
PHYSICAL REVIEW B VOLUME 35, NUMBER 15 15 MAY 1987-II
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A Si- and C-centered tetrahedron model is developed for the determination of the optical dielec-
tric function e = e& +i e2 of amorphous silicon-carbon ( a -Si~ C ) alloys. The Phillips —Van
Vechten —Levine dielectric model, along with the scaling procedure of Aspnes and Theeten, is used
to obtain predictions for e l and e2 for the individual Si-Si4 C and C-Si4 C ( v =0—4) tetrahedra.
The tetrahedron model then uses these tetrahedra as the components in the Bruggemann effective-
medium approximation to obtain predictions for e& and e2 for the a -Si~ „C alloys. These predic-
tions for el and e&, and for the optical energy-gap parameter Eop„are obtained for three different
types of chemical ordering in the films: (I) no chemical ordering, (2) complete chemical ordering
with homogeneous dispersion, and (3) complete chemical ordering with phase separation. The pre-
dictions of this model are presented in detail in this paper and are compared with experimental re-
sults for e~, e., and E,pt for a series of a -Sil C:H alloys in the following paper.

I. INTRODUCTION

Amorphous silicon-carbon alloy films have important
applications as p-type layers in p- i- n a-Si:H photovoltaic
devices' and also as potentially useful optical and solar
selective coatings. As a result of these applications and
also due to continuing interest in the properties of
tetrahedrally coordinated amorphous semiconductors, it
has become important to determine the optical response of
these films and its dependence on the microstructure and
local bonding present in the films. We have recently un-
dertaken an experimental determination of the optical
constants of a series of hydrogenated amorphous silicon-
carbon alloy films (a-Si, „C:H), and our experimental
results for e& and ez, the real and imaginary parts of the
dielectric function, are presented in the following paper.
In this paper we present and develop a tetrahedron-based
model from which predictions for e& and ez for these alloy
films can be made as functions of the [Si/C] ratio and
also for different types of chemical ordering present in the
films. A comparison between the predictions of this
model and our experimental results for e& and ez, included
in the following paper, has allowed us to determine the
nature of the chemical ordering present in these films.

The model which we will present for calculating e~ and
e2 for these amorphous silicon-carbon alloys considers Si-
and C-centered tetrahedra to be the fundamental structur-
al units which determine the optical response of the films.
This type of approach was first discussed by Philipp who
proposed that the optical response of films based on sil-
icon, oxygen, and nitrogen was determined by the
response of Si-centered tetrahedra such as Si-Si4 0 and
Si-Si4 N (v=O —4). Aspnes and Theeten further
developed this approach and combined it with the Brug-
gemann effective-medium approximation (EMA) and
scaling of the dielectric function to determine e& and e2
for Si, „(Si02)„and Si, (SiN4/3) mixtures. We note
that Si-centered tetrahedra have also been proposed to be
the fundamental units which determine both the frequen-

cies of the Si—H stretching modes observed in the in-
frared absorption spectra of hydrogenated amorphous Si-
based alloys and the Si 2p core-level binding energies in
a-Si„N I ..H alloys.

An important factor for the determination of the
dielectric function of amorphous semiconducting alloys of
Si and C involves the question of whether or not chemical
ordering occurs in the bonding between the Si and C
atoms. If there exists no preferential chemical bonding
between Si and C atoms, then the alloys are said to be
chemically disordered. Complete chemical ordering, on
the other hand, refers to the situation where C atoms have
only Si nearest neighbors in Si-rich alloys and where Si
atoms have only C nearest neighbors in C-rich alloys.
Thus, completely chemically ordered films contain the
maximum possible number of Si—C bonds. If the Si—C
bonds are randomly dispersed throughout the film, then
the chemical ordering is said to be homogeneous. If, how-
ever, the Si—C bonds are clustered, then in addition to
chemical ordering there is also phase separation (for ex-
arnple, separate regions corresponding to pure Si and
stoichiometric SiC in Si-rich films).

The issue of chemically ordering can be dealt with in a
straightforward way within the framework of the Si- and
C-centered tetrahedron model presented here since the dif-
ferent types of chemical ordering can be readily specified
by giving the appropriate probabilities for the various Si-
and C-centered tetrahedra (i.e., Si-Si4 „C and C-Si~ C,
v=O —4) present in the films.

