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Variational calculation of polarization of quantum-well photoluminescence
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We calculate for the first time the circular polarization of GaAs/Gal Al„As quantum-well pho-
toluminescence taking into account the true nonparabolic valence-band structure. Versus the excita-
tion energy, we find high positive polarization for the transition n = 1 heavy-hole —to—conduction-
band transition and negative polarization at the onset of n =1 light-hole —to—conduction-band tran-
sition in qualitative agreement with experiments. We also study the Ga~Inl ~As/InP system and

predict no negative polarization in this case.

INTRODUCTION

The optical properties of GaAs/Ga& Al As quantum
wells (QW's) have been widely studied, mostly by lumines-
cence. ' This technique allows one to locate the valence
and conduction levels. A convenient means is to excite
QW photoluminescence by circularly polarized light. In
this situation the light helicity is transferred to the solid
through spin orientation of the promoted electrons. This
leads to circular polarization of the luminescence light,
which depends on the initial valence state and on spin re-
laxation. For circularly polarized o.+ excitation, the cir-
cular polarization M of luminescence is defined by

H =(I+ I ) I(I+ +—I ),
where I+ ( I ) is the o.+ (o. ) circularly polarized
luminescence intensity.

In many experiments a high polarization H (30%
& H & 60%%uo) is observed for near-band-gap excitation, fol-
lowed by a negative dip for larger excitation energy. The
different signs of polarization are attributed to the dif-
ferent optical transitions: a + 100% polarization is
predicted for the 1h transition between the n=1 heavy-
hole and conduction levels and a —100%%uo polarization for
the ll (n= 1 light hole to conduction) transition. This
fact is used to identify the heavy- or light-hole transition.
However, in the simplest parabolic model of the QW
valence bands, because of the relative densities of states of
the heavy- and light-hole bands, the net polarization
remains positive for all excitation energies: %=100%
for 1h transition and %=60% at the excitation energy
E&~, corresponding to the onset of the 1l transition, in
contrast with the experimental results. In the present pa-
per we show that taking into account the valence-band
nonparabolicity allows prediction of a behavior of H in
qualitative agreement with the experiments.

For that purpose, we need to calculate the optical ma-
trix elements between valence and conduction states under
circularly polarized light excitation. Since the wave func-
tions necessary to calculate these optical transitions are

not explicitly given in the literature, Sec. I is devoted to
the calculation of energy dispersion and wave functions in
a simple variational approach. In Sec. II we calculate the
polarization of the excitation spectrum, and comment on
the results, in particular on spin relaxation and damping
effect.

I. BAND STRUCTURE

where u;k o(r) is the periodic part of the Bloch wave
function taken at the bottom (a=c) or top (a=u) of the
band and F; (r) is a multicomponent envelope function
which satisfies a set of equations

g [H,~( i V)+ V (r)o;J]—F; (r)=EF, (r),
i =1

(2)

where H(k) is a standard effective mass Hamiltonian,
V (r) the well potential, and a stands for conduction or
valence bands (l, =2, l„=4). Atomic units are used.

The usual QW growth direction is parallel to one of the
cubic axes, and we take it for z direction. Then we have

H ( iV)=H (k„,k—y, i (t)/t)z)), —
V (r)= V (z),

and

The starting point of our calculation consists in finding
wave functions and band structure near the bottom of the
conduction and the top of the valence bands. We use here
the effective-mass method, the so-called envelope-function
approximation. ' In this approximation the conduction
(a=c) or valence (a=u) wave function of the carrier in a
QW has the form

I

4 (r) = g F; (r)u;t, o(r),

35 8144 1987 The American Physical Society



35 VARIATIONAL CALCULATION OF POLARIZATION OF. . . 8145

A. Valence band

For the valence band the standard Luttinger Hamiltoni-
an' in the basis
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reads as follows:
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The original basis function set and transformation U

are given in Appendix A. The new basis is now
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where

P = —,
'

y )(k„+ky +k, ),
Q = —,y2(k„+ k —2k, ),
S =v'3y, k,(k„i'—),
R (v 3/2)y(k ky )

+(&3/2)[ —,(y3 —y&)](k„+ik )',

0
H(k„,ky, k, ) = UHU =

P —Q R
R* P+Q

00

0

(4)

and y&, yz, y3, and y= —,(yq+y3) are the Luttinger band
parameters.

