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~e have calculated the phonon dispersion curves of mixed crystals of KTa03 and KNb03 for
various niobium concentrations. In our calculations, a nonlinear shell model is used, in which the
fourth-order anharmonic core-shell interaction of the oxygen ions is taken into account in the self-

consistent phonon approximation. The measured phonon dispersion curves, their temperature
dependence, and, in particular, the temperature dependence of the ferroelectric soft-mode frequency
for different niobium concentrations between 0 and 100 at. % are well reproduced by our calcula-
tions in which only two coupling parameters depend on the niobium concentration in a systematic
way. These two parameters are temperature independent and characterize the linear and nonlinear

polarizability of the oxygen ions. All other coupling parameters are temperature and concentration
independent.

I. INTRODUCTION

The solid solution KTa& „Nb„03 (KTN) is an interest-
ing system for the investigation of ferroelectric phase
transitions and the understanding of their nature. It has a
rather complex phase diagram and allows a systematic in-
vestigation of the dynamical properties of a system in
which the fundamental microscopic parameters can be
varied continuously by changing the niobium concentra-
tion x. The temperature dependence of the frequency and
the damping of the ferroelectric or incipient ferroelectric
soft mode, the transition temperature T, and the charac-
ter of the phase transitions depend strongly on the niobi-
um concentration x. ' In order to illustrate the phase
diagram we first consider the two limiting cases of the
system.

KNb03 and KTa03 behave quite differently. KNb03
is a proper ferroelectric. It undergoes a sequence of three
phase transitions. With decreasing temperature it
transforms from the high-temperature cubic phase first at
703 K to the tetragonal phase, then at 490 K to the
orthorhombic phase, and finally at 210 K to the low-
temperature rhombohedral phase. Close to the cubic-to-
tetragonal phase transition a strong increase of the static
dielectric constant is observed. This increase in the
dielectric constant can only partly be explained by the
softening of the ferroelectric mode as deduced from the
far-infrared reflectivity spectra. ' In both the cubic and
the tetragonal phase the values of the static dielectric con-
stant calculated by the Lyddane-Sachs- Teller relation
from the measured optic-phonon frequencies derived from
the reflectivity spectra ' are much lower than those ob-
served in direct measurements. The ferroelectric soft
mode is strongly overdamped in both the cubic and the
tetragonal phase and becomes underdamped in the vicini-
ty of the orthorhombic to rhombohedral phase transition.
It turns out that the nature of the phase transitions in

KNb03 is rather complicated. A crossover from a displa-
cive to an order-disorder mechanism near T, has been
proposed.

The other limiting case is KTa03. Pure KTa03 is an
incipient ferroelectric which behaves like a ferroelectric in
its paraelectric phase but does not undergo any phase
transition. It shows a strong increase of the dielectric
constant eo with decreasing temperature. The increase of
eo is related to the softening of the ferroelectric mode
which has been studied intensively by infrared, Raman,
and neutron spectroscopy. ' Moreover, the soft mode
of KTaO3 has been investigated recently by hyper-Raman
scattering. ' This technique yields directly the frequency
and damping of the ferroelectric soft mode with better ac-
curacy than other methods.

The properties of KTa03 are drastically modified when
small amounts of niobium are added. Above potassium
niobate concentrations of 0.8 mo1% KTN becomes fer-
roelectric at low temperatures. The transition tempera-
ture increases with increasing niobium concentration.
This is due to the strengthening of the dipolar interactions
in a system with competing dipolar fluctuations and
long-range ordering forces. Dielectric susceptibility and
acoustic measurements in KTN have revealed various
crossovers from displacive to other regimes. ' ' ' The
temperature dependence of the soft mode has been investi-
gated recently by hyper-Raman measurements of
KTa& „Nb O3 for niobium concentrations x of 0.008,
0.012, and 0.020. ' The results of these experiments show
clearly deviations from the classical Curie-Weiss law. For
temperatures down to 30 K above T, a mean-field law
with a critical exponent y'=1 is found for the dielectric
susceptibility. At lower temperatures the critical behavior
depends strongly on the niobium concentration. For
x =0.008 a quantum regime with a critical exponent
@=2 is found. ' The measurements for x =0.012 yield a
mode-coupling behavior with y = 1.4. For higher concen-
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trations a strong damping prevents the observation of de-
viations from the Curie-Weiss law close to the phase tran-
sition.

