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We analyze theoretically the optical properties of ideal semiconductor crystallites so small that
they show quantum confinement in all three dimensions [quantum dots (QD's)]. In the limit of a

QD much sma11er than the bulk exciton size, the linear spectrum will be a series of lines, and we

consider the phonon broadening of these lines. The lowest interband transition will saturate like a
two-level system, without exchange and Coulomb screening. Depending on the broadening, the ab-

sorption and the changes in absorption and refractive index resulting from saturation can become

very large, and the local-field effects can become so strong as to give optical bistability without
external feedback. The small QD limit is more readily achieved with narrow-band-gap semiconduc-

tors.

I. INTRODUCTION

In recent years, advantage has been taken of the ability
of modern crystal-growth techniques to fabricate artificial
semiconductor nanostructures. It is now readily possible
to make structures that show quantum size effects, at
least in one direction, and that consequently exhibit novel
physical properties not encountered in natural materials.
The most widely fabricated and utilized of these nano-
structures in optics are quantum wells, i.e., ultrathin alter-
nating semiconductor layers of different composition.
Part of the reason for the interest in quantum wells in
nonlinear optics is the strong nonlinear response in the vi-
cinity of quasi-two-dimensional exciton resonances (for
recent reviews, see Refs. I and 2). In addition, it is found
that these quasi-two-dimensional excitons remain well
resolved even at room temperature, a peculiarity that re-
sults in unusual transient behavior under ultrafast excita-
tion.

The comparison of quantum wells with conventional
bulk semiconductor material indicates that the confine-
ment of electronic envelope wave functions over dimen-
sions of the order of the carrier de Broglie wavelengths
indeed provides a novel means to engineer optical non-
linearities. It is thus natural to examine if further carrier
confinement in lower-dimensionality semiconductor struc-
tures, i.e., one-dimensional quantum wires or zero-
dimensional quantum dots (QD's), could induce new and
interesting properties. Such nonlinear phenomena are of
some practical interest because of the continuing need for
better nonlinear optical materials in, for example, applica-
tions to optical switching and signal processing. Present-
ly, intensive work is done on the fabrication of such struc-
tures in a number of laboratories. The techniques that are
explored include electron beam lithography, colloidal
particle interrupted growth in solvents, ' enhanced inter-
diffusion, particle growth in glasses, ' '" and patterned
epitaxial growth. '

Some basic linear optical properties of QD's are already
understood theoretically. The interband absorption spec-
trum should change from continuous bands to a set of
discrete lines' as the size of the crystallite is decreased.
The main purpose of this article is to understand what
will happen to the nonlinear optical properties associated
with interband absorption in quantum dots. We will con-
cern ourselves primarily with the absorption (or, more
strictly, the imaginary part of the dielectric constant) in-
side a single quantum dot. We will not consider any pos-
sible optical interaction between quantum dots; such phe-
nomena can be treated in a subsequent macroscopic opti-
cal theory. The actual nonlinear absorption and refrac-
tion phenomena in QD's turn out to be relatively simple,
as we will describe below. As we will discuss, the only
surviving mechanism for nonlinear absorption near the
lowest resonance (neglecting multiphoton absorption) is
state filling. This contrasts strongly with both three- and
quasi-two-dimensional semiconductors where screening,
exchange, and the related band-gap renormalization are
also important. A more difficult problem, however, is
understanding some other aspects of the linear absorption
not previously considered, especially the broadening of the
absorption lines. Without a knowledge of the broadening,
we can make no useful estimate of the size of the non-
linear absorption, for example, since this depends on the
width of the linear absorption line. At present, broaden-
ing is in practice usually dominated by inhomogeneities in
the size and shape of the microcrystallites in samples con-
taining many such QD's. More fundamentally, however,
it is determined by other mechanisms, predominantly
phonon broadening, that cannot be eliminated by better
fabrication. It is these mechanisms that set the limit to
the properties of QD's, and we consider them in this pa-
per.

In the course of considering these linear and nonlinear
properties, we find also that we have to define more pre-
cisely what we mean by a semiconductor QD, at least for
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the purposes of this paper. We cannot simply define it to
include all structures, no matter how small, made of con-
stituent materials that are semiconducting in the bulk.
The properties of molecules or "clusters" are so different
from those of crystalline structures that we cannot hope
to encompass them all within one simple theory. This is
true both for their chemical properties and the effects of
vibrations. Hence we will consider useful limits on the
size of the structures for the validity of the physical prop-
erties involved.

The present article is organized as follows. First, in
Sec. II, we consider the useful limits of our theoretical ap-
proach, and we examine the changes in both the electronic
level structure and coupling to lattice vibrations that re-
sult from increasing confinement. Then in Sec. III, we
discuss the saturation of optical absorption of the discrete
transitions in the QD's. In Sec. IV we briefly discuss local
field effects that will further alter the externally perceived
optical properties compared to bulk material. We draw
our conclusions in Sec. V.

II. LINEAR OPTICAL PROPERTIES

A. Electronic structure

As we make a semiconductor "crystal" smaller and
smaller, the physical properties change in many ways. In
a large crystal, the overall shape and size of the crystal
make little or no difference to its internal properties. As
the crystal becomes smaller, however, the effects of the
surface become increasingly important. The most extreme
consequence is that as the fraction of atoms at the surface
becomes larger, the arrangement of the nuclei changes in
order to relax the energy of the system as a whole, i.e., a
transition from crystalline to molecular (cluster) behavior
takes place.

Semiconductor microcrystallites in vacuum will under-
go a transition from the bulk structure to more closed-
packed molecular arrangements even for quite small sur-
face atoms/bulk atoms ratios so that they minimize the
number of broken bonds (which are costly in energy). Re-
cent estimates for Si show that the crossover to the bulk
structure takes place if the number of atoms is —10 . ' ' '

If the particles are embedded in a host material, the criti-
cal cluster size for crystalline behavior can be much
smaller because of the saturation of surface bonds by host
atoms. Consequently, we cannot put a simple limit on the
structure size for crystalline behavior as it will depend on
the crystal environment. In what follows, we shall consid-
er QD larger than this critical size only. Such particles
are small crystalline fragments, i.e., they are "chemically"
identical to the corresponding bulk semiconductors.

