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One of the most interesting questions in modern transport theory has been and still is the follow-
ing: What is the influence of dimensionality (including fractal) on the carrier and exciton dynamics
and decay kinetics in quasiordered and disordered systems. An enormous amount of theoretical
work has been done in this field, extended now to include direct computer simulations. Experimen-
tal data have been more difficult to find and are consequently sparse and not always convincing.
Certain types of organic compounds and, in particular polydiacetylenes, constitute unique classes of
nearly one-dimensional systems. Studies including photoconductive decays have been extended to
include picosecond luminescence decay on PDA-10H [poly(diacetylene-1-hydroxy-hexadyine-diol)],
a continuous highly oriented fibrous polymer. The decay laws are compared with exact results in
dimensionalities d=1 and near 1. The present data together with the recent work on doped
tetramethylammonium manganese trichloride may be evidence for the first time of one-dimensional

exciton motion.

I. INTRODUCTION

Diffusion, drift, and trapping of excitations and car-
riers in quasi-one-dimensional (Q1D) systems is a problem
of great current experimental and theoretical interest with
a wide range of applications. Applications include exci-
ton diffusion, nuclear-spin diffusion, and relaxation in
Q1D systems, superionic conductors, and polymeric
chains. Recent theoretical work has led to the recognition
that the exact time dependence of the survival probability
of a random walker depends on the system parameters,
notably its dimensionality, and in general, displays nonex-
ponential kinetics.!™* That this is indeed the case has
been observed in low-dimensional materials where devia-
tion from a pure single exponential is most significant.’
In three dimensions (3D) and for the deep-trapping model
on a regular network, the deviations from single exponen-
tiality is probably outside experimental detectability.®

The field effect on the trapping of charge carriers is
negligible in 3D at fields of practical interest. This effect
is significant in 1D. Constrained to move along 1D, car-
riers move by diffusion or drift in an applied electric field
between sites on the chain separated by a distance a, with
a mean jump rate W, until they encounter deep traps. In
real solids true one-dimensionality is not achievable. In-
stead one has to look for highly anisotropic systems in or-
der to to observe some of the above effects. Here the class
of materials known as the polydiacetylenes [hereafter re-
ferred to as PDA’s] are unique in several respects.””8 In
the “perfect” crystalline forms PDA-TS (poly
[diacetylene-bis(toluenesulfonate)]) and PDA-DCH
(poly[1,6-di(N-carbazolyl)-2,4-hexadyne]), these materials
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consist of polymeric 7-conjugated chains separated from
each other by distances of up to ~0.7 nm (backbone to
backbone), while along the chain the 7-bond separation is
as short as ~0.12 nm. Motion of charge carriers or exci-
tons is mainly along the chain direction, with a ratio of
interchain to intrachain overlap integral of = orbitals
shown by conductivity experiments®!© to be at least 10°,
but which is in reality most probably in excess of 10°.
The reason for this is that there is good reason to believe
that the “excitations” form polaronic distortions (polarons
and exciton-polarons).!! The intrachain to interchain
hopping frequency anisotropy of such self-localized exci-
tations can therefore be considerably less than the esti-
mate based on simple 7-orbital overlap calculations.
PDA'’s in the crystalline and film forms represent Q1D
semiconductors. Of course, a realistic way of viewing the
skeletal nature of the PDA’s is one that randomly con-
tains defects which act as traps (or antitraps) with some
probability x.!? Total annihilation of the charge occurs
when these carriers eventually encounter recombination
centers. Such carriers disappear from the survival frac-
tion of carriers, and therefore, do not contribute to any
externally measured electric current. In practice, carrier
recombination is achieved only when lateral motion of
carriers trapped within the Coulomb capture radius
occurs; otherwise, the carrier will remain trapped.'?
Depending on the time and temperature domain, an or-
dinary trap may be indistinguishable from a recombina-
tion center. It is, therefore, appropriate to recognize two
categories of defects, namely (a) traps with particle con-
servation (release) and (b) traps with particle annihilation
(infinitely deep traps) occuring with concentration x. Re-
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cent investigations of charge-carrier transport in PDA’s
(Refs. 14 and 15) have shown that the photocurrent decay
can be described extremely well by an exp(—bt'73) law in
accordance with the theory of deep trapping in 1D sys-
tems, the theory described in Ref. 3—5 will be, hereafter,
referred to as the (MPW) Movaghar-Pohlmann-Wiirtz
theory. Both qualitative and quantitative information on
the charge-carrier motion and the material itself has been
derived through electric field and temperature studies.'®

II. THE SURVIVAL FRACTION
IN A ONE-DIMENSIONAL SYSTEM

The problem of diffusion and trapping in one-
dimensional systems with infinitely deep traps has re-
ceived considerable attention in the scientific literature
both past and present, see list in Ref. 17. An exact analyt-
ic solution for the electric field and time dependence of
the survival fraction in the 1D diffusion problem with
randomly distributed deep traps has been derived by
Movaghar et al.>~> using a simple scattering analogy.
This theory has been critically assessed against three other
well-known approximation methods: the average—t-
matrix analysis (ATA), coherent-potential approximation
(CPA), and the first-passage-time (FPT) approach of
Montroll."'® We shall first simply consider the 1D-exact
case, a theory relevant to PDA’s which are probably the
closest representation of a 1D system.