A large amount of various experimental data has been
accumulated in recent years concerning the temperature
dependence of the ferroelectric soft mode in KTN in a
wide range of temperatures (20—1300 K) and niobium
concentrations (Refs. 1, 6, 13, 16, 18, and 19). The aim of
this paper is to give a theoretical interpretation of this
data and to point out the relevant physical interactions
which govern the dynamical properties and lead to the
ferroelectric phase transition. For this purpose we use a
shell model in which the anharmonic fourth-order on-site
interactions in the core-shell coupling describe the soften-
ing of the ferroelectric mode. Since we are primarily in-
terested in the temperature and concentration dependence
of the frequency of the ferroelectric mode, we have com-
pletely neglected the third- and fourth-order intersite in-
teractions, which cause small temperature shifts of the
other modes. The third-order terms, which vanish be-
cause of symmetry reasons for the on-site interactions,
provide essential contributions to the linewidth, although
the strong damping of the ferroelectric mode for high
niobium concentrations is still an open problem which can
not be solved by taking into account third-order intersite
couplings only. However, our simplified treatment of the
anharmonic terms provides a clear insight in the driving
mechanism for the softening of the ferroelectric mode.

II. MODEL DESCRIPTION

A. Anharmonic lattice models

Ferroelectric phase transitions are due to a critical can-
cellation of the long-range dipolar forces and the short-
range overlap forces. In the harmonic approxima-
tion one of the polar modes, the ferroelectric soft mode, is
unstable. Above the phase transition, this mode is stabi-
lized by anharmonic contributions. A mean-field
treatment of the anharmonic contributions leads to a
Curie-Weiss law for the temperature dependence of the
soft-mode frequency:

cof ——a(T —T, )r,
where y = I is the critical exponent.

Various microscopic models have been used for the
driving mechanism of the phase transition. In these
models the harmonic phonon frequencies are renormal-
ized by anharmonic contributions to the self-energy. One
of the most complete treatment has been given by Bruce
and Cowley for SrTi03. These authors include thermal
strain and cubic and quartic Ti-0 and Sr-0 couplings but
do not consider the anharmonic on-site core-shell cou-
pling of the oxygen ions. Their model yields good agree-
ment with various available experimental data but does
not give a clear insight into the driving mechanism for the
softening of the ferroelectric mode. Since in this paper we
focus on the softening of the ferroelectric mode, we con-
sider a simplified model which includes in its anharmonic
part only the quartic on-site interactions of the oxygen
ions. Indeed, a careful inspection of ferroelectric materi-

als shows that more than 90% of them contain either oxy-
gen or other chalcogen ions. Furthermore, these com-
pounds exhibit strong second-order Raman spectra. For
the rocksalt structure crystals (MgO, SrO), it has been
shown ' that the second-order Raman spectra of these
compounds are mainly due to intra-ionic polarizabilities
of the oxygen ion. This suggests that intra-ionic polariza-
bilities of the 0 ion are also the driving mechanism for
the softening for the ferroelectric mode in oxidic
perovskites. Thus, Migoni et al. ' ' introduced a fourth-
order on-site core-shell interaction of the oxygen ion in
the classical shell model. The self-consistent phonon solu-
tions of the equations of motion of this model reproduce
the temperature dependence of the soft mode at q =0 as
well as the two-phonon Raman spectra of KTa03 and
SrTi03. Simplified versions of this model ' have been
applied to ferroelectric perovskites and to other fer-
roelectric materials. These simplified models are
based on quasi-one-dimensional diatomic chains of polar-
izable anionic clusters (Ti06 or Ta06 octahedrons) and
rigid cations. In the harmonic case, the soft-mode insta-
bility can be attributed to a negative core-shell coupling
constant g2 of the cluster, which involves the oxygen po-
larizability as well as the attractive Coulomb forces. The
stabilization by anharmonicity is due to the intra-ionic
fourth-order coupling parameter g4 of the cluster which
describes the nonlinear on-site core-shell contribution.