Even if we make the crystallites sufficiently large that
the nuclei still retain substantially the same relative posi-
tions as in the bulk crystal, the electronic states may be
substantially different. Depending on the QD size, the
quasiparticle ("electrons" and "holes" ) spectrum is consid-
erably altered by the quantum confinement of the extend-
ed electronic states. For QD with a spatial extension of
several lattice constants, as a first approximation we can
use the effective mass approximation to describe the size

quantization of electrons and holes, in much the same
way as in quantum wells. ' Similar but more sophisticat-
ed techniques have been used to study, for example, the
properties of small metal particles such as Na in the shell
model for jellium, which due to the delocalization of the
electrons do not exhibit a pronounced dependence on size
of their chemical structure. ' ' Again, as in quantum
wells, we will be able to model the principal consequences
of confinement with the simplifying assumption of infin-
ite potential barriers for the electron and hole at the boun-
daries of the QD. Thus, in the simplest, high-symmetry
situations, the electron and hole eigenstates can be just the
particle in a sphere or box states. It is therefore likely
that there is a range of sizes (e.g. , between a 25-A cube
and a 250-A cube) for which the effects of the quantum
confinement on the extended electronic states may be
large, yet the structure may still be crystalline in all direc-
tions, and this is a simple working definition of a QD.

Of course, the shape of the particle can also now influ-
ence the energy-level structure. In a large bulk crystal,
the surface is such a small perturbation on the bulk prop-
erties that the surface shape does not in practice alter the
symmetry properties of the wave functions. As is well
known from quantum wells, however, one also has to ac-
count for a possible reduction of the symmetry in small,
confined systems, or, to put it another way, the shape of
the surface influences the symmetry of the states. A
spherical QD has a higher symmetry than any crystal so
that, for example, the heavy and light hole states of GaAs
would remain degenerate under such spherical quantum
confinement. This would not, however, hold for a platelet
QD, in which case the hole states would be split, so that
one would have to deal with two kinds of holes with dif-
ferent confinement energies, optical selection rules, etc. ,
just as in quantum wells. (Similar conclusions have been
arrived at by Brus. '

) These shape-induced band-structure
effects shall not concern us further here, although they do
not represent a fundamental problem, and our discussion
could be extended to cover them. In what follows, we will
limit ourselves to the simplest model, a two-band semi-
conductor with spin degeneracy only, and will consider
spherical or cubic QD's. There is of course no require-
ment that the QD should have a regular shape in order to
show quantum confinement and a discrete energy-level
spectrum, and the main conclusions of our study of the
nonlinear optical properties will also be valid regardless of
the precise external shape.

Another effect is the simple electrostatic phenomenon
of image forces that will occur for charged particles inside
a medium of one dielectric constant that is in turn embed-
ded in a host medium of different dielectric constant.
Such effects influence the Coulomb interaction between
the size-quantized electrons and holes. ' This depends
strongly on the ratio of the dielectric constants of the host
and QD materials and, again, on the shape of the QD. It
is intuitively clear that in a highly symmetric (i.e., spheri-
cal or cubic) QD these effects are small, because most of
the electromagnetic interaction between carriers takes
place through the QD material. In a platelet, however,
the situation is similar to that in quantum wells or semi-
conductor films, and there is a stronger enhancement of
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Coulomb effects if the background has a smaller dielectric
constant than the QD (as is often the case). In what fol-
lows, we will simply neglect image force effects. In the
case of strong confinement, they may not be large enough
effects to distort the wave functions significantly because
Coulomb effects are then relatively weak anyway, as will
be discussed below. Of course, embedding the QD in a
medium of different dielectric constant can still have pro-
found consequences for the optical properties as seen from
outside the QD because of local-field effects, and we will
return to this point below.

With our simplifying assumptions and conditions, it is
simple to calculate the single-particle energy levels of the
system. The quantum confinement will split the bulk
conduction (c) and valence (v) bands into a series of
discrete energy levels (energy shells in spherical QD), the
degeneracy and separation of which depend on the QD
shape. These levels can be characterized by spin and sets
of discrete momenta k. For example, for a sphere with
radius R and

v=c, v, m, =m„m, = —m~,

one obtains"
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where n, 1,m = 1,2, 3, . . . . Here, J„are the Bessel func-
tions and Y~ the normalized spherical functions. U (r)
are the cell periodic parts of the bulk Bloch functions at
the band edge, which we presume to be unchanged, as ex-
plained above. Equations (2)—(6) simply follow from the
requirement that the wave functions vanish at the corre-
sponding QD surfaces, which may not be true in reality,
particularly for the high-lying states where the wave func-
tion may penetrate significantly into the barriers. High-
lying states may also be influenced by nonparabolicity ef-
fects often encountered in narrow-gap semiconductors.

Just as in quantum wells, the confinement in QD leads
to a blue shift of the electron and hole states. The optical
transitions, which probe the nature of the electron-hole
pair states, will also become discrete. These two phenom-
ena make the optical properties of QD's very different
from the bulk. What makes the QD attractive for optics

is the fact that this quantization is accompanied by the
concentration of bulk oscillator strength into single spec-
tral lines and small volumes, so that an enhanced linear
and nonlinear optical response is to be expected, and we
will discuss these phenomena below.

B. Linear optical susceptibility

Due to the presence of the surface, the optical suscepti-
bility 7 of a QD is a nonlocal function in real space, i.e.,
X=X(R,R')&X(R—R'). For example, a uniform field
will produce a polarization that varies with absolute posi-
tion inside the quantum dot because of the confinement of
the wave functions. However, since the photon wave-
length is much larger than the QD size, this nonlocality
is not normally important, and we may replace the
nonlocal X by its "QD-averaged" value
(1/V) f d R f d R'X(R, R'), where V is the QD
volume. For the same reason, spatial variations in the
electric field inside the QD are not very important; a suit-
able average field can be used. This is important when
considering local-field effects in QD's of low symmetry.
Only certain shapes, such as spheres, show uniform inter-
nal fields when immersed in originally uniform fields in
media of different dielectric constant; the nonuniform
internal field in other shapes, such as cubes or platelets, is
of little consequence for the QD case because of this
averaging. This averaging could become invalid in the
case of very sharp and/or strong resonances where the
real part of the dielectric function could become very
large in the vicinity of the resonance, and hence the wave-
length could become shorter than the QD size. We will
not consider this here, and the numerical examples that
we will give will not result in such large dielectric con-
stants. Whether this will be important depends on the
broadening of the lines; very narrow lines could result in
very large dielectric constants. We will discuss local-field
effects further below in Sec. IV.