Following the idea of Broido and Sham" we transform
the Hamiltonian (3) by a unitary transformation U into

P+Q R 0 0
R* P —Q 0

where a and b are given in Appendix A. It should be no-
ticed that functions (5) still have pure heavy- or light-hole
character. For further analysis we apply here the so-
called axial approximation. This approximation has been
shown to give a good description of the valence subbands
energy dispersion and consists in assuming y2

——y3, but
only in the R term. Thus we neglect the warping of the
bulk valence band only in the (k„,k~) plane. The Hamil-
tonian expression (3) remains exact for k„,k~=0 and
therefore produces the exact subband positions at this
point. In contrast the spherical approximation, in which

y2 and y3 are replaced by a suitable average
y'=(3y3+2y2)/5 (Ref. 12) everywhere in (3), neglects the
warping of the bulk valence band in all directions and
produces substantial errors in the k, k~ =0 subband ener-
gies. ' We will return to this point later.

Since Hamiltonian (4) acquires cylindrical z symmetry
we may take k„=k

~ ~

and ky 0 Therefore the effective
Hamiltonian in (2),

H =H(k =k[~ k:0 k = i(a/az))+ V(z)

reduces into two blocks which read

1

2

—,(y&+yz)k~ ——,(y~+2y2) + V(z)
(3Z

(v'3/2)rk
~~

—&3y3k
~

C)Z

(W3/2)yk
~~

—W3y, k2 a
c}z

l — 2 1
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—,(y i+-y»k
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——,(y i+2y2), + V(z)
az2

(6)

where the upper (lower) sign refers to the
~

1 ),
~

2),
(

~

3),
~

4) ) block in (4).
Our calculation is variational in its principle. We suc-

cessively consider the cases k~~
——0 and finite kI~. We first

notice that for k~~
——0 each block of Hamiltonian (6) be-

comes diagonal with elements

(j2
+ V«»

az2

a2
H( ————,(y)+2y2) + V(z),

az2

yielding a set of doubly degenerate heavy- (subscript h)
and light-hole (subscript I) subband energies. For a finite
square well of width L equations (7) have well-known
solutions P; and P;, where h and 1 correspond to Hz and
HI, respectively (see Appendix B).

Then for finite k~~ we return to Hamiltonian (6) and
construct envelope functions as linear combinations of P;

1&

@"(z)= g a, P, (z), @'(z)= g b; P,'(z),

a; and b; being numerical coefficients and lq (l&) the total
number of bound heavy (light) states in the well. The
above wave functions, in which the band indices are omit-
ted for clarity, satisfy the same continuity relations as the
basis functions P;: P; and (1/mrs )(BQ;/Bz) continuous at
the well interface, with mrh =(y&+2y2) '. Since we limit
the above expansion to bound states our basis is not com-
plete and, moreover, we are limited by the number of
available states in the particular QW. Therefore for a QW
with a small number of bound states (i.e., rather narrow
and shallow) one may expect increasing errors in energy
dispersion for large k~~ (especially for higher subbands).
However, as will be shown in Sec. II, the most spectacular
effects in polarization spectra are due to the electrons
created with k~~ =-0. Thus the incompleteness of our basis
practically does not influence the calculated polarization
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spectra even for QW's with very few bound states. Final-
ly the total wave functions read

'P, z
——e " 4

& 2 ~

1)+e " NI 2 ~
2),

p3, 4 e @I,4 l
3) +e " @3,4 l

4&
(9)