With tetrahedra identified as the fundamental units
determining the optical response of the alloy films, the
dielectric function for the film may be defined via the
Bruggemann EMA, given by the following equations:

gv;=1,
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where v; and e; are the volume fraction and dielectric
function, respectively, of the ith component. In our
model we use ten components corresponding to the ten
distinct Si- and C-centered tetrahedra present in the films.
Using values for the v; and e; as determined for the
tetrahedra from our model, the e appropriate for the
silicon-carbon alloy in question will be calculated using
the EMA expressed in Eq. (1). Our results shown below
indicate that it is indeed the Si- and C-centered tetrahe-
dra, as opposed to simply Si—Si, Si—C, and C—C bonds,
which are more appropriately considered to be the funda-
mental structural units present in the films which deter-
mine the optical response.

We note that although hydrogen atoms have not been
explicitly included at this stage in the Si- and C-centered
tetrahedron model, their presence in the a-Si] C:H al-

loy films has been at least indirectly taken into account in
the model as the e; spectra for the individual tetrahedra
have been scaled from the e spectrum for a-Si:H which
clearly does reflect the contribution of the incorporated H
atoms.

We will now develop the tetrahedron-based model in
Sec. II, with the predictions of the model presented in Sec.
III.

II. TETRAHEDRON MODEL —DEVELOPMENT

The objective of the tetrahedron model to be developed
in this section is to provide a framework for calculating
the dielectric constants e~ and eq for amorphous silicon-
carbon alloys, using the EMA expressed in Eq. (1). For
this purpose we will need to obtain from the model results
for the volume fractions U; and complex dielectric func-
tions e; for the individual Si- and C-centered tetrahedra
which are to be used as the components in the EMA. We
will first consider the volume fractions v; which are func-
tions of the individual tetrahedron volumes V; and
tetrahedron probabilities P;. We will then turn to the e;
which wi11 be obtained from the measured e for a-Si:H us-

ing a scaling procedure whose parameters will be deter-
mined using the plasma sum rule and the dielectric model
of Phillips, Van Vechten, and Levine.

A. Si- and C-centered tetrahedra:
Probabilities and volume fractions

The probabilities P; for the individual Si-Si4 C and
C-Si4 C (v=O —4) tetrahedra are functions both of the
composition parameter x in these a-Si] C„alloys and of
the type of chemical ordering present in the films. For
the case of no chemical ordering, i.e., no preferential
bonding between Si and C atoms, the probability for a
particular bond in a given tetrahedron is simply propor-
tional to the fraction of atoms in the film available to
complete that bond, i.e., (1 —x) for a Si—Si bond in a Si-
centered tetrahedron or for C—Si bond in a C-centered
tetrahedron. The total probability P; for a given tetrahed-
ron is then equal to the product of (1) the probability for
starting with a Si or C atom at the center of the tetrahed-
ron, (2) the probabilities for the individual bonds within
the tetrahedron, and (3) a factor giving the number of pos-

sible ways of connecting the bonds within the tetrahedron.
For example, for a Si-Si3C tetrahedron, the resultant prob-
ability P; =4x(l —x) results from the product of four
factors: (1—x) for having the Si atom at the center of the
tetrahedron, (1 —x) for having three Si atoms bonded to
the central Si atom, x for having one C atom bonded to
the central Si atom, and a factor of 4 for the possible ways
of connecting the three Si and one C atoms to the four
bonds available in the tetrahedron. The resulting proba-
bilities P; for the ten possible tetrahedra for the case of no
chemical ordering are listed in the second column of
Table I.