If for the moment we neglect the Coulomb attraction
between electrons and holes, the calculation of g becomes
trivial. The spatial average over the QD volume leads
simply to overlap integrals of the conduction and valence
"band" wave functions. These integrals can be evaluated
exactly, and they yield the well-known selection rule that
optical transitions can only take place between states hav-
ing the same quantum numbers. This it true regardless of
the shape of the QD (provided that the internal field is
uniform), but to be strictly correct it does rely on the as-
sumption of infinitely high barriers so that the electron
and hole eigenfunctions are identical; since electrons and
holes penetrate into the barriers by different amounts in
reality, the wave functions are not strictly identical and fi-
nite transition probabilities exist on the "forbidden" tran-
sitions except where these are symmetry forbidden. For
the states (2) [V=(4~R /3] we find with E,=E, and
Eg, ———E„,

ImX =—g (2l + 1)5(E E,„( E(,„(), — —C

n, $

whereas for the states (5) ( V =L ),
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ImX=C g U~(0)
~

'6lE E~), — (10)

where p indexes the excitonic states and Uz(0)
~

is the
probability of finding the electron and hole in the same
(unit) volume in the given excitonic state. The spectral
weight of the QD lines is proportional to V ', whereas
the spectral weight of the exciton lines is proportional to

~
Uz(0)

~

. For the lowest (e.g. , 1S) exciton state,

~
Uz(0)

~

-ao (ao is the Bohr radius). Hence the sliec-
tral weight of the QD transitions is a factor of —a o / V
larger than that of the bulk exciton. For the moment we
have come to this conclusion neglecting the electron-hole
interaction in the QD, but as we will discuss below, in
some circumstances this may not be very important any-
way. The general conclusion from this discussion of spec-
tral weights is that they are proportional to the reciprocal
of the confinement volume, regardless of whether the con-
finement results from the Coulomb interaction or from
externally imposed confinement. [This conclusion also
holds for quantum well excitons, where the confinement
in one direction is external (resulting from the barriers)
and in the other two is Coulomb induced. ] Consequently,
by making the QD smaller than the bulk exciton we may
make resonances with larger spectral weight than that of
the bulk exciton, and we may hope to engineer corre-
spondingly larger optical nonlinearities just as in quantum
wells.

Now we will consider the effects of the electron-hole
Coulomb interaction, and we will consequently make
another restriction on the QD's that is important for op-
tics. We will consider only QD's in which the QD is sig-
nificantly smaller than the bulk exciton. In this case the
confinement resulting from the QD dominates over the
mutual relative Coulomb confinement that gives rise to
the bulk exciton. (The bulk exciton is of course a
"quantum-confined" state of relative electron-hole motion

CImg= —g 5(E —Eenim Einim )
V num

where

2~e'fi'
/ p„/ '

C=
2m

Here, E is the photon energy and p,„ the bulk optical ma-
trix element. In what follows, we treat C as a constant, as
the variations in E will be small compared to E, +E&.
We have already summed over spin in (9). Equations (7)
and (8) do not yet include local-field corrections which
will be discussed later. Equation (8) is also the form of
the generic expression for an arbitrary shape and size of
QD (including a macroscopic crystal) if we regard n, 1,
and m as the general quantum numbers required to
describe the states, and subject to neglect of electron-hale
interaction. Equation (7) is then a special case where
many of the states are degenerate in energy.

The absorption spectra (7) and (8) consist of a series of
discrete lines, which shift to higher frequencies as the QD
size decreases. It is interesting to compare this QD ab-
sorption to that of a bulk exciton. In the bulk, with
electron-hole interaction included, the absorption becomes

resulting from the Coulomb potential of electron and hole
rather than any fixed external potential. ) Then the eigen
wave functions of the electrons and holes are negligibly
influenced by the Coulomb attraction between them, and
formulas (7) and (8) are again valid. We can formalize
this qualitative argument. For QD much smaller than the
bulk exciton Bohr radius, the residual Coulomb interac-
tion between the electrons and holes can be easily included
by noting that the confinement energy scales like L
whereas the Coulomb energy scales like L ' (L is the
linear dimension of the QD). If L «ao, this allows us to
treat the electron-hole correlation in perturbation theory,
and it becomes an arbitrarily small perturbation for an ar-
bitrarily small QD. In general, the inclusion of the
Coulomb interaction leads to a small renormalization of
the oscillator strengths and to small red shifts of the vari-
ous transitions (see below). Obviously, as one decreases
the size of a crystallite from L »ao to L «ao, the
lowest bulk exciton transition changes continuously into
the lowest QD transition. Simultaneously, oscillatory
structures associated with the higher QD states appear.

The necessary criteria for QD's with the restrictions re-
quired by our theory are likely to be satisfied by the III-V
compounds, which posses small bulk band gaps Eg and
hence small electron and hole effective masses, m, and
m~. Excitons in these compounds are genuine Wannier
excitons, i.e., they are strongly delocalized and almost hy-
drogenic. It is thus easy to achieve a QD size L much
smaller then the bulk exciton Bohr radius ao, which can
be as large as several hundred A, without having to make
the QD so small that it is no longer a crystal. Under this
condition, both the electrons and the holes are readily size
quantized, the electron confinement energy -fi /(2m, L )

being larger than the hole confinement energy
-fi /(2mi, L ), since usually m, «mi, . We will give cal-
culations for two representative III-V materials, GaAs
and InSb, below.

There have already been measurements of the optical
properties of very small semiconductor structures. '' '"
In particular, the overall blue shift of the absorption spec-
trum has been clearly identified. However, these investi-
gations have concentrated so far on CuC1, CuBr, and
some II-VI compounds that do not possess strongly de-
localized excitons. Consequently, the limit L «ao has
not yet been reached and different forms of size quantiza-
tion have been observed, such as size-quantized excitons
and size-quantized electrons only. Also, the strong in-
crease in oscillator strength was partly spoiled by a large
inhomogeneous broadening resulting from inhomo-
geneities in the size and shape of the structures.