Diffusive transport in the presence of traps can be de-
rived using the master equation for the excitation density
n;(t) at site i (Refs. 3 and 4)
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where W;; i is the hopping rate between the pair of sites i
and j, §; is the trap rate [ = with probability x, =0
with probability (1—x)], x is the concentration of deep
traps within the system. This equation is exactly solvable
if we simply consider the following. As soon as we speci-
fy an initial site i the first trap on the left at site / and the
first trap on the right at site m, are also specified. The
remaining traps in the chains become irrelevant. This
then becomes a two-trap problem which has been solved
exactly by Movaghar er al.>~° by configurationally
averaging over all possible positions of / and m. The as-
sumptions required here are that W;; connects nearest
neighbors and the initial site i is definitely not a trap.

The survival fraction n(#,m) in the influence of a bias

field 17 was also investigated for all times in the trap con-

centration range of physical interest (x < 1072), 7 is a di-
mensionless field parameter as defined by
(1—m)/(14+n)=exp(—eEa /kT) , (2.2)

where e, E, and a are the electric charge, electric field
strength, and the lattice constant, respectively. For small
fields (1 << 1) this reduces to n=eEa /2kT. The derived
(exact) equation, in the Laplace frequency domain, can be
represented by

n(pm)=1/p +2x* /p?) fowdge‘xg{[cosh(*qg)—cosh(y§)]/sinh(y§)] , 2.3)

where ¥ =[(p/W)+n1*]"/? and W is the symmetry zero- -field jump rate. After some long and tedious algebraic manipu-

lations involved in inverting Eq. (2.3), Movaghar et al.*

n(t,m) 4x2f dEe—*¢

n=1

For 1 < x, Eq. (2.4) reduces to

2 [1—(—1)"cosh(n&)|[72n 2 /(n2m* +2E%)?]

showed that

exp[ —(n?m?/E*+n?)t] . (2.4)

As(l—n/x)

n(tm=4/m)e "™ [ds -

1—e

Se—-frZ:cth/s2 e =S
[14(sm/xm)?]

which in the limit of zero-field bias (17 =0) becomes
n(t)=(4/m%) fowds s cosh(s)
2x Wt /s?) . (2.6)

In the asymptotic long-time behavior of the decay form
the survival fraction for 7=0 and x << 1 has been shown
to be’~*

X exp(—
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t)~1
n(t)~16 3

exp (2.7)

4
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(2.5)

e~s(1+n/x)
(1+e—s(1+‘fl/x)) ?

III. EXPERIMENTAL VERIFICATIONS
OF THE MPW THEORY:
PHOTOCONDUCTION MEASUREMENTS

The survival fraction of random walkers in 1D n(z,77),
represented by Eq. (2.4) can be divided into two regimes:
n<x and 17 >x. In the former case, it is the diffusion of
carriers which dominates their recombination whereas for
the latter case, it is the drift of the carriers that dom-
inates. For 0 <7 <x, the survival fraction n,(z,77) can be
represented by Eq. (2.5). For 7> x, the survival fraction
n,(t,m) is given by
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ny(t,)=n(t,n)+L(t,m), (3.1)
where
L (t,’r])=8x2(77—x)2e"’2W’

o (n—}-%)eW'[“’_x'/z"*'l]

(3.2)
,20 (2nm+x)*[2(n + Dy —x]?

The asymptotic long-time forms of n; and n, are of the
following form:
(a) For ny,

n(t,n)~ exp[—3(t/'rl)1/3]exp[—t/'rz]

ast—oo withnp<x, (3.3)

where
= (3.4)
T(x —n)W
and
1
Ty= . 3.5
2 W (3.5)
At some critical time (transition period) given by
vV _
t, = av27 (x —m) (3.6)
2 773 w

an equal contribution from both exponential terms in Eq.
(3.3) is expected. For short and intermediate times (¢ < ¢.)
we should obtain an exp[ —3(¢/7;)!/3] law and for long
times (7> 1,) an exponential law with 7, « 1/E? is expect-
ed.

(b) For n,,
Y
nz(t,77)~i‘(—n#)2 exp[ —(2yx —x?)Wt]
(2n—x)

ast—oco Withyp>>x .  (3.7)

This implies a time constant 7« 1/E.