For the cases of complete chemical ordering with
homogeneous dispersion and with phase separation, the
tetrahedron probabilities P; must take into account the
fact that, in Si-rich alloys, for example, C atoms will be
bonded only to Si atoms. To determine the P; for Si-rich
alloys, we begin by defining f(Si)=(1—x) and f(C) =x as
the fractions of Si and C atoms in the film. Also,

f, (Si)=f (Si)—f (C) = (1 —x) —x = (1 —2x)

is the fraction of Si atoms which can bond to a given Si
atom and f, (C)=f(C)=x is the fraction of C atoms
which can bond to a given Si atom. We note that f, (Si) is
reduced below f (Si)= (1 —x) by an amount f (C) =x since
a fraction f(C) of the Si atoms must have their bonds ef-
fectively tied up by C atoms and thus, as a result of the
complete chemical ordering, are effectively unavailable to
bond to other Si atoms. Finally,

f, (Si)=f, (Si)/[f, (Si)+f, (C)]

= (1 —2x)/[(1 —2x)+x] = (1 —2x)/(1 —x)

is the fraction of aII atoms which can bond to Si atoms
which are Si atoms. Likewise,

f2(C) =f, (C)/[f, (Si)+f, (C)]=x/(1 —x)

is the fraction of all atoms which can bond to Si atoms
which are C atoms.

The probability P; for a Si—Si3C tetrahedron is now

given by

P; =4f (Si)f2(Si)f2(C)

=4(1—x)[(1—2x)/(1 —x)] [x/(1 —x)]
for the case of complete chemical ordering with horno-
geneous dispersion. The remaining P; for Si-rich and C-
rich alloys for the case of homogeneous dispersion are
given in the third and fourth columns, respectively, of
Table I.

For the case of complete chemical ordering with phase
separation, the only possible tetrahedra in a Si-rich alloy
are Si-Si4, Si-C4, and C-Si4, where the first tetrahedron
can be thought of as corresponding to a-Si and the
remaining two as corresponding to a-SiC. The probability
for the Si-Si4. tetrahedron is given by

P; =f(»)f,(Si)(1)'

= (1 —x)[(1—2x)/(1 —x)]=(1—2x)

since if a single Si atom is bonded to the central Si atom,
then all of the three remaining atoms must also be Si
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Tetrahedron
No chemical

ordering

TABLE I. Tetrahedron probabilities P; for Si~ C„.

Complete chemical ordering
with homogeneous dispersion

Si-rich (0&x &0.5) C-nch (0.5 & x & 1)

Complete chemical ordering
with phase separation

Si-rich C-rich

(1) Si-Si4

(2) Si-Si3C

(3) Si-Si2C2

(4) Si-SiC3

(1 —x)

4x (1—x)

6x (1—x)

4x (1 —x)

(1 —x) 1 —2x
1 —x

3

4(1 —x) 1 —2x
1 —x

2

6(1—x) 1 —2x
1 —x

4(1 —x) 1 —2x
1 —x

2

3

(1 —2x)

(5) Si-C4

(6) C-Si4

x (1—x)

x(1—x)

(1—x)
1 —x

4

(1 —x)

(1 —x)

(7) C-Si3C 4x (1—x) 0 4x 1 —x
X

3

2x —1

X
0

(8) C-Si2C2

(9) C-SiC3

6x (1—x)

4x (1—x) 0

2

6x 1 —x
X

4x 1 —x
X

2x —1

2x —1

2

3

(10) C-C4 0
X

0 (2x —1)

atoms (i.e., with unit probability). For the Si-C4 tetrahed-
ron, we have

P; =f(Si)f2(C)(1) =(1—x)[xl(1—x)]=x
for similar reasons, while for the C-Si4 tetrahedron, we
have P; =f(C)(1) =x due to the existence of complete
chemical ordering. These P; and those for C-rich alloys
for the case of phase separation are listed in the fifth and
sixth columns of Table I, respectively.

In Figs. 1—3 the tetrahedron probabilities P; for the
cases of no chemical ordering, complete chemical ordering
with homogeneous dispersion, and complete chemical or-
dering with phase separation, respectively, are shown as
functions of x for a-Si& C„alloys. The largest differ-
ences occur near x =0.5, at which composition only Si-C4
and C-Si4 tetrahedra are present for the two types of com-
plete chemical ordering considered. For the case of no
chemical ordering, all ten tetrahedra are present for
x =0.5.