One further phenomenon worth mentioning briefly here
in connection with linear optical properties is the effect of
static electric fields on the spectra. Recent studies of the
excitonic electroabsorption in quantum wells have shown
new effects qualitatively different from those in bulk
semiconductors. ' These effects have been successfully
explained as a quantum-confined Stark effect. Similar ef-
fects are expected in QD. In particular, a simple model
introduced by us (quantum-confined Franz-Keldysh ef-
fect) applies to QD in the limit L «ao, in which the
Coulomb interaction is negligible. A homogeneous elec-
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tric field will give rise to new transitions, and the envelope
of ImY will rapidly approach the bulk Franz-Keldysh
behavior ' when the potential drop across the QD be-

comes larger than the confinement energy. Details of
these electric field effects will be given elsewhere.

C. Phonon broadening of optical spectra

The discussion so far has concentrated only on the
weights and positions of the optical transitions. We will
now discuss the broadening mechanisms.

In systems containing a large number of semiconductor
microcrystallites several mechanisms may contribute to
the broadening of optical spectra. Fluctuations of the
crystallite size and shape may lead to an inhomogeneous
broadening, when considering the properties of multiple
QD's, similar to the inhomogeneous broadening in quan-
tum wells due to fluctuations in the layer thickness.
This type of broadening can be controlled by improved fa-
brication, at least in principle, and it shall not concern us
further here; we will consider only those processes that are
intrinsic to the QD and that cannot be avoided by any im-
provement in manufacture. In contrast to the case of a
single quantum well, where fluctuations within a single
layer cause broadening when sampled with a macroscopic
optical beam, there is no such broadening anyway in the
case of a single QD. We shall also neglect the natural
linewidth, even though it will increase with decreasing
QD size, due to the enhancement of the radiative transi-
tion probability under quantum confinement. This is well
justified for the QD sizes under consideration. What
remains to be discussed is the broadening due to the cou-
pling to lattice vibrations. We will show that it is qualita-
tively different from that in the bulk.

The lattice dynamical properties of small QD's are dif-
ferent from those of bulk crystals. With decreasing QD
size, surface modes will appear and ultimately one will re-
cover a discrete vibrational spectrum, similar to that of
molecules. Propagating phonon modes will strictly only
exist if the QD is embedded in a host material with an al-
most identical lattice structure. Since we limit ourselves
to QD with at least —10 atoms, the number of degrees of
freedom is however already huge, and we will model the
relevant vibrational modes by the corresponding (propaga-
ting) bulk modes, i.e., we will neglect any size quantiza-
tion of the phonons. Starting from the bulk, the first sig-
nificant changes in the broadening of optical transitions
occur because the electrons and holes become localized,
and not because the phonons become localized. The
discrete nature of the localized vibrational modes would
not be resolvable in optical spectra except for extremely
small QD's because the energy separation between modes
would be small on the scale of the electronic energy levels;
this follows from the small electron mass/ion mass ratio
since confinement energy is inversely proportional to
mass.

One immediate consequence of the confinement of the
electronic states is the disappearance of the temperature-
dependent broadening mechanism that dominates in
room-temperature quantum wells. ' In this quantum
well mechanism, the exciton once created is rapidly ion-

ized by absorbing an optical phonon to create free elec-
trons and holes. This shortening of the exciton lifetime
results in a simple lifetime broadening of the exciton line.
This mechanism disappears in the QD because there will
not normally be higher electron and/or hole states of the
right energy to act as final states for the phonon absorp-
tion process. Only when the separation between the quan-
tized electronic states coincides with (multiples ofl the op-
tical phonon energy will this mechanism be possible. In
compensation, however, other mechanisms become
stronger as we make the QD smaller, in particular, the
coupling to short-wavelength phonons. This increased
coupling will increase the strength of those processes in
which phonons are absorbed or emitted as part of the ab-
sorption process itself. These processes give rise to pho-
non sidebands. Furthermore, the phonon sidebands may
become sharper because in a QD there is no motional
reduction of the phonon sidebands in contrast to bulk ma-
terials.

Phonon sidebands exist for both optical and acoustic
phonons. In the case of optical phonons, they result in
"replicas" of the zero-phonon absorption transition spaced
by one optical phonon energy. This in itself might not be
too injurious to the nonlinear optical properties, which are
interesting in the vicinity of any narrow resonance, as
long as the optical absorption strength was not distributed

among too many such sidebands. The case of acoustic
phonon sidebands is similar in principle, but there is a
quasicontinuum of possible phonon energies from essen-
tially zero up, and hence all the phonon sidebands tend to
overlap to give a line broadening and possibly a signifi-
cant line shift. This line broadening mechanism will be
the significant one in our case, although we will consider
all phonon sidebands below.

In what follows, we will consider the lowest electron-
hole pair state only. We shall refer to it as an exciton,
even though its spatial extent is determined by the quan-
tum confinement, and not by the Coulomb interaction.
Including terms of order L. ', the exciton has an energy

y d y'
eo r —r'

=0 e /eoL (12)

is the Coulomb integral, P(r) being the ground-state en-
velope function. If the electron and hole confinement en-
ergies are much larger than both the optical phonon ener-
gy and the Debye energy, we may safely neglect the mix-
ing of different states by the phonons. The problems then
reduces to the familiar problem of a localized state cou-
pled to lattice vibrations, ' and the Hamiltonian can be
written

0= gE cycle+ gA'co„q(b„qb„q+ —, )

n, q

g cycle(M„qb„q+H. c.),
A. , n, q

(13)

E =F., +EI, —U,
where E, and E~ are the electron and hole ground-state
energies and
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where

M„q ——(M'„q —M„"q) f d r e'q'I P(r)
I

(14)

and

g„q ——[ exp(A'cu„q/ke T) —1] (17)

The derivation and a detailed discussion of (15) and (16)
can be found in Ref. 31.