B. The three-dimensional polarizability model

In our calculations we have used the three-dimensional
anharmonic shell model of Migoni et al. In this model,
the anisotropy of the oxygen polarizabilitg is described by
two different linear coupling constants kq (in the direc-
tion of the K ions) and k2 (in the direction of the Ta or
Nb ions). The nonlinear fourth-order contribution is tak-
en into account by a coupling constant k4 which acts
only in the direction of the ion B. The contribution k4
which acts in the direction of the K ion is considered
small and has been neglected.

The core-shell on-site potential P can be expanded in
terms of relative shell displacements w as

and

I= —,'kz g wp O, a&p
l, a, P

(2)

(3)

ko s(T)=k2 + —,
'

k4 (wQ g ) 7 (4)

The thermal average (wos)r of the relative displace-

where a and P label Cartesian components, l is the cell in-
dex, and 0 indicates the oxygen ion located on the line
O—B which connects oxygen and transition metal in the
a direction.

The nonlinear term leads in the self-consistent phonon
approximation to a temperature-dependent core-shell cou-
pling constant ko~(T) which acts in the O Bdirection-
and is given by
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ment in the O-B direction can be written as tions of the ox@en ion are specified by the coupling con-
stants k2, k 2, and k 4, already mentioned before.

fm(q, j)(wog)T —— g ' ' coth
2NMo . co q,j B

wheie Mp is the mass of the oxygen ion, N is the number
of q points considered in the summation, Az is the
Bolzmann constant, and co(q,j) is the frequency of the
phonon with branch index j and wave vector q. The shell
eigenvectors f(J) ) are given by

is the additional contribution which is due to the non-
linear coupling in the mean-field approximation. The
nonlinear part of the polarizability renormalizes the
dynamical matrix:

D =M —i~2[/ T($+~ +g) Tt]M —&~& (9)

where R, T and S, are the Fourier transforms of the
force-constant matrices in customary notation; they in-
clude the corresponding Coulomb interactions.

The harmonic shell model is specified by 15 parame-
ters. The six short-range parameters AK o, Bzo,
A/3 Q Bz o, 3o o, and Bo o are the axially symmetric
force constants 3 and B between K-O, B-O, and O-O,
respectively. The ionic and shell charges are given by Zz,
Zz, YK, and Yz. The parameters kK and kz are the
core-shell interaction for the K and B ions (B stands for
the group-VB atoms Ta and Nb). The core-shell interac-

where M is the diagonal matrix of the masses and T and
S are the core-shell and shell-shell coupling matrices,
respectively. These coupling matrices contain both short-
range and Coulomb interactions. Note that in this paper
"shells" always refers to the relative displacements w of
the shells. The eigenvectors of the dynamical matrix D
[see Eq. (9)] are denoted by e(~~). The shell-shell interac-
tion matrix S contains in our case diagonal parts K2 and
6 which arises from the harmonic and anharmonic core-
shell coupling, respectively:

S=S+Kp+6,
where S+K2 is the usual harmonic contribution and

C. Method of calculation

The harmonic shell model parameters on which our cal-
culations are based are those obtained by Migoni et al. '

by a new fit to a complete set of experimental dispersion
curves in the three high-symmetry directions of KTa03.
Shell model calculations with these parameters, which are
listed in Table I, reproduce the measured phonon disper-
sion curves of KTaO3 within experimental error.