The contribution of each tetrahedron to the optical
response of an a-Si& „C„alloy film is determined both by
its dielectric function e; and its volume fraction in the
film, u;. The individual u; are given by u; =P; V;/g P; V;,
where V; is the volume associated with the ith tetrahed-
ron. For a tetrahedron with all like atoms, e.g. , Si-Si4, the
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FICx. 1. Probabilities P; for Si- and C-centered tetrahedra in

Si& C alloys as functions of composition x for the case of no
chemical ordering. See Table I or II for numbering of the
tetrahedra; e.g. , tetrahedron 1 is Si-Si4.
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have V„,=2a (a p3-b)/9~3, where a =d(SiSi) and
b =d(SiC)=1.884 A. Finally, for tetrahedra such as Si-
Si2C2, we have V„,=4ab(a+b)/9v'3, with a =d(SiSi)
and b =d(SiC). Note that d(CC) =1.542 A. Using these
expressions for V„„and including the necessary factor of
three as discussed above, the volumes V; associated with
each of the ten tetrahedra are listed in Table II.

B. Scaling of e& and e2

0.4
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X

FIG. 2. Probabilities P; for Si- and C-centered tetrahedra in
Si

&
C alloys as functions of composition x for the case of

complete chemical ordering with homogeneous dispersion. See
Table I or II for numbering of the tetrahedra; e.g. , tetrahedron 1

Is Si-Si4.

volume of the tetrahedron is given by V„,=ga /9u 3,
where a =d(SiSi) is the Si—Si bond length equal to 2.35
A. However, in crystalline Si, in order to account for the
entire volume of the crystal, the volume associated with
each Si-Si4 tetrahedron is actually V; =3V„,. This extra
factor of 3 is necessary, for example, in calculating atomic
densities. Similarly, for tetrahedra such as Si-Si3C, we

e;(E)—1=C);[e, s;.H(C2, E)—1], (2)

where E is the photon energy and C]; and Cz; are scaling
parameters appropriate to the ith tetrahedron, to be de-
fined below using the plasma sum rule and the
Phillips —Van Vechten —Levine (PVVL) dielectric
model. 9 '' Note that, as indicated by Eq. (2), we will
scale from the measured e for a-Si:H, ' so that the scaled
e; spectra for the tetrahedra will indirectly include the ef-
fect of the hydrogen as incorporated in a-Si:H.

Aspnes and Theeten have indicated that when Eq. (2)
and the plasma sum rule given by

n ff(E) = (m /2' e A ) E'e2(E')dE'
0

(3)

are taken together, then the following relationship be-
tween the scaling parameters C]; and Cz; can be obtained:

The dielectric responses e; of the tetrahedra which are
listed in Table I are, in general, not directly available from
experiment. Aspnes and Theeten have shown, however,
that it is possible to determine e;=e&;+i@2; for each
tetrahedron by scaling from the measured e for amor-
phous Si. The measured e for amorphous Si will in fact
be taken to be the e; for the Si-Si4 tetrahedron. This scal-
ing approach is based on the expression

I.O q

09 — 'X I —X X
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Io /
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C&; ——[n(i)/n(a-Si:H)]C2, . (4)

Here n (i) and n (a -Si:H) are the density of bonding elec-
trons associated with the ith tetrahedron and with a-Si:H,
respectively.

The scaling parameter Cz; for the energy will now be
shown to be simply related to Eg, the average energy-gap
parameter in the PVVL dielectric model. " We note
that the real part of Eq. (2), when evaluated at zero ener-
gy, can be written as

0.4 e„(0)—1 =C„[e,, s;.H(0) —1] . (5)

0.3

0.2

O. I

00 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 0
X

FICx. 3. Probabilities P; for Si- and C-centered tetrahedra in
Si~ „C„alloys as functions of composition x for the case of
complete chemical ordering with phase separation. See Table I
or II for numbering of the tetrahedra; e.g. , tetrahedron 1 is Si-
Si4.

(6)3 (A'w~/Eg); =Ci;A(iriw~/Es), s;.H .

Given that (Kiwis), cc n (i) and (iriwz), s;.H n (a-Si:H), Eq.
(6) can be rearranged to yield

C„.= [n (i)/n (a -Si:H)][E&(a-Si:H)/Eg, . ]

Comparing Eq. (7) with Eq. (4), we can see that the energy
scaling parameter C2; is given simply by

C2; Eg (a -Si:H)/Eg, —— (8)

By using the exPression' e&(0)—1=2 (iriwz/Es), where
is a constant and Awz is the plasma energy

( wz 4irne /——m), Eq. (5) can be written in the form
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TABLE II. Parameters for Si- and C-centered tetrahedra (defined in text).