The first observation of electric-field-induced trapping
effects was made by Haarer and Méhwald!® on a material
which was however only moderately anisotropic compared
to the PDA’s. More recent experimental observations car-
ried out by Hunt et al.!* on PDA-10H (polydiacetylene-
1-hydroxy-hexadyine-diol) and by Seiferheld er al.'> on
PDA-TS bombarded by He" ions in the time range (1-2)
10* s both verified the predictions of the MPW theory; the
two most important striking predictions being (a) for low
fields and intermediate times, the decay
~ exp[ —(t/71)'73], and (b) for low fields and long times,
the decay ~ exp(—t/7,).

IV. LUMINESCENCE STUDIES OF 1D SYSTEMS

A. Introduction

The spatial mobility of excited states (i.e., the radiation-
less transport of excitations) is perhaps the most intrigu-
ing feature to researchers in the field. To understand ex-
citation transport requires a close examination of those

processes which affect the wavelike character of the exci-
tons. In situations in which the exciton transport process-
es and observables relating to it require (do not require)
consideration of probability amplitudes, phase relation-
ships, and interference effects, the exciton is said to be
coherence (incoherent). In the coherent case, the exciton
can be described as a quasiparticle and transport as wave-
like in a manner that closely resembles the description of
a wave packet. Processes such as exciton-impurity
scattering, exciton-defect scattering, and exciton-phonon
scattering can destroy exciton coherence, changing the
mode of transport to incoherent hopping. In real systems,
transport will be mostly of mixed character; coherent and
incoherent transport being the limiting cases. An exciton
may move with a well-defined group velocity for some
distance before losing memory of its velocity (initial state).
The distance traveled is referred to as the ‘“‘coherence
length.” Under such circumstances, at long times, macro-
scopic transport will be diffusive in nature. Transport
will occur as a random walk, but the step size in the walk
will be of the order of the coherence length rather than
the lattice spacing. The larger step size will result in a
greatly increased macroscopic diffusion coefficient.

Studies on strictly- and quasi-1D systems have been pre-
viously made by Fayer et al.?°~% Their approach utilized
the FPT theory mentioned above."'!® Though in general
excellent, the FPT is nevertheless still an approximation
and deviates from the exact behavior in 1D well within
the experimental domain of observation. A detailed
description of the FPT will be given in a later section. We
shall first review very briefly the experimental and
theoretical developments due to Fayer et al. The recently
developed MPW theory® will then be used to formulate a
new theory for exciton transport in strictly 1D, quasi- 1D,
2D and 3D systems. For the latter two dimensions the
theory developed will only be discussed briefly, the model
used is approximate in relation to the present case but ex-
act in the long-time limit. This new theory will be then
compared with the earlier Fayer-Montroll (FM) theory.
Attempts will then be made to fit reported data. And fi-
nally, we shall analyze luminescence from PDA-10H, a
system that is known to display Q1D behavior.

B. Energy migration in strictly- and quasi-1D systems:
FM approach

Attempts to study 1D-exciton systems have been made
in the past on two molecular solid systems: (a) first triplet
(TY) of 1,2,4,5-tetrachlorobenzene?®~?> (TCB), and (b)
first triplet (T'') of 1,4-dibromonaphthalene’® (DBN).

In such systems, the 1D exciton transport is believed to
arise as a consequence of the intermolecular interactions
between molecules arranged along one translational direc-
tion in the crystal, such that, the molecules form linear
chains along which exciton transport can occur. Impuri-
ties, intrinsic scattering species which may be isotopic im-
purities, chemical impurities or lattice defects, are be-
lieved to play a crucial role in the exciton migration in 1D
systems and can be of the following two types.
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(a) Impurity scattering sites—i.e., impurity sites which
have an excited state with higher-energy level than the
corresponding host crystals exciton band. Such impurities
can severely inhibit exciton transport by ‘“caging” a
mobile exciton. In such a case, the exciton can either
bounce back or tunnel through to the adjacent chain or
undergo an intrachain and/or interchain hopping to a dif-
ferent cage.

(b) Impurity trapping sites—i.e., impurity sites which
have an excited-state energy level below that of the corre-
sponding host exciton band. Such impurities also inhibit
exciton transport by localizing, i.e., trapping a mobile ex-
citon.

In either case, the impurity site will exist if the energy
difference S between the impurity site excited-state energy
level and the exciton band center, is large relative to 3, the
intermolecular interaction matrix element, responsible for
on-chain 1D exciton transport, i.e., S>>f8. If S=p, the
impurity level will be amalgamated into the band and will
produce nonlocal scattering.?’

The net result is that independent of the macroscopic
mode transport, impurity scattering sites force exciton
transport in Q1D systems to be macroscopically diffusive.
Thus, exciton migration can be described as a random
walk between linear cages or “supersites” on the lattice of
cage, a ‘“‘superlattice,” when viewed on a time-scale long
relative to the time required to tunnel out of a particular
cage. If the concentration of impurities is such that the
on-chain cage stepping frequency becomes comparable to
the cross-chain frequency, then the exciton transport may
behave as a random walk on a 2D or 3D superlattice.
Multidimensional walks therefore increase the total num-
ber of distinct sites sampled and consequently increase the
ability of an exciton to reach a distant trap site. This has
the effect of dramatically altering the exciton transport.
On encountering cages which have trap sites, *“‘super-
traps,” the exciton will trap on its first visit, even if the
single encounter trapping probability is quite small.