A systematic comparison of recent measurements
(Table II) shows that only little variation in phonon fre
quencies is observed when niobium is introduced in
KTa03, except for the soft mode. These small changes
are due to the changed masses and lattice constants. This
finding is reinforced by recent hyper-Raman measure-
ments on the KTN crystals which reveal that the TO4 op-
tic mode at 540 cm ' remains nearly constant in frequen-
cy and in damping with increasing Nb concentration. '

Consequently, it seems reasonable to assume that all
model parameters for the whole KTN series, except the
core-shell coupling constants, do not depend on the niobi-
um concentration and that the differences in the soft-
mode behavior are exclusively due to variations of the
harmonic as well as the anharmonic part of the intra-ionic
core-shell coupling constants. It is well known that the
oxygen ion 0 is instable as a free ion. In a crystal it is
stabilized by the Coulomb field and by the hybridizations
of the oxygen 2p orbitals with the d electrons of the
neighboring Ta and Nb ions. The variation of niobium
concentration leads to a modification of the boundary
conditions, which essentially affects the on-site polariza-
bility of the oxygen ion in the direction of the B ion (Ta
or Nb). In our calculations the variation of the oxygen
polarizability is taken into account by the concentration
dependence of the two coupling constants k2 and k4
(see below). Using these parameters the temperature
dependence of ko~(T) is obtained self-consistently ac-
cording to Eq. (4). The coupling constants k2 and kq
are treated as effective parameters averaged over the
whole lattice. Of course, the change in mass and in lattice
parameter is included in the calculation.

The numerical values of the linear and quartic expan-
sion coefficients k2 and k4 have been calculated by
using the following procedure. For each niobium concen-
tration x, the function ko &(T) is determined from the

TABLE I. Concentration-independent parameters of the model for KTN. These parameters have
been obtained by Migoni et ah. (Ref. 41) by a least-squares fit to the measured dispersion curves of
KTaO3. The concentration-dependent parameters k2 and k4 are given in Fig. 4.

14.65

BK-0

—1.01 359.0 —68.0

Short-range interactions (e /2v units)
~B-o Ba-o

3.22

Bo-o

1.085

ZK
Ionic and shell charges (e units)

Zg Y Yg Yo
Core-shell coupling (e /v units)

kK kg k 0-K

0.82 4.84 —0.419 7.83 —3.01 1000.0 1283.0 410.0
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TABLE II. Measured phonon frequencies at q =0 for various niobium concentrations x.

T (K) TOi
Fi„

LOj TO2

Phonon frequencies (cm ')

Fi„ F2/ (sile«)
TO3 LO3

F,„
TO4 LO4 Ref.

0%

1.8%

10%

36%

300 K
300 K

300 K
300 K

300 K
1000 K

300 K

253 K

81
85.1

85
88

86
125

85

185
188
196

184

185
187

188

188

199
199

198
199

200
207

202

199

282

422
425

421

425
425

422

423

546
549

826
833

556
547

545
536

838

826
820

554 830

549 833

13
8

12
9,10

19

19

100% 730 K
910 K

1180 K

100
116
136

191
192
193.5

199
201
203.5

419
418
418

520
516
512

821
820
815

6,7

measured soft-mode frequency. Using these values of
kp g( T) the phonon frequencies co(J~), the core eigenvec-
tors e(~~) and the shell eigenvectors f(Jl) are recalculated in
the quasiharmonic approximation. In the next step, the
thermal average of the oxygen shell displacements in the
8 ion direction (wo z ) T is determined [Eq. (5)]. Then we
obtain the temperature-independent parameters k2 and
k4 of the oxygen polarizability in the direction of the
Ta or Nb ions by a linear least-squares fit to the function
ko ~( T). The values obtained for k 2 and k & are rein-
troduced in the dynamical matrix [Eqs. (8) and (9)] and
the procedure is continued until self-consistency is ob-
tained.

Only the mean-field region has been considered in our
calculations. Thus we excluded both the points in the vi-
cinity of T„where quantum, mode-coupling, or order-
disorder deviations may occur, and the point at very high
temperatures, which may be influenced substantially by
higher-order anharmonic effects. The results of our cal-
culations, presented as continuous lines in Fig. 1, show
that the temperature dependence of the soft mode of
KTN is adequately described by the model in a wide
range of temperatures for niobium concentrations x rang-
ing from 0 to 1.

