, as Frensley and Kroe-
mer assumed, and still shows significant structure. This
is true both for elemental and compound semiconductors.
Under these circumstances, it is hard to determine what
the appropriate value for the reference potential is; is it
the value at the interstitial point itself, or an average over
some region? This can make a difference of up to 1 eV.
Frensley and Kroemer themselves acknowledged that
their electrostatic potential inside the interstices of the di-
amond structure was only flat within about 1 eV.*” To

make things worse, it turned out that the value of the po-
tential at the interstitial point was only converged at a
much higher cutoff than we needed for the other aspects
of our calculations (e.g., larger than 18 Ry for Si). This
would require one to do the bulk calculation with a much
higher accuracy than is typically required for deriving en-
ergy eigenvalues. This is to be expected, if one insists on
deriving an accurate value at one point, instead of dealing
with averaged quantities, or properties which depend only
on the total charge density. We therefore conclude that
the Frensley-Kroemer scheme in principle offers a very at-
tractive approach, but turns out to be unsuitable for gen-
erating accurate values for the lineups.

Our approach has in common with Harrison’s theory of
natural band lineups* that a reference energy level for
each material is derived from atomic information. How-
ever, a key difference should be emphasized: Harrison’s
model was based on the atomic term values, which he as-
sumed to carry over from atom to solid. This is clearly
different from our model solid approach, in which all
electronic energy levels are shifted by the superposition of
atomic potentials. This choice to define the average po-
tential of the model solid is better justified by self-
consistent calculations and seems to be in better agree-
ment with experiment. Harrison has recently developed a
new point of view, which is closely related to Tersoff’s ap-
proach, but applied in a tight-binding context.*® Here, the
averaged hybrid energy is identified as the “neutrality lev-
el,” that will be pinned at a heterojunction. Values from
both the ‘“‘natural band lineup” scheme and the new
“pinned” theory are given in Table II. It is not clear to
what extent this new method actually improves the natur-
al band lineups. It might be that the tight-binding for-
malism, while very appealing because of its simplicity and
generality, is not accurate enough to predict values on a
scale that is necessary for these applications.

Another scheme which establishes an absolute energy
reference level for tetrahedral semiconductors has been
developed in the context of the LMTO all-electron
method, by Vergés et al.,*> and Christensen and Ander-
sen.* They were interested in deriving absolute deforma-
tion potentials for individual semiconductors, but their
approach can also be used to line up band structures of
pairs of different semiconductors. Their reference level is
the zero of electrostatic potential in the infinite crystal, as
evaluated with the atomic-spheres approximation, i.e.,
with point charges placed at the atomic and tetrahedral
interstitial sites. This turns out to be a reasonable ansatz
for deriving the band lineups. Values for AE, obtained by
this approach are listed in Table II.

The last source of additional dipoles to be discussed
here is due to screening effects, of the type that play the
dominant role at a metal-metal interface. Such dipoles
are clearly not present in our model solid approach, which
is therefore not applicable to metallic interfaces or
Schottky barriers. Tersoff,%*5! and before him Tejedor
and Flores,® have argued that such screening will also be
the dominant effect that determines the lineups at a
semiconductor-semiconductor interface: dipoles will be
set up which will drive the system towards alignment of
the “neutrality levels” of the materials (as would be the
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case at the junction between two metals, where the Fermi
levels line up). Although this picture seems to be contrary
to the assumptions that underlie the model solid ap-
proach, the two points of view may actually be not that
far removed from one another. We have remarked before
that the superposition of atomic charge densities effective-
ly deals with a model surface for which there is signifi-
cant overlap of the charge densities, with the tails of the
bulk charge density of one material sticking out into the
other side. This charge distribution may actually incorpo-
rate much of the dipole that Tejedor and Flores and Ters-
off consider to be the dominant effect.