Tetrahedron

(1) Si-Si4
(2) Si-Si3C
(3) Si-SipCp
(4) Si-SiC3
(5) Si-C4
(6) C-Si4
(7) C-Si3C
(8) C-Si2C2
(9) C-SiC3
(10) C-C4

(r)
(A)

1.176
1.118
1.059
1.001
0.942
0.942
0.899
0.856
0.813
0.771

kF
(A )

1.809
1.910
2.016
2.133
2.257
2.257
2.371
2.492
2,623
2.762

k,
(A )

2.085
2.142
2.201
2.264
2.329
2.329
2.387
2.447
2.510
2.576

4.76
5.40
6.18
7.11
8.26
8.26
9.28

10.47
11.90
13.62

C
(eV)

0
0.84
1 ~ 78
2.85
4.08
4.08
3.21
2.26
1.13
0

Eg
(eV)

4.76
5.46
6.43
7.66
9.21
9.21
9.82

10.71
11.95
13.62

C2

1

0.871
0.740
0.621
0.517
0.517
0.485
0.444
0.398
0.349

Cl

1

0.893
0.759
0.632
0.520
0.520
0,530
0.516
0.483
0.434

V;

(A )

20.02
17.01
14.45
12.21
10.30
10.30
8.88
7.65
6.56
5.62

We note that this expression for C~; differs from that
used previously by Aspnes and Theeten [Eq. (10) of Ref.
5]. Instead of Eg(a-Si:H) in the numerator of Eq. (8),
they used a weighted average of E~(a-Si:H) and F~; We.
believe, however, that our expression for C2; is more con-
sistent with the PVVL dielectric model, " which will
now be used to determine values for Eg;, and hence C2;,
for the individual tetrahedra.

E =E +C
En =(7.123 eV)( (r ) )

( r ) =(4 v)r(SiSi)/4—+vr(SiC)/4,

C = (14.4 eV )b exp( —k, ( r ) )

X [Zs; /r (SiSi) —(Z; /r; ) ],
b =0.089Xc,

k, = (4kf /arab )'

and

(9a)

(9b)

(9c)

(9d)

(9e)

(9

kF=[3~ n(i)]' ' (9g)

Here E& and C are the homopolar (covalent) and hetero-
polar (ionic) parts of E~. (r) is one half of the average
bond length between the central (Si) atom and the four
other atoms in the tetrahedron, with r(SiSi)
= d (SiSi)/2= 1.176 A, r (SiC) =0.942 A, and
r(CC) =0.771 A. In Eq. (9d) for C, Zs; ——4 and Z; =Zs;
or Zc =4 (as appropriate). The average ( Z; /r; ) in Eq.
(9d) is taken over the four atoms surrounding the central
(Si) atom in the tetrahedron, with r; =r(SiSi) or r(CC),

C. Dielectric model for the average
energy-gap parameter Eg

The average energy-gap parameter Eg of the dielectric
model of PVVL does not correspond to any particular en-

ergy gap in the band structure, but rather is an average
over all the bands. As such, Eg can be calculated from
the PVVL dielectric model using the following relation-
ships which have been generalized to and are appropriate
for the Si-centered tetrahedra listed in Table I (using the
notation Si-Si4 C ):

as appropriate. Finally, Ãc is the average coordination
number of the atoms in the crystal (equal to 4 for Si, „C
alloys), a~ is the Bohr radius, and n (i) is the density of
bonding electrons in the ith tetrahedron, gi ven by
n (i) =4/V;, where the V, are the volumes associated with
the tetrahedra and listed in Table II. Equations (9a)—(9g)
are also appropriate for C-centered tetrahedra (C-Si4 C,
v=0—4), when r(SiSi) and Zs; are replaced by r(CC) and
Zc, respectively.