III. RESULTS OF THE CALCULATIONS

A. Soft-mode behavior of the KTN system

Our calculations are essentially based on the tempera-
ture dependence of the ferroelectric soft-mode frequency.
We have, however, also calculated the phonon dispersion
curves in the whole Brillouin zone as a function of niobi-
um concentration and of temperature. Our results com-
pare favorably with the available experimental data. Two
typical examples are reported in Sec. III C.

Figure 1 shows the experimental data of the ferroelec-
tric soft mode and the results of our calculations. The
data between 0 and 300 K are hyper-Raman results ob-
tained by Vogt and Uwe' for pure KTa03 and by Kugel
et al. ' for KTa~ „Nb„Q3 (x =0.008, 0.012, and 0.020).
The mean-field behavior extends down to about 30 K
above the transition temperature T, . Below this limit, de-
viations from the Curie-Weiss law have been detected. On
the other hand, the Curie-Weiss regime extends to high
temperatures. This has been observed recently by ir re-
flectivity measurements on KNb03 in the cubic phase by
Fontana et al. and on KTN with niobium concentration
x =0.018 by Rytz et al. ' The temperature dependence
of the soft mode between 300 and 1300 K obtained by ir
spectroscopy is shown in the inset of Fig. 1.

75 ~

O
Z
LLI 0

25
LLI

CC

0
0

300
I

100

Sbo
I

200
TEMPERATURE (K}

1300
I

FIG. 1. Ferroelectric soft-mode frequency in the
KTal „Nb„03 system as a function of temperature. The data
between 0 and 300 K are hyper-Raman results (Refs. 13 and 16);
those between 300 and 1300 K are ir reflectivity results (Refs. 6
and 18).
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B. Analysis of the results

l. Temperature and concentration
dependence of the polarizability

The frequency of the ferroelectric soft mode for a given
temperature and for a given niobium concentration is
determined by the oxygen-ion core-shell interaction
ko Q( T). The temperature dependence of ko s( T) is due
to the thermal average as can be seen from Eqs. (4) and
(5). Figure 2 represents the variations of

koine(T)

as a
function of T for various x values. For a given tempera-
ture, the more important result is the decrease of ko s(T)
with increasing niobium concentration. This fact is par-
ticularly obvious in the inset of Fig. 2, where we report
the results for KTN (1.8%) and for KNb03. The single
point in the inset represents the neutron scattering result
of Yelon et al." for a KTN with x =0.37. It still fits
into the scheme. These features mean that the polarizabil-
ity of the 0 ion in the direction of the B ions increases
when going from KTaO3 to KNb03. This is consistent
with the increase of the transition temperature T, with in-
creasing niobium concentration.

eQ

O

1.0—

0.5—

0
0

100

500

200

1000

I

300

2. Temperature and concentration dependence
of the thermal average of the

oxygen shell displacement ( wo e ) T

X Po
~ 0

0.8

360-

350-
370-

360-

350-

3400 500
I

1000

The increase of the polarizability in the direction of the
8 ion with increasing niobium concentration leads to an
enhancement of the amplitude of the oxygen shell dis-
placement f( t) and in consequence of the thermal averageJ
(too s ) r. Figure 3 shows the temperature and concentra-
tion dependence of the shell displacement vector

TEMPERATURE (K)
FIG. 3. Concentration and temperature dependence of the

thermal average of the oxygen shell displacements (wo s ) r in
the KTa& Nb 03 system. The amplitude squared of the oxy-
gen shell displacements for two Nb concentrations (100% and
1.8%) is shown in the inset.