Very recently, 1D exciton transport and trapping kinet-
ics has been reported by Auerbach and McPherson?’ in
doped crystals of (CH3),NMnCl; (TMMC). The lumines-
cence decay curves coupled to a structural analysis have
led the authors to suggest an enormous anisotropy of in-
terchain to intrachain exciton motion of the order of 108,
A model presented by Fayer et al.?® considers the time
evolution of an exciton population ensemble interacting
with dilute scattering and trap impurities in a 1D system.
This model utilizes a Green’s-function formalism for cal-
culating the properties of random walks on lattices of
various dimensionality and configuration developed by
Montroll. This approach is the FPT approach which re-
lies on the number of distinct lattice sites sampled by an
exciton at time ¢, S(¢z). The time-dependent populations
of the band states E(t) and the trap states 7(¢) are
described by the rate equations:

E(t)=—[Kg+K. (D]E(D) , (4.1)
T(t)=—K;T()+ K, (D)E(1) , (4.2)

where Ky, K1, and K (¢) are the decay-rate constant (in-
verse lifetime) for the band states, decay-rate constant for

trap states, and the instantaneous rate of exciton localiza-
tion per unit population, the time-dependent trapping rate
function, the form of which depends on the effective
transport topology. This model does not include thermal-
ly assisted promotion from a localized trap state since
such an effect will be negligible at sufficiently low tem-
peratures.

In general, it turns out that the trapping rate function is
time dependent, and for strictly 1D systems, has the form
(FPT approximation)

K (1)=At"1 4.3)

independent of the microscopic mode of transport.?* The
value of the trapping rate coefficient, 4, does depend on
the mode of transport. It has been shown by Fayer? that,
in the case of dilute concentration of impurities (X), 4 is
proportional to X and the X dependence can be used to as-
sess the transport topology and the cross-chain stepping
frequency. For an exciton system which is strictly 1D in
its transport, the time-dependent exciton and trap popula-
tions have been calculated to be given by

E(1)= exp[ —Kgpt —24t'%], 4.4)
o 12 %
T(t)= —Kpt) | ———
(1)= exp(—Kr1) Ky Ky exp KoK
A
X |erfe |[(Kg—Kp)t]V/2+—F——
erfc |[(Kg 7] (KE—KT)VZ
A
— erfc Ko K7 4.5)

Reasonable agreement between theory and experiment has
been claimed by the authors. We note that their calculat-
ed curve did not involve any adjustable parameters.

An exciton performs a macroscopic random walk
amongst the sites of the superlattice in a system that is
close to but not strictly 1D. Fayer er al. suggest a time-
dependent trapping rate function of the form

K (1)=K; +B;t~ 1?2 (4.6)

for both types of mode transport. The values of the trap-
ping parameters K; and B; depend on all of the physical
parameters of the strictly 1D problem and on the rate and
relative anisotropy of the exciton walk on the 3D superlat-
tice. The time-dependent exciton and trap populations for
Q1D systems can be solved to yield the appropriate rate
equations (see Ref. 23 for details).

C. Exact 1D exciton transport: MPW approach

We now derive the exact 1D decay law for excitons us-
ing the formalism of the MPW theory discussed earlier.
The survival fraction of random walkers in 1D n(7=0,?)
for the case of physical interest (17 <x) can be written as
[refer to Eq. (2.6)]:

8 e sexp(—mx*Wt/s?)
n(t)=— fo ds (o o) .

law from photoconduction experiments is

4.7)

1D-decay
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known to be of the form [refer to Eq. (2.7)]:

E()=n,(ne &, (4.8)
Substituting Eq. (4.8) into Eq. (4.2), we obtain
T(t)= —K;T(t)—e “E'dn,(1)/dt . (4.9)

We can now solve for T'(z) using the appropriate boun-
dary conditions [ 7(0)=0]:

_ d
T(0)=—¢ "7 [ e "‘ di', (4.10)

where B=Kr—Kg. Inserting Eq. (4.7) into Eq. (4.10) and
after some algebraic manipulation it is easy to show that

(B—W /st
T(H)= f ds sll—e ] ,
(e*—e )N (sAKg—Kr)/Wi)+1]
(4.11)
where W, =m*x2W.
Using
Ky 16K
W, AP
where P, =167*x*W /7>,
Kpi—K; 16(Kg—Kyp)
T W, (P
and
o TR
16
we finally obtain
T() —2 A s)yu_e—“’“z), 4.12)

where ¥ =1+s52Z. Equation (4.12) can now be solved nu-
merically.