It is useful to split F(t) in a part Fo(t) due to the non-
polar coupling to optical phonons (the polar coupling be-

ing zero as discussed above) and a part F„(t) due to the
coupling to acoustic phonons. Within the Einstein model,
optical phonons with frequency coo give rise to a "line
shape" (i.e., a set of phonon sidebands or satellites) of the
form

Here, A, denotes the four degenerate exciton states (three
triplet and one singlet) and n the various phonon modes.
M'„q (M"„q) is the conduction (valence) -electron —phonon
matrix element in the bulk.

In the bulk, the broadening of Wannier exciton lines is
mainly determined by the polar coupling of the electron
and hole to optical phonons. The nonpolar coupling of
the hole to optical phonons and the piezoelectric and de-
formation potential coupling of both the electron and the
hole to acoustic phonons are usually not very important.
This is because most materials are only weakly piezoelec-
tric and the large spatial extent of Wannier excitons aver-
ages out short-range potential fluctuations.

The situation in QD is completely different. Due to the
local charge neutrality of the QD exciton there is no polar
coupling of the exciton to optical phonons (for infinite
barriers). The matrix element (14) is identical to zero; the
"polaron clouds" of the electron and hole exactly cancel
each other. This decreasing polar coupling of the exciton
to optical phonons is however accompanied by an increas-
ing coupling to short-wavelength phonons, due to the de-
crease of the spatial extent of the exciton with decreasing
crystallite size. This tendency towards increased coupling
is immediately apparent from the integral in (14), which is
essentially a Fourier transform of

I
P(r) I; as

I
P(r)

I

be-

comes more concentrated in real space, as by quantum
confinement, the integral becomes larger for large q. (For
extended states, this same integral reduces to momentum
conservation). The actual volume scaling of the coupling
to short-wavelength phonons depends also on the q
dependence of M'„q —M'„q. In the simplest case of a
short-range coupling Mo ——Mo —Mo to Einstein phonons
with frequency coo, the dimensionless coupling strength
S= g I

Mo /(%coo) (see below) varies like

J d r
I
P(r)

I

—1/V for a QD and —I/ao for a bulk ex-

citon. Therefore, it is enhanced by a factor ao/V under
quantum confinement. Any real situation, such as cou-

pling to acoustic phonons, will be more complicated than
this, but the net result will be an increased coupling to
short-wavelength phonons as the QD becomes smaller.

The Hamiltonian (13) ("independent boson model" ) can
be diagonalized exactly. The problem is equivalent to that
of displaced harmonic oscillators. Correspondingly, the
imaginary part of the optical susceptibility is determined

by the overlap of the unperturbed and displaced oscillator
states. The result has the well-known form

1/2to+ &

V 1=—oo Ro

&&ti [2S[go(go+1)]'"I

X5(E E„+S~— —
o lficuo),

(18)

where S= g IMo /(A'coo)
I

is the Huang-Rhys param-
eter and I~ are the Bessel functions of the second kind.
Equation (18) is a series of 6 functions, spaced ~o apart.
The coefficients of the delta functions correspond to the
probability that I phonons are created ( l )0) or destroyed
(l &0) during the optical transition. At zero temperature
(I )0) this probability follows a Poisson distribution
S'e /1! and S can be identified with the average number
of phonons emitted. For large S&~1 the Poisson distri-
bution becomes a Gaussian, centered at l =S. The impor-
tant III-V compounds such as GaAs are however weak
coupling materials (S &0. 1 for QD larger than 50 A) and
hence most of the spectral weight (a fraction e ) will be
in the zero-phonon line which is situated at E„—Shcuo,
where Shcoo is the lattice relaxation energy.

The general behavior of Img, including now the acous-
tic phonons, can be obtained by convolving (18) with the—F„(t)
Fourier transform of e " . This leads to a shift and a
broadening of all optical phonon satellites because of the
acoustic phonons. The individual spectral weights of the
optical phonon sidebands do not however change. In
weakly piezoelectric crystals and at zero temperature, the
piezoelectric coupling changes the 5 functions in (18) into
infrared power-law singularities. This is because the aver-
age number of piezoelectric phonons created during the
optical transition diverges. At low temperatures, each
singularity will be smeared over a width -Ok&T, where
e=e, —e. is the dimensionless piezoelectric coupling
constant. Again, this coupling constant is usually small
(0&0.1). For weak exciton-phonon coupling materials,
we may thus conclude that the low-temperature exciton
absorption spectrum in QD is dominated by the zero-
(optical) phonon line. Its low-energy tail will be more or
less exponential, whereas its central part will be an asym-
metric Lorentzian whose width increases with tempera-
ture. The same conclusion holds for the emission spec-
trum which is just the mirror image of the absorption
spectrum about the zero-phonon line. Also, Stokes's shift

+ oo i% (F—F )t —F(t)
Imp = dte

2~ VA
(15)

where

+g„q[1—exp(ice„qt)] I

2

+(r)= ——g
n, q nq

IM„„I'
, [ (g„„+1 )[1—exp( i ~„qt )]-

nq I ~nq I



35 THEORY OF THE LINEAR AND NONLINEAR OPTICAL. . . 8119

between emission and absorption due to phonons will be
small.

With increasing temperature the relative weight of the
zero- (optical) phonon line decreases and the spectrum
broadens until the sidebands are completely smeared.
However, in the case of GaAs, even at room temperature
the majority of the spectral weight will still be in the
zero-optical phonon line. We estimate that, for a 50-A
GaAs QD, the room-temperature exciton linewidth due to
phonons will not be very different from that in the bulk;
much the same can be said for the polaron shift. The po-
lar coupling to optical phonons and the lifetime broaden-
ing by optical phonon ionization will be essentially absent,
but there will now be the enhanced coupling of the exciton
to short-wavelength phonons under quantum confinement
as discussed above. We may thus reasonably hope to con-
tinue the process already noted for quantum wells where
the quantum confinement increases the strength of the ex-
citon resonance without substantially increasing the pho-
non broadening. At low temperatures, the increased cou-
pling to short-wavelength phonons will increase the
linewidth compared to the bulk, but relatively narrow
linewidths are predicted by our estimates. Hence we can
conclude that over a useful range of sizes in weak phonon
coupling materials such as III-V's, down to quite small
QD the intrinsic phonon broadening will not preclude
narrow lines for the discrete QD transitions.