The general boundary conditions for the many-band en-
velope functions (9) (derived from the probability current
conservation conditions or by integrating the Hamiltonian
across the interface) are exactly fulfilled in our case only
for kI~ ——0. For finite k~I, however, our variational pro-
cedure leads to the coefficients a;,b;, so that 4'& 2 and +3 4

approximate the real wave functions and in the same way
satisfy the true boundary conditions as well as possible in
this finite basis. We have performed a numerical diago-
nalization of the Hamiltonian matrix (6) (given explicitly
in Appendix C) and obtained the valence-band structure
E(kI~ ) and the wave-function coefficients a;,b;

0

In Fig. 1 we show the results for a 140-A-thick GaAs
well between Gao 79Alo 2&As barriers. Band parameter
values for GaAs and AlAs are listed in Table I (after Ref.
14), those for Gao 79Alo 2&As being obtained by linear in-
terpolation. The most important parameter is the valence
well depth Vo. This parameter is determined by the
difference between energy gaps of the well and barrier ma-
terials (b Eg b,E,+b E, ) a—n—d the offset parameter
Q, =bE, /bEg. Since different authors report different

TABLE I. Band parameters of GaAs and AlAs in atomic
units (from Ref. 14). E~(Ga~ AJ As) = E~(GaAs) + 1.04x
+ 0.47x for x &0.4.

GaAs AlAs

me

f1
r2
y3
E, (eV)

0.067
6.85
2.10
2.90
1.520

0.124
3.45
0.68
1.29
3.13

Q, values' we present here results for Q, =0.57 (Ref. 16)
and Q, =0.85 (Ref. 17).

It can be noticed that our results are in good agreement
with extended computations by Altarelli et ol. (Fig. 1).
We are not going to discuss in details the QW valence-
band structure which was already investigated by many
authors; ' we rather point out the most important
features of this structure.

In k~~
——0 heavy and light holes exactly decouple as dis-

cussed earlier, and it is therefore possible to label sub-
bands as "heavy" or "light" according to their k~~

——0
character. For finite k~~ the admixture of light- (heavy-)
hole function into heavy- (light-) hole state becomes signi-
ficant as shown in Fig. 2. This results in characteristic
nonparabolicities which may be observed in Fig. 1 (nega-
tive mass of the first light-hole subband for k -0 and re-
versal of its sign for k -7r/2L, where L is the well width).
Since for small k the light-hole mass has the same sign as
the electron mass, this leads to high joint density of states
(JDOS). For large kII ( —7r/L) our results deviate from
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FICx. 1. Valence-band energy dispersion for a
0

GaAs/Gao 79Alp 2&As 140-A QW, calculated in the axial approx-
imation for two-band offset parameters: Q, =0.57 (open circle)
and Q, =0.85 (solid circle). The results of Altarelli et al. (Ref.
8) are plotted for comparison: Q, =0.57 (dashed line) and

Q, =0.85 (solid line). h and 1 denote heavy- and light-hole char-
0

aeter at k~~ =0, kp stands for k~~
——vr/340 A.

PA BALL EL WAVE VECTOR k )I

FIG. 2. Dominant components of the first (1h, upper part)
and the second (1l, lower part) valence subband wave functions
on the P,

" and P; basis. The coefficients a; (b; ) expresses the ad-
mixture of P,

"
(P,') basis functions into the total subband wave

functions for increasing k~~. For k~~
——0 the 1h (ll) wave func-

tion has pure heavy- (light-) hole character.
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those of Altarelli et al. This is mainly due to the limited
number of basis functions used in the present example:
There exist six heavy-hole (h) levels and three light-hole
(1) levels for Q, =0.57 (the QW depth is Vo ——103 meV)
and only three h and two / levels for Q, =0.85 ( Vo ——36
meV).

The same type of variational calculation in the axial ap-
proximation has been performed for another QW system,
namely Gao 47Ino 53As well with Inp barriers. The energy
dispersions calculated using the parameters from Table II
(Refs. 19—22) and a band offset Q, =0.57 are presented in
Fig. 3. As compared to the GaAs/Ga& Al„As case
shown in Fig. 1, one may observe similar nonparabolici-
ties of the valence subbands, but the most distinguishing
features is the different order of these bands. For
Ga~In& ~As/InP the 1h subband is followed by the 2h
band, the 1I subband being only the third one.