Figure 1 is a plot of T'(z) versus ¢ and illustrates the ef-
fect of increasing the coefficient (o« P,) of the time-
dependent trapping rate function for exact 1D transport
based on the MPW formalism, on the time-dependent in-
tensity of trap emission following impulse optical excita-
tion of the exciton band. The rate constants for the exci-
ton and trap decay, K and Kr, respectively, are 36 and
27 s~!. As P, is increased, the population maximum
shifts to shorter times and the integrated population of
the trap increases.

D. The survival fraction in dimensions greater than 1:
The first-passage-time approach

One of the most reliable methods to evaluate the sur-
vival probability in an ordered system is the first-
passage-time (FPT) method due to Montroll and
Weiss.""!® This technique applies to the situation of infin-
itely deep traps at low concentrations x. In the FPT one
computes the average number of new sites visited by the
particle in a time ¢, S(z). In Laplace space, this quantity

8107
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FIG. 1.
parameter P,.

1D-exact case—plot of T(z) vs t, effect of varying
(a) P, vs real-time axis; (b) P, vs t' (see the text).

can be evaluated using the local propagator as described in
Ref. 28. The survival fraction n (z) is then given by (cubic
lattice):

ngz(t)= exp[ —xS3(1)] (4.13)
where
V(8/m(Q2W,1)!/? for 1D, (4.142)
Sy(1) = WD e 2D (4.14b)
In(4W,t) ’
6W5t /¢ for 3D . (4.14¢)

¢ is Watson’s number and is given' by ~(0.66)~!, W5 is
the hopping frequency and x is the trap concentration.
For anisotropic lattices in the presence of an electric field
one refers to the work of Alexander er al.?® The FPT
agrees with the mean-field theory (CPA) (Ref. 29) for
small x and d =3. Mean-field theory is more reliable at
high concentrations x >0.1; the FPT is by its very logic a
low-concentration approximation.

The above result [Egs. (4.13) and (4.14)] should now be
compared with the exact asymptotic (z— ) laws valid
for any dimension d including fractal values. The asymp-
totic long-time form of the survival fraction
n(n=0,t— o) of the excitations or carriers, in the pres-
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ence of a small concentration of deep traps (x << 1), is
given by*°

n (1)~ exp[ —(x2% /15)4 2+ y-T as t— oo
(4.15)

where d is the fracton or spectral dimensionality of the
system. It is rather unfortunate that Eq. (4.15) is only
valid under the conditions specified above, i.e., =0 and
In practice, in the relevant time domain of in-
terest, it is difficult to experimentally show the validity of
Eq. (4.15) because of the smallness of the survival fraction
at those times,*! exceptions are d values equal or near to
1.

Computer simulations for the survival fraction in 2D
and 3D have found it extremely difficult to determine
crossover points to the asymptotic forms of Eq. (4.15).
Recent calculations by Havlin ez al.® have shown that the
survival fraction has to be less than ~107!3 in d > 2 be-
fore the asymptotic form of Eq. (4.15) appears. This im-
plies that in the experimentally relevant temporal domain
the FPT is usually valid for higher dimensionalities
(d ~3) and the decay law is well described by a simple ex-
ponential.

t— 0.

> & 4n*T’L, 4L,

n(t,q,L ,L,)= ex
n y n§1m=l (n27r2+772Lf)2 m2m? p

X[1—(—1)"cos(nyL)][1—(1)"] .

The probability of finding a trap-free region of area
L.L,is P(L,,L,) and is of the form

P(Lx,Ly):A(x)e—xLxLye —xLxe —xL,

>

where x is the trap concentration and A4 is chosen so that
P be normalized. Averaging n(t,L,,L,) using Eq. (4.17)
will give us an exp(— At!/?) law for =0 in the long-
time limit. Extensions to higher dimensionality then
trivially follow. Unfortunately we cannot use the above
derivation to estimate the actual times at which crossover
occurs to the asymptotic form because the above model
assumes that the traps are on the total perimeter of the re-
gion alL,+aL,. In reality x should be replaced by some
v(x) where y(x) <<x, but the form, and thus, the asymp-
totic laws are rigorously valid for the true model. This in-
cludes the electric-field dependence. A detailed discussion
of the theory of trapping in the presence of an electric
field in dimensions d >1 will be presented elsewhere.®
The above serves only to illustrate the origin of the
exp[ —(1/15)'?] law.

E. Comparison of 1D FPT with 1D exact (MPW)
and 3D FPT in Fayer’s exciton trapping model

Inserting the form (4.16) into Eq. (4.10), we obtain
t ' 172

_ n1/2 (Kp—Kp)t'
e~ AW ETET T gy
=0 2

_ —Kt
T()=de " [ (4.18)

For the 2D case (d =2), it follows from Eq. (4.15) that

n(t)~ exp(—At'"?) (4.16)
with 4 «x!/2. Note that Eq. (4.16) has the same form as
the 1D FPT law except for the very important point that
in FPT, A «x, and that the asymptotic 2D law is in prac-
tice probably almost impossible to observe because of the
magnitude of n(z) when Eq. (4.16) sets in. Thus
exp(—At'/?) in relation to FPT is physically significant
whereas the asymptotic forms of Eq. (4.16) with d >2
cannot certainly be observed in the present experimental
conditions.