f (0,TOi) and the thermal average of the shell displace-
ment ( tvo ~ ) T. The linear behavior of ( tvo s ) T is due
essentially to the coth(irtco/1sT) in Eq. (5). A systematic
niobium concentration dependence of ( w o s ) T at a given
temperature is not easy to establish, since the experimen-
tal data for different concentrations, which are used in the
fitting procedure, do not belong to the same temperature
range. The comparison of the results for x =0.012 and
x =0.020 obtained by hyper-Raman measurements' be-
tween 20 and 300 K with those obtained for x =0.018
from ir spectroscopy between 300 and 1300 K (Ref. 19)
shows the coherence of the experimental data in two dis-
tinct temperature ranges and insures the reliability of the
calculations with varying niobium concentrations. More-
over, the thermal average calculated from the neutron
scattering data for x =0.37 (Ref. 42) fits in a satisfactory
way in the general scheme. Another interesting feature
revealed by our calculations (c.f. inset of Fig. 3) is the
strong enhancement of the shell eigenvectors f (O, jl)
when temperature approaches the Curie temperature.
This result clearly indicates that the driving mechanism
of the phase transition is strongly related to the anisotro-
pic and nonlinear deformabilities of the oxygen charge
density along the O-8 chains.

3400 100 200
TEMPERATURE ( K )

300
3. Concentration dependence of the

core-shell coupling constants kq and k~

FICx. 2. Variation of the core-shell coupling constant ko ~(T)
in the KTa& „Nb„O3 system as a function of temperature.

The concentration dependence of the coupling parame-
ters k4 and k2 is shown in Fig. 4. The linear constant
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NIOSIUM CONCENTRAT ION

FIG. 4. Concentration dependence of the coupling parame-
ters kz and k4

k2 decreases slightly from about 340e /v to 270e /v.
The nonlinear parameter k4 shows a completely dif-
ferent behavior and increases drastically from about
2.4&10 e /vA to 5.6)&10 e /vA. v means the volume of
the elementary cell. This reflects the fact that the oxygen
polarizability increases with increasing niobium concen-
tration and that the nonlinearity is consequently
enhanced. The outer 2p electrons of the oxygen ion are
strongly delocalized along the 0-Nb chains. The corre-
sponding charge densities can easily respond to a displace-
ment of the neighboring ions by a variation of the charge
accumulation between the ions. This can be viewed as
arising from changes in hybridization of the 2p wave
functions of the oxygen with the 5d and 4d wave func-
tions of Ta and Nb, respectively. The strong response of
the O polarizability to the lattice displacements in nor-
mal modes causes the strong second-order Raman spectra
in the oxidic perovskites. The same interpretation has
been proposed for oxidic II-VI compounds with rocksalt
structure like MgO and SrO. ' The nonlinearities may
also be the origin of the strong electro-optic properties
and the large hyper-Raman scattering cross sections of the
oxidic perovskite type crystals.

Our calculations have revealed a strong correlation be-
tween the shell eigenvectors of the 0 ions and those of
the B ions. We have found that an enhancement of the
oxygen core-shell eigenvector yields an enhancement of
the core-shell eigenvector of the B ions (in the directions
of the 0-B chains). In other words, it is possible to obtain
softening of the ferroelectric mode by a variation of the
core-shell coupling of the B ion. This observation rein-
forces the idea of dynamical hybridization along the O-B
chains.

A last interesting goint concerns the respective influ-
ences of the linear k2 and nonlinear k4 coupling pa-
rameters on the softening of the ferroelectric mode and on
the transition temperature T, . If the thermal average of
the oxygen shell displacement in the B ion direction is ap-
proximated by a linear function (see Fig. 3):

( wo)r =a+bT,

In Fig. 5, we present schematically these functions for dif-
ferent niobium concentrations. It is evident that the rate
of the ferroelectric mode softening is substantially affect-
ed by the nonlinear parameter k4 which enters in the
temperature dependent part. The phase transition tem-
perature T, is the temperature where the ferroelectric
mode has a frequency equal to zero. Our calculations
yield for ko&(T) the values 351.0 for KTa03 and 343.7
for KNb03. The difference between these two values is
due to the difference in mass of the B ions. Since the
term ak~ /2 in the temperature-independent contribu-
tion to ko s( T) is small compared to k q, the increase of
T, with increasing niobium concentration is essentially
due to the decrease of k2 . The temperature of the phase
transition is obtained in Fig. 5 at the intersection of zero-
frequency line with the function ko s(T). In the case of
KNbO3, it is remarkable that the phase transition takes
place at about 300 K which is near the transition tempera-
ture between the orthorhombic and rhombohedral phases.
This is in agreement with the fact that an extrapolation of
the ferroelectric mode frequency squared from the cubic
phase yields a zero frequency near this last phase transi-
tion.