Finally, we would like to comment on the spherical ap-
proximation. In the case of GaAs/Ga(j '79Alo 2/As dis-
cussed earlier the replacement of yz and y3 by
y'=(2yq+3y3)/5 leads to a wrong subband sequence:
Ih, 2h, 1l, 3h, . . . , instead of 1/, 2h, 3h, . . . , obtained in
the axial approximation. Thus the spherical approxima-
tion is not only quantitatively but even qualitatively in-
correct.

It is also worth noticing that the infinite well approxi-
mation also leads to an incorrect ordering of the valence
subbands. Therefore those approximations cannot be used
in our problem.

B. Conduction band

+'=0'(z)e "
I ~

+
~ & (10)

where
I

—,, + —, ) =
I
st),

I

—, , ——,
' ) = Is)), and P' are

functions analogous to the valence band functions (see
Appendix B; m& ~ masses are substituted by m, and Vo by
Vo=EEsQ, ). The conduction-band dispersion is given

TABLE II. Band parameters of Gap 47Inp 53As (Ref. 19) and
InP (Refs. 20 and 21) in atomic units deduced from cyclotron
resonance experiments. Parameters y 1, yz, and y3 for
Ga~Inl ~As are obtained by linear interpolation of CsaAs (Ref.
11) and InAs (Ref. 22) values.

P7l e

yl
yz
y3
E~ (eV)

Crap 47Inp 53As

0.041
13.95
5.69
6.07
0.812

InP

0.079
5.04
1.56
1.73
1.425

We consider the conduction band as decoupled from the
valence bands. In the envelope-function framework the
conduction-band effective Hamiltonian for a QW is diag-
onal in the

I
J,J, ) basis and is given by

H', r=(1/2m, )[kll —(t) /t)z )]+V'(z)

where m, is the electron effective mass. The conduction
band consists of a set of doubly degenerate states:

-10

-20-
E

0-
C?
UJ

-30
UJ

-40

PARALLEL WAVE VECTOR k, l

FIG. 3. Valence-band energy dispersion for a
0

Gao 471no 53As/InP 140-A QW calculated in the axial approxi-
mation with a band offset Q, =0.57. ko stands for kll0
=~/340 A, h and l indicate heavy- or light-hole character at
k

( I

——0.

by

+ (kll) =~,'+
2me

t. '; being the bound-state energies of the conduction band
well for kII ——0.

II. POLARIZATION OF PHOTOLUMINESCENCE
A. Calculation

In this section we will calculate the circular polariza-
tion of the photoluminescence excitation spectrum. The
considered process is the following (Fig. 4): excitation of
electrons from valence subbands to the lowest (lc) con-
duction subband, relaxation of photocreated electrons
and holes to the bottom of conduction band and top of the
valence band, respectively, and recombination of relaxed
electrons to the highest valence subband (1 h).

We make the following simplifying assumptions: (i)
We neglect excitonic effects (i.e., electron-hole Coulomb
interaction). All transitions are considered to be band-to-
band. (ii) Holes are supposed to completely relax their
spin during energy relaxation. This is indeed the case in
bulk material because of scattering between light- and
heavy-hole bands. However, when heavy-hole and light-
hole bands are decoupled by uniaxial stress or crystal
field, it is known that the hole spin relaxation is much
reduced.

Let us show ad absurdum that in QW's the hole spin
relaxation remains important. Suppose that, because of
the valence bands decoupling, the hole spin relaxation is
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(12)

E3

Lll

QJ

E exc
Eexc

where p
+—is the dipole transition operator for cr+ and cr

light and
I 4; ) are the initial valence states described by

wave functions (9) from which electrons were promoted;
in our case each valence subband is doubly degenerate.
Note that p is not normalized to unity but rather to the
density of excited carriers with a given k~l. Since we con-
sider thermalized recombination from the bottom of the
conduction subband, we must take into account electrons
created with all possible k~~. That means averaging p over
all possible directions of k~~. Finally for photoexcitation
of an electron from the jth valence subband into the first
conduction subband we obtain the average p density ma-
trices [calculated on the first conduction subband states
(10)]:

+ 2

PJ 3 gJ
0

(13)

WAVE VECTOR kq
FICJ. 4. Schematic QW band structure and transition

schemes discussed in Sec. II.

canceled. Then the luminescence polarization is + 100%:
If the only available holes originate from the absorption
process, the electrons can only recombine to the same
valence states they were promoted from. This is even true
in the presence of electron spin relaxation because in the
recombination process the hole selects the spin of the
recombining electron. Since the experimental determina-
tions of the luminescence polarization are at most 60%
(Refs. 3—6) the hole spin relaxation cannot be canceled.
Thus our assumption describes in a simplified way the
fact that hole spin relaxation is present, probably due to
the fact that the valence I 8 states have cubic and not vec-
torial symmetry. It should be noticed that our hypothesis
of total hole spin relaxation will lead, versus the exciting
photon energy, to the largest deviation from the constant
+ 100% value for polarization.

We first calculate the luminescence polarization assum-
ing no spin depolarization in the conduction band. This
spin depolarization will be discussed in Sec. II C. The cir-
cular polarization of photoluminescence is calculated in
the density matrix formalism. For o.+ (o ) light excita-
tion the density operator describes the state of photocreat-
ed electrons and reads

2 2
pj =7~ gj

where P = (X
I p I

S) is the valence-to-conduction inter-
band matrix element, a;,b; are the coefficients of wave
functions (9), S;;= (P& I PI ), S'„=(P; I P; ) are overlap
integrals between basis functions, and gJ
=(1/ r)7k~~(Bk~~/BE, „,) is the joint density of states for the
considered transition expressed in atomic units (E,„, be-
ing the excitation energy). The total density matrix for
transitions from several valence subbands is then
p= g.pj. . The recombination (Fig. 4) into first valence
subband (1h) (k~~ ——0, a; =5&;, h; =0) is described by

0 0—+ ~p2
0 4IS'" I2

4Istx I'
0 0

(14)

I =Tr(p+p„„

Then the luminescence polarization is given by

(15)

The o.+,o. luminescence intensities (under o+ excita-
tion) are obtained by calculating the following traces:

I~ =Tr(p +p I, o),
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B. Results

1h = 1c 1I—1c 2h—1c
1(

We now present the polarization excitation spectra cal-
culated according to formula (16) on the basis of numeri-
cal diagonalization of Hamiltonian (6) for different cases.
The excitation polarization spectrum resulting from the
band structure presented in Fig. 1 (GaAs/Gao 79Alp p]As,
L=140 A, Q, =0.57, axial approximation) is shown in
the upper part of Fig. 5. In the energy range E„,&E&~,
( n = 1 light-hole —to—conduction transition) only elec-
trons from the first valence subband are created in the
conduction band. Since the first valence subband has
mainly heavy-hole character (cf. Fig. 2) the resulting pho-
toluminescence polarization is positive and close to
+ 100%. The small decrease to 95% is due to a small

light-hole admixture in the 1h wave function. For an ex-
citation energy exceeding E&~, the electrons from the
second valence subband start to contribute to the lumines-
cence. These electrons originate from the light-hole —type
subband (Fig. 2) and carry a —100% polarization. The
joint density of states (JDOS) for this transition is very
high (Fig. 5, lower part), resulting in a net negative polari-
zation as strong as —78%. Note that for such an excita-
tion energy electrons promoted from the 1h subband have

0

k~~
——5&(10 A '=—kp, a relatively small value for which

our calculation of band structure does not significantly
deviate from the exact one (see Fig. 1).

As the excitation energy increases the JDOS for the
1l~lc transition falls down: Although the wave func-
tion still retains its light-hole character the net polariza-
tion then becomes positive. It should be stressed that
coincidence of both large JDOS and light-hole character
of photoexcited electrons is necessary for negative polari-
zation.