In order to gain a better understanding of the exact
behavior of Eq. (4.16) as t— o, let us briefly show how
these forms arise for a 2D system in the presence of an
electric field using a simple model. The extensions to
“other” values of d is then straightforward.

Thus, instead of a purely 1D system consider a rectan-
gle of size aL,, aL, with the electric field in the x direc-
tion (bias y), jump frequencies W, and W,, respectively,
and traps all along the boundary of the system. The sur-
vival fraction becomes (continuum limit and low-trap
concentration x << 1)

2,2 miW,t
T°n 2 —m-w,
+ Wet|exp |—

A e ]
(4.17)

f

Equation (4.18) is equivalent to

—Kpt g2
Ae TP B+aVt _ 2 B

T(t)=——7—{fo e ’dy—foe Ydy],

(4.19)

where a’?=Ky —K7, B?=A?/4 Kz —Ky), A> =16x*W/
7 for the FM (FPT) approach and 4 =2af3. Recall that
A o«x!? for the exact asymptotic long-time form. In
what follows we shall consider the FM (FPT) treatment.
Using
172 172
A=«a { 1

16
7r3 z

_4

Zr’

and Y(P,), Z(P,), and t'(P,)—as before, it can be shown
that Eq. (4.18) can be rewritten as

p=

16 1/2 ) 1/2
_ -y [ 10 1 4/Zw3
T(t)y=e™ M = 7 e
n1/2
X |erfe Z1/2.372 +(Zt') ]
— erfc (4.20)

2
21/277'3/2 :
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Equation (4.20) can now be solved numerically. A com-
parison of our computed simulated decay curves for the
MPW exact 1D case [Eq. (4.12)] and 1D FM FPT. Equa-
tion (4.20) suggests that the curves almost exactly overlay
each other.

Assuming simple 3D motion we can similarly write an
expression for the survival fraction in the 3D case
(approximate)—d =3 to be of the form:*°

n(t)~ exp(—St) . (4.21)

Equation (4.21) is in conflict with the exact asymptotics
but is the correct 3D decay law for short and intermediate
times.?” One can easily solve for T'(z) using Egs. (4.10)
and (4.21):

—K,t
e T

_ —(S+Kp—Kp)t
1+ [(Kz—K7)/S]

T(1) (1—e ). (4.22)

which can be easily plotted.

F. Luminescence studies
of 1,2,4,5—Tetrachlorobenzene (TCB)

Experimental studies of triplet exciton trapping in TCB
carried out by Dlott et al.?°~%} led them to conclude that
TCB is overwhelmingly 1D with a cross-chain stepping
frequency less than 5x 10° s~!. The effect of impurities
by doping TCB crystals with deuterated scattering impur-
ities has also been investigated.”> The Fayer-Montroll
model, presented earlier, gave satisfactory agreement with
the experimental observations on time-resolved phos-
phorescence studies of TCB. It is interesting to observe
that our calculations using the MPW approach also leads
to reasonable agreement with the experimental data on
TCB, as shown in Fig. 2. In a way this is not surprising
in view of the apparent insensitivity of the time depen-
dence of T'(z) in the experimental range to the precise
form of the rate “function.” This can be illustrated by
taking a simple exponential form as given by Eq. (4.22)
and choosing the parameters so as to give the best fit to
the TCB data as shown in Fig. 3. The agreement is rather
good for S =250 as can be seen from Fig. 3. We conclude
therefore that in the case of TCB and the nature of its
luminescence kinetics, a deduction on the dimensionality
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FIG. 2. MPW 1D-exact fit to h,-TCB data; for P,=102,
solid line theory.
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FIG. 3. Simple exponential fit using (4.22) to 4,-TCB data;
for S =250, solid line is (4.22).

of the exciton motion cannot be made from the form of
the time dependence alone. The correctness of the
analysis due to Fayer and Dlott et al.?**~*% must be in-
ferred from the totality of their analysis and not simply
from the time dependence; in other words, the first-
principle’s derivation of the parameters and the verifica-
tion of the concentration dependence as carried out by the
authors in Refs. 20—25.

From the point of view of simple time dependence, it is
clear that an experimental measurement of the survival
fraction n(¢) makes it easier to discriminate the dimen-
sionality of the motion. This can be seen in the recent
work of Auerbach and McPherson?’ which we shall brief-
ly discuss now.