It is essential to point out, in this context, that the con-
cept of “dipole” at an interface is not uniquely defined—
its magnitude depends on the choice of “reference sur-
faces” that are brought together to create an interface
within a specific model. It is therefore possible for dif-
ferent models to obtain good results, while claiming to
deal with dipoles of very different magnitude. The refer-
ence surfaces that we have chosen here are clearly a good
“ansatz:” the ‘“additional dipoles,” due to charge redistri-
bution at the interface are small. Tejedor and Flores and
Tersoff do not need to make an ansatz for the charge den-
sity since they consider only the final lineup that the sys-
tem would attain if the screening effects were as strong as
they are at a metal/metal interface. We can recognize
two problems with this approach. First, assuming that a
unique neutrality level exists, no convincing evidence has
been given so far that the induced dipoles are actually
strong enough to drive the system towards the ‘‘neutral”
lineup. Second, the assignment of a neutrality level to
each material is not straightforward. Tersoff has suggest-
ed two possibilities: a simple average of the indirect
gap,>° or a branch point derived from a Green’s-function
approach;®>! neither of these is rigorous. The Green’s-
function approach itself involves a number of approxima-
tions and assumptions‘51 For instance, a specific choice
of orientation has to be made in the Green’s function
G (R,E), and only the (110) direction produced reason-
able results. Also, the branch point energy E, depends on
the value of R. Still, the success of the theory clearly de-
pends on how accurately these numbers can be generated,
and it may be somewhat fortuitous that the particular
choice that was made produces values that are reasonably
close to the self-consistent results.

From this overview, it should be clear that none of the
model theories is able to adequately deal with all effects
of electronic rearrangement at the interface. Our superpo-
sition of atomic charge densities model is the only one
which is based upon, and has been directly compared
with, results from self-consistent interface calculations.
This places our approach on a strong footing, particularly
since the values we obtain are so close to the self-
consistent results.

VI. CONCLUSIONS

We have described our first-principles approach to
deriving band offsets at semiconductor interfaces.
Density-functional theory and ab initio pseudopotentials
were used to perform self-consistent calculations, and
derive valence-band discontinuities for a large number of

lattice-matched interfaces. The calculations were illus-
trated with the example of a GaAs/AlAs interface, and
we presented an analysis of the sensitivity of our results to
the procedures used; the numerical precision is on the or-
der of 0.05—0.10 eV. Values for valence-band discon-
tinuities were summarized in Table I1. We also listed re-
ported experimental values in that table; we have pointed
out which measurements we consider reliable, and have
given a critical overview of the available experimental
techniques.

Our systematic analysis has allowed us to draw some
general conclusions: for suitably chosen heterojunction
systems, the lineups are independent of orientation, and
they obey the transitivity rule. This indicates that the
offsets can be described by a linear theory, in which the
lineups are obtained as the difference between quantities
which are intrinsic to each material. To establish the
reference levels for each solid, we constructed a model
based on superposition of (pseudo)atomic charge densities.
The average (pseudo)potential in such a model solid can
be derived from atomic calculations; the atomic configu-
rations were taken from tight-binding theory to simulate
as well as possible the solid. This uniquely defines the
reference potentials. The band structures obtained from
self-consistent bulk calculations are then aligned accord-
ing to these reference levels. The resulting lineups are
close to those obtained from full self-consistent interface
calculations, and to reliable experimental values. We con-
sider this to be evidence that our ansatz is close to the real
situation at the interface. Extra dipoles may be present in
certain cases; however, in the cases studied these amount
to only small corrections, and at this point we believe
there is no simple universal theory that describes the exact
screening mechanism.

We have also discussed the relationship with other
model theories. In particular, we compared our approach
to Tersoff’s theory, which seems to produce good results,
even though it relies on certain untested assumptions, and
the prescription for finding the reference level is not
rigorous. The advantages of our superposition of neutral
atomic charge densities are that it provides a well defined,
physical model, that the numerical work is straightfor-
ward, and that, even though it should only be considered
as an ansatz, the results are close to those obtained from
self-consistent interface calculations.
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