For still higher excitation energies (E,„,& Ezh ~, ) elec-
trons from the third valence subband appear in the con-
duction band. The wave function of these 2h electrons is
mainly built of P2 basis function. Thus
S~2 ——(P~

~
P2) =0 because of different parities of P; and

P2, so that these electrons negligibly contribute to the ab-
sorption process and consequently to the polarization as
can be seen in Fig. 5.

The influence of the well depth on polarization spectra
essentially enters through the modification of the JDOS
for the light-hole transition: The deeper the well, the
higher the JDOS, and the more negative the polarization
at the onset of the light-hole transition. In Fig. 6 (upper
part) the excitation spectrum is shown for the same QW
except that Q, =0.85. The valence-band well depth is
now only 36 meV, which results in much lower JDOS for
the 11~ le transition (Fig. 6 lower part). Hence, in spite
of the light-hole character of electrons created at the onset
of this transition, the polarization remains positive for all
energies. The 2h~lc transition negligibly contribute to
the polarization for the same reasons as discussed above.
On the other hand for an unrealistic value Q, =0.3 the

1h = 1c 1I =1c 2h- =1c

P v

cd 20"—

~ 1.0—
CC

0
CL

0

I I I I I I I I I I I I I I I l I I

1.54 1.55

EXCITATION ENERGY ( eV )

CO0 10—
O
I-
T
0

0 I I I I I I I I

1.54 1.55
FIG. 5. Excitation spectrum of the luminescence circular po-

larization (upper part) and joint density of states (lower part) for
a 140-A GaAs/Gap 79Alp p]As QW in the axial approximation
with Q, =0.57. The arrows denote the onsets of I h ~1c,
1 I~ 1c, and 2h ~ 1c transitions.

EXCITATION ENERGY (eV)
FIG. 6. Excitation spectrum of the luminescence circular po-

larization (upper part) and joint density of states (lower part) for
the same system as in Fig. 5 except that now Q, =0.85.
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1h = 1c 2h = 1c 1I =1c

ai 20—

I Ml I

0.85 0.86

EXCITATION ENERGY ( eV )
FIG. 7. Excitation spectrum of the luminescence circular po-

larization (upper part) and joint density of states (lower part) for
0

a 140-A Cxao 47Ino 53As/InP QW in the axial approximation with

Q, =0.57. The arrows denote the onsets of lb~le, 2h~lc,
and 1 l~ lc transitions.

valence-band well is deeper and this case is essentially
similar to the situation for Q, =0.57: high JDOS for
I /~ lc transitions and negative polarization (slightly
more negative than for Q, =0.57).

We have also calculated the polarization spectrum for
the Ga047In053As/InP system using the band structure
shown in Fig. 3. The results are plotted in Fig. 7. As was
previously noticed the first two valence-band levels have
heavy-hole character; only the third band is a light-hole
band. The high peak in JDOS is still present but now cor-
responds to transitions from 2h subband. The wave func-
tion of this subband mainly consists of $2 function
( a 2 ——0.965 at k

~ ~

——0) having heavy-hole character. How-
ever, as was mentioned, optical transitions Pz' ~Pt are
forbidden and do not contribute to the polarization, which
is then dominated by the light-hole admixture (b, =0.15
at k~~

——0) of the 2h wave function. Since the JDOS is
much higher than for 1 h ~ lc transition, we consequently
observe a steplike polarization decrease around
E =Epp &

. The true light-hole —type electrons are
promoted from the third valence subband (11), but the

JDOS for this transition is too small to result in negative
polarization and only a weak decrease of H is observed.
The spherical approximation discussed in Sec. I for
GaAs/Ga& Al As leads to polarization spectra similar
to that for Gamin, &As/Inp (i.e., no negative polarization)
because of the same order of the first valence levels.

We summarize the above results as follows: Negative
polarization of excitation spectra may be expected for the
transitions from the light-hole —type valence subbands,
but only if combined with large joint density of states.
That may be achieved for sufficiently deep QW's with ap-
propriate valence-subband sequence (lh immediately fol-
lowed by 1I subband).