G. Emission dynamics from doped TMMC

Auerbach and McPherson?’ have analyzed their emis-
sion decay curves from doped crystals of tetramethylam-
monium manganese trichloride (TMMC) as a function of
time, temperature, and doping concentration of Cu?*, us-
ing both the (field-free) 1D-recombination model given by
Eq. (4.7) and the FPT expression. In the experimentation
range the authors were not able to distinguish between the
FPT and the exact 1D-diffusion theory. The latter being
the exact forms for the given model of 1D diffusion this
is not really necessary in this case. From the time, trap
concentration, and temperature dependence of the decay
curves, we can conclude that these authors have presented
impressive evidence for Q1D exciton diffusion and trap
kinetics in a strongly anisotropic material. They have
suggested an intrachain to interchain jump-frequency an-
isotropy of 10® which is comparable and even larger than
our own estimates for the polydiacetylenes. Auerbach and
McPherson refer to the theoretical work of Balagurov and
Vaks (see Ref. 17) who obtained an identical equation to
our Eq. (4.7) using a different approach.

V. LUMINESCENCE MEASUREMENTS ON PDA-10H

10H is a monomer which leads to the production of
oriented fibrous polymer poly(diacetylene-1-hydroxy-
hexadyine-diol) (PDA-10H) on solid-state polymerization.
Detailed methods of preparation of this polymer can be
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found elsewhere.!"33 PDA-10H has the structure (CR—
C=C—R’), where R and R’ are —CH; and
—CH,O0H, respectively, for 10H and are so far the small-
est substituents capable of providing a unique polymeriza-
tion direction and a reactive lattice packing, primarily as a
virtue of hydrogen bonding occuring between the —
CH,OH groups.>* On polymerization fibrillation occurs
as a result of the considerable strain built up. The latter is
due to the difference of the packing nature of the mono-
mer molecules (0.41 nm apart) and the polymer repeat
unit length (0.49 nm). The weak van der Waals interac-
tions of the —CHj groups are therefore disrupted. This
produces fibers having very good crystallinity with a high
degree of chain alignment as shown by the optical di-
chroism. The polymer chain axes lie along the fiber axis
as revealed by electron diffraction studies.’® Typically,
the fibers are more than 10 pm in length, and about 60
nm in diameter, as obtained from small-angle x-ray
scattering studies.’® This polymer is clearly less perfect
than PDA single crystals such as PDA-TS and PDA-
DCH. Local defects such as chain kinks, dislocations,
cross links (unlikely), etc., therefore alter the dimensional-
ity to d > 1, in other words, these systems are quasi-one-
dimensional. Misaligned chains have been observed by
electron microscopy. The effect of disorder (present only
to a small extent) will have important consequences on the
diffusivity and drift velocity of carriers or excitations.*’

The introduction of defects and/or disorder in PDA
chains opens up a weak radiative channel which is, how-
ever, in strong competition with an efficient nonradiative
channel. PDA-10H is an interesting material in that it
has successfully been used to study both Q1D-charge and
-exciton transport. Photoconduction experiments on this
polymer (and on PDA-TS) strongly support the 1D-
diffusion theory (see Sec. III). Fluorescence lifetime mea-
surements were used in this work as an alternative means
not only to probe the (quasi-)1D nature of PDA-10H, but
also to test the state of art of the various proposed
theories.

Figure 4 shows linear decay (dotted line) and pump
(solid-line) profiles for PDA-10H (at room temperature)
when pumped using the 476.5-nm line of the Ar* laser
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FIG. 4. Fluorescence decay of PDA-10H (300 K), raw data.

which was employed in the mode-locked and cavity
dumped configuration. A detailed description of the ex-
perimental set-up can be found elsewhere.’® Analysis of
several decay and pump curves revealed good fits for two
exponential terms.’* However, the time constants (7;) ob-
tained crucially depended on the sampling window of the
decay profile we choose. Longer 7 values were obtained at
longer times; 7 values changing from about 20 ps to 2.25
ns. This suggests that the decay is neither single nor dou-
ble exponential but involves a distribution of decay times.
Considerable programming effort would be required to fit
this data, after either deconvolution of the data or recon-
volution of the fitting function, to the Egs. (4.9), (4.13),
and (4.16) derived from the MPW theory for 1D-exciton
migration. To get over this problem the data were fitted
to several exponentials to obtain the best representation of
the decay, and then to fit the latter to the appropriate fit-
ting function. It was found that six-exponential terms
were adequate for this purpose, as depicted in Fig. 5. The
fitting function in this case was the normalized version of
Eq. (4.10) without the preexponential term. Plotting this
function on a log verses t° plot, for the appropriate time
domain, reveals a straight line for a =0.45. This is very
convenient since it allows us to plot the data on similar
axes and to visually inspect the fit. It was found that
PDA-10H decay gave a value of @ =0.425; in close agree-
ment with the predictions of the MPW theory.