360

I—

g) 340

F R EQUE NCY LI N

320
500

TEMPERATURE ( K )

FIG. 5. Schematic representation of the respective influences
of the linear k q and nonlinear k 4 coupling constants on the
phase transition. The parameter k 4 governs the rate of the
mode softening given by the slope of ko &(T). The temperature
T, is given by the intersection of the zero-frequency line with
the ko ~( T) functions which are essentially determined by the
linear coupling constant k&

the core-shell coupling constant along the O-B chain be-
comes a linear function of the temperature:

ko s(T) =k2 +(ak4 +bk4 T)I2 .
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FIG. 6. Phonon dispersion curves calculated for KNb03 at
730 K and compared with experimental data obtained by neu-

tron scattering (solid circles) (Ref. 45), ir spectroscopy (open cir-
cles) (Ref. 6), and Raman spectroscopy (stars) (Ref. 46).

0
0.5 0.4 0.3 0.2 0.1 0 O.l 0.2 0.3 0.4 0.5

REDUCED WAVE VE CTOR

FIG. 7. Low-frequency phonon dispersion curves calculated
for KTal „Nb„O3 (x=37%) and compared with neutron
scattering data (Ref. 42).

C. Calculation of the dispersion curves

Until now our discussion was focused specially on the
soft-mode behavior at the center of the Brillouin zone.
Migoni et al. ' have shown that the set of parameters
used in our calculations reproduces the measured phonon
dispersion curves of KTa03 in the three high-symmetry
directions within experimental error. In order to provide
additional evidence for the validity of the model, we cal-
culated the whole set of dispersion curves of KNbO3 in
the cubic phase at a temperature of 730 K. The results
are presented in Fig. 6 together with the neutron scatter-
ing data of Nunes et al. and the ir reflectivity data of
Fontana et al. The star symbol indicates the frequency
of the silent mode measured in KNb03 in the tetragonal
phase. This frequency remains unmodified when the
tetragonal to cubic transition is crossed. Comparison
shows good agreement between the calculations and the
measurements.

Good agreement is also obtained for the low-frequency
dispersion branches of KTN with x =0.37, which have
been determined by Yelon et a/. The experimental
points at 340 K of Yelon are compared with our calcula-
tions in Fig. 7. The strong coupling of the soft ferroelec-
tric mode with the transverse acoustic branches of 65 and
X4 symmetry is correctly reproduced within the frame-
work of our calculation.

The phonon dispersion curves for various other compo-
sitions of KTN have been performed and compared with
recent unpublished experimental data of the authors. The
details will be discussed in a forthcoming paper.

IV. CONCLUSION

We have shown that the phonon dispersion of solid
solutions KTa& „Nb O3 can be described in the whole
range of niobium concentration between 0% and 100%
within the framework of a nonlinear shell model. This
model has only two concentration-dependent parameters
k2 and k4, which describe the linear and nonlinear
oxygen polarizability. All other parameters are concen-
tration independent. Our results indicate that not only the
temperature dependence of the ferroelectric soft mode but
also its dependence on the niobium concentration is ex-
clusively governed by the oxygen polarizability and its
variation with the niobium concentration due to hybridi-
zation of the oxygen p states with the transition metal d
states.

Of course, our model cannot provide the phonon
linewidth, which is governed by third-order anharmonic
terms, as shown, for example, by Bruce and Cowley.
Since the damping of the ferroelectric mode increases
with increasing niobium concentration, the influence of
these terms will increase as well.
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