In all QD studied so far, the exciton absorption
linewidth was mainly determined by large fluctuations in
the QD size, and not by the coupling to phonons. This
holds both for the colloidal suspensions of semiconduc-
tors ' and for the small semiconductor particles crystal-
lized in glass matrices. ' '" Optical emission was mainly
from defect states and thus very broad and red shifted,
due to the strong coupling of these states to lattice vibra-
tions. Fast relaxation into such states, which are due to
surface imperfections, will also give rise to lifetime
broadening at low temperatures.

D. Illustrative examples

Although the precise values of the broadening are un-
certain, we will give illustrative calculations of the linear
susceptibility near a transition in small QD's. This will
show explicitly the large absorption and refractive index
changes and the distortion of absorption lines for strong
resonances (as seen in absorption coefficient), and will
provide example numbers for the nonlinear properties dis-
cussed below.

We give two examples, one for GaAs and one for InSb.
In both cases we calculate only the lowest transition, using
(8) to calculate the area of the 5 function. For

~
p,„~ we

perform the usual averaging over polarization directions
(yielding a factor of —, ), so that

~ p,„~ ~mr, P . We use

published values for the matrix elements I', neglecting
any k dependence. This may not be a very good approxi-
rnation because of the strong confinement we will use, but
it will give a quantitative feel for the magnitude of the ef-
fects.

We assume that the absorption line (as seen in the
imaginary part of the dielectric constant eq) is Lorentzian

and that all the absorption is in the zero- (optical) phonon
line as discussed above. The effects of all the other transi-
tions are lumped together into background dielectric con-
stants e, which are taken to be 12 and 16, respectively,
for GaAs and InSb. In the vicinity of the resonance the
dielectric constant e=e~+ie2 may therefore be written as

e =e„+P(6+i ) /( I +6'),
where 6 is the normalized detuning

(19)

with Ace being the photon energy E, AA being the lowest
transition energy E, and AI"„being the broadening.
P=4rrC/AI Vis chosen to give the Lorentzian for ez the
same area as that of the 5 function from (8).

The GaAs QD is a 56-A diameter sphere, whereas the
InSb QD is 260 A in diameter. The resulting quantum
shifts of the first transition are difficult to estimate accu-
rately. In the case of GaAs, the shift will be comparable
to the widths of the relevant conduction and valence
bands, and the first quantum dot transition may include a
significant fraction of the oscillator strength of these
bands. In the case of InSb the shift is comparable to the
band-gap energy. We have used estimated approximate
values for the lowest transition energies of -2. 1 eV and
0.43 eV for the GaAs and InSb spheres respectively. For
the GaAs QD, we have chosen a linewidth of 0.5 meV.
This is larger than the homogeneous linewidth (0.2 meV)
measured for the GaAs bulk exciton at low temperature, '
and is considerably larger than our estimate of the
theoretical limit of QD phonon broadening at low tem-
perature. For the InSb QD, bulk exciton linewidths are
difficult to estimate because of the extremely low exciton
binding energy. The band edge itself is known to be ex-
tremely abrupt, falling three decades in —3 meV at low
temperature. The size of the InSb QD here is so large
that the broadening from increased coupling to short-
wavelength phonons is very small. We use a value of 0.1

meV for illustration. In both cases therefore we have
chosen linewidths larger than the bulk and our low-
temperature QD estimates, though still small compared to
those likely to be encountered using present QD fabrica-
tion techniques, at least for multiple dots. The resulting
calculations are shown in Fig. 1 (GaAs) and Fig. 2 (InSb).
Refractive index n and absorption coefficient e are de-
duced from the complex dielectric constant e in the usual
manner, using n —~ =e&, 2n~=ez, and &x=2m~/c.2 2=

These calculations show several interesting features.
First, the absolute strength of the resonance is indeed
large compared to typical absorption and refraction
behavior in the bulk materials. Second, the absorption
strength is now so large that the refractive index changes
significantly in the vicinity of the resonance, and hence
the absorption coefficient is now no longer a symmetrical
line. For the same reason, for the linewidths in these cal-
culations, e~ also goes negative. Increasing the linewidth
or the size of the QD would progressively eliminate both
of these phenomena. It is also interesting to note the con-
trast between the two materials. Because of the factor of
F in the denominator of (9), the narrow gap QD can be a
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much larger volume for comparable strengths of the reso-
nance as seen in the dielectric constants and refractive in-
dex; the absorption coefficient contains an implicit factor
E (i.e., co) that makes it relatively smaller for lower pho-
ton energies. Further decreasing the QD size in the nar-
row band-gap InSb case will increase the area under the
resonance, but this is partly offset in the dielectric
constants by the increased confinement energy which
makes the factor E in (9) larger again. In physically
small quantum dots (e.g., &50 A), made using III-V
direct narrow band-gap materials, the band-gap energy of
the material from which the dot is formed will have rela-
tively little influence on the transition energy because the
k value is so high that the behavior very near to zone
center is no longer relevant.

III. NONLINEAR ABSORPTION AND REFRACTION

—2.5

PHOTON ENERGY —TRANSITiON ENERGY (meV)

InSb

20

10

(c)

20

0
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I I I I
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FIG. 2. As Fig. 1 but for an InSb sphere 260 A in diameter,
with transition energy of 0.43 eV, 0.1 rneV linewidth, and back-
ground dielectric constant e = 16.

FIG. 1. Linear optical properties near the first quantum dot
0

transition (estimated to be at -2. 1 eV) as seen inside a 56-A
GaAs sphere, assuming a broadening of 0.5 meV, and a back-
ground dielectric constant e„=12. (a) Imaginary part, e&, of the
dielectric constant; (b) absorption coefficient, a; (c) real part, e&,

of the dielectric constant; (d) refractive index, n.