Figure 6 shows a typical decay profile of PDA-10H at
4.2 K when excited using 5-ps, 590-nm-laser pulses; the
emission (monitored at 645 nm) being recorded on a
streak-camera setup at Clarendon Laboratory (Oxford
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FIG. 5. A six exponential fit to PDA-10H fluorescence data.
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FIG. 6. PDA-10H luminescence decay at 4.2 K, raw data
from Ref. 41. Solid line is an exp[ — (¢ /t4)'/?] fit.

University) by Hayes et al.***! These authors suggest the
fitting function to be double exponential.** More recently,
the same authors suggest a more complex fitting function
to describe the decay:*!

a;exp(—bt)+a,exp(—byt)+ct . (5.1)

We note that no physical significance was attached to the
latter function. On the other hand, fitting the data on a
log versus t“ plot where a=0.45 [as a close representation
to the MPW theory, viz, Eq. (4.9)], reveals a straight line,
as shown in Fig. 7. One must appreciate that the MPW
1D-diffusion model to be the simplest model consistent
with the data. The inclusion of several other parameters,
as suggested by Hayes et al., requires therefore justifica-
tion. Of course, the addition of more parameters will evi-
dently yield better fit to the data.

In this connection it may be worth pointing out that a
1D-diffusion model has been used to describe the decay of
photoinduced absorption in polyacetylene.> The motion
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FIG. 7. Experimental fit [ exp(—1?)] to PDA-10H fluores-
cence at 4.2 K with a =0.45. a=0.45 gives a slightly better
representation both of the data and the theory law from (2.6)
over this range in time.

of a carrier to a recombination site, as observed in PDA-
10H, is field dependent and is given by Eq. (3.3), while
for recombining mobile polarons in polyacetylene the de-
cay is of the form erfc[ — (¢ /7)!/?], which can be approxi-
mated by ¢ ~!/2 over a wide temporal range.*> The reason
is that in this case we are dealing with a single (mobile)
trap, which is the other polaron, rather than with two
fixed traps at random positions. The exact decay dynamic
in the former case is erfc( — ¢ /7)!/?, whereas in the latter
it is given by Eq. (4.12). It is evident that the room-
temperature luminescence decay of PDA-10H cannot be
described by a function of the form #~¢.

The data obtained from this work and Refs. 40 and 41
exhibit a different slope (g) of the decay functions when
plotted on log versus t“ plot: ¢(300 K)=~ —0.015 and
q(4.2—55 K)=~ —0.08. This discrepancy could be due to
a number of reasons: (1) the different excitation energies
employed, (2) systematic error due to different instrumen-
tation and data-acquisition techniques, and (3) sample-
sample variation.

It is difficult to see how different initial distribution of
hot excitons can affect the ultimate decay after thermali-
zation. Systematic errors should be small but studies of
photoconductivity in PDA-10H have revealed sample-
to-sample variations in properties. These are a result of
small differences in sample preparation and storage pro-
ducing marked differences in the fibril diameter length,
orientation, etc., in the sample. The differences in the
values of g are probably, a consequence of the different
defect densities.

From Eq. (2.6) one obtains

xW=8, (5.2)

where B (=1.5%10%) is a normalization factor between
theory and experiment at 7' =300 K. This yields

. 1.5x 10" s~ ! for x ~1073,
1.5% 102 s~ ! for x ~1072 .

The probability of creating an exciton in a PDA chain
exceeds that of creating an electron-hole pair.!! Photoex-
citation thus results in the production of excitons which
diffuse rapidly (at a rate ~10'2—10's~') along the
chains containing the defects. On encountering the death
centers the excitons decay nonradiatively (the most likely
fate) to the ground state. Those excitons that escape
death centers during their (natural) lifetime, eventually de-
cay by emitting from the exciton band states by either fal-
ling into shallow traps (present in high density) or
through relaxation to (intrinsic) polaronic states. In
PDA-10H the peak in emission is red-shifted by 0.75 eV
from the peak in absorption; so that the initially excited
state must relax before emission. Sixl and Warta*® ob-
served a similar luminescence from short PDA chains,
which they attributed to polaron formation and recom-
bination. This emission has a much longer red-shift
(=1.5 eV) from the peak of the excitation spectrum, and
a larger lifetime than those observed from PDA-10H.
The failure to observe spins from photoinduced ESR stud-
ies on PDA-10H under an inert atmosphere suggest that
the excitations are not polarons but exciton-polarons.
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These excitations are short-lived as expected and undergo
a 1D motion before decaying.

We conclude by saying that it appears as if the 1D-
diffusion model can be applied with confidence to PDA-
10H luminescence data at any temperature. Further ex-
perimentation and, in particular, a study of the tempera-
ture dependence of the decay is however highly desirable.
The excitations in these highly ordered polymers appear
to be exciton polarons. Like photoconductivity, the
luminescence appears to further support the picture that

we have of the PDA’s: probably the most one-
dimensional semiconductor observed until now.
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