C. Discussion

So far we have neglected spin relaxation in the conduc-
tion band. Obviously this effect should be included in the
calculations [all experiments report polarization smaller
than 100%%uo (Refs. 3—6)]. In the considered optical pro-
cess, electron spin relaxation can occur both during the
energy relaxation and in the thermalized state at the bot-
tom of conduction band before the recombination.
The exact relaxation mechanisms in two-dimensional (2D)
systems are not known up to now. However, we may
predict the influence of electron spin relaxation on the
shape of polarization excitation spectra. The depolariza-
tion in the thermalized state will decrease H without
changing the overall spectrum shape [P = P~p7s/(ran+7),
where ~& is the electron spin relaxation time and ~ is the
electron lifetime ]. The depolarization during thermaliza-
tion depends on the ratio of the energy relaxation time to
the spin relaxation time ' and increases with kinetic en-
ergy of photocreated electrons. This means that if elec-
trons are promoted from a single subband (1 h ~ lc transi-
tion) the polarization decreases with increasing excitation
energy. Thus at the onset of 1l electrons excitation to the
bottom of the conduction band, the weight of the I h ~ lc
transition in the polarization is weakened. This will
change the shape of the polarization spectrum, enhancing
its negative part (for GaAs/GaA1As QW).

One may expect that in real experimental situations the
above sharp excitation spectra will be broadened. That
may be due, for instance, to growth imperfections of QW
wafers: small macroscopic variations of barrier composi-
tion or well depth will cause small changes of QW energy
levels that will result in broadening of polarization spec-
tra.

We have simulated such a broadening in the absence of
conduction spin relaxation by convolution of the spectrum
in Fig. 5 with a Gaussian function

G(x, y)=(y&mLn 2) 'exp[ —(x/yv'Ln 2) ],
where y is the damping parameter. The results for
@=0.05 and 0.20 meV are shown in Fig. 8. It should be
noticed that the excitation spectrum is very sensitive to
such a broadening which may even cancel negative polari-
zation for y ~ 1 meV.

Indeed in the reported experiments for GaAs QW's
(Refs. 3—6) the overall shape (high positive polarization
followed by a negative minimum and then positive polari-
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1.0—

1h —1c

'f= 0 meV

1l . —1c 2h —1c At the present stage we believe that a direct comparison
with experimental data is meaningless because of the too
large number of QW parameters, critical for the exact
shape of polarization spectra, which are not accurately
known. Therefore improvements are required in two
ways: on the one hand, better controlled samples are
necessary, on the other hand a theory of 2D excitons in
systems with complicated degenerate valence band like
GaAs QW should be elaborated and then could be applied
to the photoluminescence polarization calculations.

0 10-

O 0
CL

1.0—

'f =0.05 meV

7= 0.20 meV
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APPENDIX A

1.54 1.55

The basis set for the matrix (3) is the
~

J,J, & basis for
3J=—.
2

EXCITATION ENERGY (eV )

FIG. 8. Effects of broadening on the excitation spectrum
shown in Fig. 5 for the damping parameter values @=0 meV,
0.05 meV, and 0.20 meV, respectively.

zation) is in agreement with our results. However, the
width of the negative dip is of the order of a few meV.
This is much larger than in our calculations and yet nega-
tive polarization is still observed. This evidences the role
of conduction electron spin relaxation.

We therefore think that at the present stage any com-
parison of our results with experiments can only be quali-
tative. The calculated spectra strongly depend on such
material parameters as barrier compositions, offset value
Q„well width, broadening and spin relaxation, i.e., too
many parameters to make reasonable fits.

CONCLUSION

We have performed the first calculation of the circular
polarization of the luminescence excitation spectrum of a
QW system, which reflects the features of experimental
structures: high positive polarization for 1h ~1c transi-
tion, negative polarization for 11~le transition. This
negative polarization directly results from the nonparabol-
icity of the QW valence band and requires proper ordering
of valence subbands: 1h level followed by 1I level. Such
a situation is encountered in GaAs/GaAlAs with suffi-
ciently deep valence wells. For the other systems, with
different valence subband sequence (1h, 2h, 11,3h. . . ) as in
Gao 47Ino 53As/InP the polarization remains positive, only
presenting decreasing steps with increasing excitation en-
ergy.