%'hen electron-hole pairs are created in a semiconduc-
tor by interband optical absorption, they influence the ab-
sorption spectrum. Most obviously, they fill states,
preventing further absorption into these states by Pauli
exclusion and hence saturating the absorption. The pairs
usually also modify the nature of the electronic states be-
cause of Coulomb or exchange interactions. In bulk semi-
conductors, both of these interactions strongly modify the
exciton absorption spectrum. ' In quantum wells, the
Coulomb interaction has relatively little effect on the exci-
tons, although exchange is still significant. "' This is be-
cause of the reduced dimensionality and shows up as
unusual transient behavior ' and as a blue shift of exci-
tons at low temperatures. ' Below, we argue that in
QD's only the state filling is important for absorption sa-
turation of the lowest transition, just as in two-level sys-
tems.

Screening of the Coulomb interaction by charged parti-
cles requires that the screening particles undergo transi-
tions, usually intraband, corresponding to a slight re-
arrangement in real space. In a QD, the allowed states are
separated by large energies so that such transitions are dif-
ficult and screening is strongly inhibited. For the same
reason, it is also difficult to polarize the exciton.
Coulomb effects on the exciton wave function are thus
suppressed by the quantum confinement, in much the
same way as the effects of polar optical phonons on the
excitons. If there are electrons and holes in levels in the
QD, there will however be Coulomb interaction between
the resulting net charge density and the net charge density
of any created electron-hole pair. This will in principle
influence the energy of the created pair. This effect is
minimal however for much the same reasons that the ef-
fects of polar optical phonons are reduced. Allowed tran-
sitions in the QD spectrum correspond to the creation of
electrons and holes in states of the same quantum num-
bers with substantially identical wave functions and hence
substantially zero net charge density. In the ideal case of
perfect confinement, the wave functions are exactly equal
in the effective mass envelope approximation. This insen-
sitivity of the transition energies to charge density is in-
dependent of whether the existing particles are equal num-
bers of electrons and holes or not, and regardless of
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whether or not existing electrons and holes are identically
distributed between the allowed quantum states.

In general, it is possible to have two electrons or holes
in any given energy level, because the individual electron
and hole states are spin degenerate. This means however
that there is no exchange interaction between the excited
particles in a given energy level, because they have dif-
ferent spins. Hence there are identically no exchange ef-
fects if we only create electrons and holes in a given con-
duction level and a given hole level, respectively. This
will be the case for absorption on the lowest QD transi-
tion. There will be exchange interactions with electrons
and holes in other levels in the QD, but in the case of sa-
turation of the lowest QD transition in an otherwise unex-
cited QD, there will be no populations in these other lev-
els. Only if the temperature becomes very high will any
other levels become occupied.

Because exchange and Coulomb effects are rigorously
negligible, the absorption saturation of the lowest transi-
tion in the QD can be treated like a pair of two-level sys-
tems, one for each spin. Hence the absorption saturates as

f3(5+i )
E =E~+ 1+6'+I/I, (20)

where we define the "intensity" I=EO with Eo being the
peak amplitude of the oscillating electric field inside the
QD. The saturation intensity is I, =alii(/3rV), where r is
the recombination time. We have not attempted to speci-
fy a value for z since this lifetime will be very dependent
on fabrication. It should be noted, however, that this life-
time has no relation to the broadening calculated above.
The fundamental phonon broadening discussed above is
not a lifetime broadening. Lifetime broadening from
recombination will only become important if the lifetime
becomes very short (e.g. , & 1 ps for 1 meV linewidth). It
is also important to note that the intensities defined here
are squared field amplitudes and do not exactly represent
the true intensity, i.e., the rate of energy flow across a unit
area in a unit time. The problem with the true intensity is
that it involves the energy velocity, and this varies greatly
in the vicinity of a strong resonance. The squared field
amplitudes are rigorously correct regardless of energy
velocity dispersion, and are a suitable form for the discus-
sion of local fields below. The saturation in terms of the
external true intensity outside of and far from the QD is
straightforward because there the dispersion is negligible.

When the optical polarization is such that transitions
are allowed for both spins, complete saturation of this ab-
sorption will occur when there is one excited electron-hole
pair per QD (two pairs is the maximum possible, and this
corresponds to inversion). From this we may deduce the
absorbed energy density required to saturate the transi-
tion, namely, one photon energy per QD.

The magnitude of the change in absorption per ab-
sorbed photon per unit volume is not significantly dif-
ferent in the QD from that of quantum well or bulk exci-
tons for a given linewidth. Although the absorption in
the QD is larger, the volume in which one photon must be
absorbed for saturation is correspondingly smaller. The
real advantage of the QD is perhaps that the absolute
changes in absorption and consequently in the refractive

index can be much larger before the transition saturates.
This is particularly important for nonlinear refractive ef-
fects, where in bulk and quantum well material the readily
saturable excitonic nonlinear absorption often completely
saturates before enough index change or absorption
change takes place to make a given device switch. Furth-
ermore, this theory predicts that relatively complete sa-
turation of absorption should be possible in the QD, be-
cause there are no competing mechanisms such as band-
gap renormalization that inhibit deep absorption satura-
tion in bulk and quantum well materials.

IV. LOCAL-FIELD EFFECTS

When fabricated, the QD's will be most likely embed-
ded in a matrix or deposited on a substrate; thus they will
be surrounded by a medium of different (and usually
smaller) dielectric constant. In this case in addition to the
electronic confinement discussed in the previous sections
local-field effects due to the dielectric confinement will
strongly influence the optical properties of the QD. Even
in the case where the surrounding medium has a similar
background dielectric constant, the dielectric constant in
the QD can be very different in the vicinity of a reso-
nance, and local-field effects cannot be neglected. The
consequences of such local-field effects with semiconduc-
tor microcrystallites have been briefly discussed by some
of us before, with intrinsic optical bistability being a
possible consequence. Similar intrinsic bistability result-
ing from local-field effects in small particles has also re-
cently been discussed by Leung. ' In this section we dis-
cuss such effects specifically in the context of small QD's.

The field inside a particle small compared to the wave-
length is different from the field in the surrounding medi-
um. ' In an irregularly shaped particle the field can be
highly nonuniform and is concentrated in the regions of
large curvature. This is of course the well-known mecha-
nism utilized in "lightning rods. " The concentration of
the field inside the particle can produce major changes in
the optical response, ' it is responsible for the unusual prop-
erties of metal island films, as well as for surface
enhanced Rarnan scattering and for the large nonlineari-
ties of metal and semiconductor doped glasses. " In the
most general case there is no simple analytical form to
describe the distribution of the field inside the particle.
However for some simple geometrical shapes, such as el-
lipsoids or spheres, the field inside the particle is uniform
and proportional to the field outside. It is then possible to
define a local-field factor f, such that E;„=fE,„,. The
local-field factor depends on the shape of the particle and
on the dielectric constant of the particle e = e &+i e2 rela-
tive to that of the surrounding medium. For simplicity
we assume that the particles are in vacuum. However if
the medium surrounding the particle is not the vacuum,
then all the formulas still apply provided that the dielec-
tric constant is normalized to that of this surrounding
matrix. In the case of the simple shapes for which the
field in the particle is uniform, it turns out that the shape
dependence can be characterized by a single parameter,
the depolarization factor A . Then f= [ 1+A ( e —1)]
and the intensity inside the particle is I;„=FI,„, with
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(21)

In general the real part of the dielectric constant is larger
than 1, so that F & 1 and the field intensity inside the par-
ticle is smaller than outside. However the field intensity
inside the particle can become very large in a region of
anomalous dispersion for large negative e] and small e2.

We now consider the dispersion of local-field and inten-
sity factors due to the particular dielectric constant of the
QD as discussed in the preceding sections. At first, we
will neglect the saturation processes to get a better physi-
cal insight into the mechanisms. For the two-level-
system-like behavior as in (19), the spectral dependence of
F can be expressed in a universal form as a function of
the two reduced parameters, a characteristic detuning
50 ———P/[2(e —1+3 ')] that measures the ratio of the
resonant to the nonresonant oscillator strengths (note that
with our convention 60 is negative) and F, the asymptot-
ic value of F far from resonance, i.e., F=F
=1/[A(e —1+3 ')] . Hence we obtain

1+6" 1+(6—260)'
(22)

This line shape is the well-known Fano-interference pro-
file; it is plotted in Fig. 3 and deserves several com-
ments. Far from resonance F approaches F & 1. The
field inside the particle is smaller than outside and the ap-
parent dielectric constant is reduced. In a small range
around the resonance very large changes occur. F
presents two extrema F+ for 5+ ——50+(1+60)'~ symme-
trically spaced around 6O, the detuning for which the
asymptote is crossed. The magnitude of the two extrerna
are related by F+F =F . Thus for small negative
values of 6 around 6 the field is concentrated inside the
particle, whereas in the vicinity of 6+ the field is expelled
from the particle. If the resonant contribution is large
compared to the constant background then the minimum
of F occurs almost at resonance 6+ -0 and F+ -0,
whereas the maximum occurs at 6 -25O and F
In this case all the extremely steep variations of F occur
in a very small range of frequencies close to the resonance;
on one side the field is very strongly concentrated in the
particle and on the other side the field hardly penetrates
into the particle.

It is very clear from this discussion that the local-field
effects will enhance any sensitivity of the dielectric con-
stant to the applied field. In particular, because of satura-
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FIG. 3. Dispersion of the local intensity factor for a dielec-
tric constant given by (19j. In the reduced units this lineshape is
universal and corresponds to the Fano-interference profile.

tion effects the dielectric constant inside the QD depends
on the intensity, and hence any change in the intensity in-
cident on the QD will modify the local-field factor; this in
turn will change the intensity in the particle, which will
change the dielectric constant and so on. This establishes
an intrinsic feedback mechanism that, depending on the
value of the detuning, can be positive or negative. Hence
regions of intrinsic optical bistability can occur, ' in-
volving a single QD and of course requiring no external
feedback.

To describe this mechanism correctly, we need to use a
self-consistent description of local-field effects and satura-
tion. When an intensity I,„, is applied to a saturable QD,
the dielectric constant inside the QD including local-field
effects is given using (20) by

e=e +P(6+i )/[1+6 +FJ], (23)

where I=I,„,/I, is the incident (field-amplitude-squared)
intensity normalized to the saturation intensity. Because
in (23) the real and imaginary parts of e' are related by
e& ——e +@26, an analytical solution of this equation can
be found in the form of the cubic relation

1+5/50 ~ p2 2 J+p 5/5O
Ep —p E2+ 2

'+
1+5' 46,'(1+6') (1+6')'

p
450( 1+6') (24a)

This equation can be cast into a slightly different form
that gives a better insight into the underlying physics.
Remembering that for J=0 E p=P2/(1+5 ) and that the
saturation intensity for a detuning 6 is I, (6)=(1+5 )I„
we can rewrite (24a) as

~2O 62

E'2

FIoUt

I, (5)
(24b)

which expresses the fact that at a given frequency the rel-
ative change of the imaginary part of the dielectric con-
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attained in GaAs and other, narrower-gap semiconduc-
tors. It will be more difficult to attain in wider-gap ma-
terials because the bulk exciton is so small; the necessary
very small crystallite might be even more difficult to fa-
bricate, and it might have to contain so few atoms that it
might not behave like a crystalline semiconductor. It be-
comes easier to achieve this limit for narrower band-gap
materials because larger crystallite sizes can be used.

In the small QD limit, the absorption saturation of the
lowest interband transition will take on a very simple
form, corresponding to the saturation of a two-level sys-
tem. There will be no band-gap renormalization. Hence
the saturation may be relatively complete. The absorbed
energy density for a given change of absorption will not
be better than bulk or quantum well systems with similar
broadenings, but the QD has the substantial advantage
that the available change in absorption and/or index could
be very large. When the effects of local fields are con-
sidered, it is found that these could have substantial

consequences for the nonlinear properties. Under relative-
ly extreme conditions, bistability may be possible due to
the feedback of the changes in dielectric constant from
absorption saturation on the local field factor. This serves
to demonstrate that local field effects can be very impor-
tant in describing the QD optical properties.

All of the discussion in this paper concerns the optical
properties of a perfect QD, because this sets the limit on
what we may hope to achieve. Whether such a QD can be
made remains to be seen, and this is the subject of much
research. This discussion shows however that, in princi-
ple, it is possible to make artificial materials with very
desirable optical properties, and hopefully this will stimu-
late further research in this area.
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