—, , —, & = —(1/~2)
~

(&+i1')1&,

~

—,', ——,
'

& =(1/&6)
~

(& —i1')t &+(2/3)'
~

Zt &,

~

—,', ——,
'

& = —(1/&6)
~

(& i Y) 1—& + (2/3) '~'
~

Z 1 &,

~

—', , ——', & =(1/&2)
(
(X i Y) 1 & .—

The unitary transformation U is given by

a* 0
0 P
0 P*

a* 0

0 —(x

—P 0

P 0
0

where

a =(1/V'2)exp[i (3'/4 2P/3)], —

p= (1/v 2)exp[i ( ~/4+ p/2)],

and angle P results from k = ( k sinO sing, k sinOcosg,
k cosO).

APPENDIX B

For a square-well potential

0, —L/2&z &L/2,V"= V„~z~)1./2,

the Hamiltonians (7), which differ only by the effective
masses [m =m~ ——(y~ —2yq)

' for H~ and m =mh
=(y~+2yq) ' for H&], have the following solutions:
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for i even,

B;cos(k;L/2)e ' e ', z & L—/2

P;(z) = B;cos(k;z), L /—2 &z &L/2

B;cos(k;L/2)e ' e ', z &L/2;

for i odd,

—A;sin(k;L/2)e ' e ', z & L/2—
P;(z) = ~ 3;sin(k;z), L /2 —&z &L/2

3;sin(k;L/2)e ' e ', z &L/2,

where

k, =(2m te, )'", ~ = [2m tt( Vo —e )]'"
e; being the eigenenergy. Subscripts I and II refer to

L!2&—z &L /2 (i.e., well material) and
I

z
I

& L /2 (i.e.,
barrier material), respectively.

3 and B are normalization constants:

3;= [L /2 —(1/2k; )sin(k;L)+(1/tc; )sin (k;L /2)]

B; = [L /2+(1/Zk; )sin(k;L)+(1/tt; )cos (k;L /2)]

Eigenenergies e; result from the continuity relations [P;
and (1/m)(BQ;/c)z) continuous at the interface].

This treatment is successively applied to the heavy-hole
levels (m =mq) and to the light-hole levels (m =mt),
leading to the wave functions (t,". and P; and the corre-
sponding eigenenergies for k

I ~

——0.

APPENDIX C

The Hamiltonian matrix (6) expressed in the P; basis is
the following:

~11 II 12

~= ~Z] ~Z2

where

H,"= —,
'

(yt+y2)kll~V+eJ~~V, t,j =1,2, . . . , lh,

H; = —,(yt y2)kll~V+eJ~V, t,j=1,2, . . . , 1(,

H; =H; =(V3/2)yk.
~~Sq

—v 3y3

with

l =1,2, . . . , (|I, J:ly2y ylh

sin(kh —kt )L /2 sin(kh +kt )L /2 2 cos(khL /2)cos(ktL /2)
Bh BI. + +

kh —kI k„+k, Kh +K~
for i,j both odd,

S,J. —— sin(kh —kt )L /2 sin(kh +kt )L /2
+

kh —kh kh+kI

0 otherwise,

2 sin(kh L /2)sin(ktL /2)

Kh +K~
for i,j both even,

ktsin(kh —kt )L /2 ktsin(kt, + kt )L /2 2tctsin(ktL /2)cos(khL /2)
Bh AI +

kh —kI kh+ kI K~ +Kh
for i odd and j even,

k, sin(k, k, )L, /'2—
kh —kI

kt sin(kh +kt )L /2

0 for i,j even or for i,j odd .

2tctsin(kt, L /2)cos(ktL /2)

K) +Kh
for i even and j odd,

Subscripts h or I denote values resulting from heavy- or light-hole masses taken for evaluation of e;,k;,~;, and the nor-
malizing constants 3;,B; defined in Appendix A. The diagonalization of matrix 0, which is in fact the variational Ritz
method, provides the eigenenergies and eigenvectors through a;(k~~ ) and h;(k~~ ).
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