Values of E~; for the ten Si- and C-centered tetrahedra,
along with some of the other parameters which appear in
Eq. (9), are presented in Table II. We note that the ex-
pression which we use for C in Eq. (9d) above differs
from that used by Aspnes and Theeten [their Eq. (8c)].
The use of Eq. (9d) is necessary for silicon-carbon alloys,
as noted by Levine, " due to a coincidental cancellation
which occurs in the two terms contributing to C in Eq.
(8c) of Aspnes and Theeten.

In addition to the results for Ez,. appearing in Table II,
the results obtained for C2; and C&; from Eqs. (8) and (4)
are also presented. In Eq. (8) for Cz;, we use Fg for the
Si-Si4 tetrahedron from Table II in place of Eg(a-Si:H).
In Eq. (4) we set n (i) =4/ V; as mentioned above and
n (a -Si:H) =4/20. 02 A where 20.02 A is the volume of
the Si-Si4 tetrahedron from Table II. We note that
n (a -Si:H) can alternatively be equated to the actual value
of n determined for the particular a -Si:H sample used for
scaling. Note that C&; and Cz; for the Si-C4 and C-Si4
tetrahedra listed in Table II are identical, indicating that
these two tetrahedra have the same dielectric response, as
expected.

III. TETRAHEDRON MODEL —PREDICTIONS

Making use of the values of C~; and C2; for the indivi-
dual tetrahedra listed in Table II and measured dielectric
function data' for a -Si:H, e, s, .~, we have used Eq. (2) to
generate scaled e; spectra for the Si- and C-centered
tetrahedra. These are displayed in Figs. 4 and 5 where e];
and e2; are shown as functions of energy from 0 to 6 eV.
As stated above, the values of e]; and e2; shown for the
Si-Si4 tetrahedron in Figs. 4 and 5 correspond to the mea-
sured values of e, s;.z for a-Si:H. The results' which we
have used for E' s;.~ in the range 1.5—6 eV have been ex-
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FIG. 8. Real part el of the dielectric function vs energy E for
Si& C alloys, obtained using the EMA for the case of com-
plete chemical ordering with homogeneous dispersion (see text).
Curve 1: x =0.0; 2: x =0.2; 3: x =0.4; 4: x =0.5; 5:
x =0.6; 6 x =0.8; 7: x = 1.0.

FIG. 10. Real part e& of the dielectric function vs energy E
for Si& C alloys, obtained using the EMA for the case of com-
plete chemical ordering with phase separation (see text). Curve
1: x=0.0; 2: x=0.2; 3: x=0.4; 4: x=0.5; 5: x=0.6; 6:
x =0.8; 7: x =1.0.

the components in the EMA as expressed by Eq. (1). The
procedure for obtaining e& and ez for a given composition
x involves (1) choosing which type of chemical ordering is
to be considered, (2) calculating the appropriate probabili-
ties P;(x) from Table I, (3) calculating the volume frac-
tions U;(x) for each tetrahedron according to

v;(x) =P;(x)V;/g P;(x) V;,

where the V; are the tetrahedron volumes listed in Table
II and the sum in the denominator is over all the possible
tetrahedra, and (4) substituting the v;(x) from above and
the appropriate e„and ez; from Figs. 4 and 5 into Eq. (1)
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FIG. 9. Imaginary part e2 of the dielectric function vs energy
E for Si& C alloys, obtained using the EMA for the case of
complete chemical ordering with homogeneous dispersion (see
text) ~ Curve 1: x =0.0; 2: x =0.2; 3: x =0.4; 4: x =0.5; 5:
x =0.6; 6: x =0.8; 7: x =1~ 0.

FIG. 11. Imaginary part e2 of the dielectric function vs ener-

gy E for Sil „C alloys, obtained using the EMA for the case of
complete chemical ordering with phase separation (see text).
Curve 1: x =0.0; 2: x =0.2; 3: x =0.4; 4: x =0.5; 5:
x =0.6; 6: x =0.8; 7: x = 1 ~ 0.
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and solving for the resulting e& and e2 corresponding to
the alloy of composition x. We note that we have not
considered voids as a possible component of the alloys at
this point. In any real alloy film, however, the presence of
voids must be considered and has been so in the following
paper where experimental results for e& and ez for
a -Si& C:H films are presented.

Predictions for e& and ez for the alloy compositions
x =0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0 and for the three
types of chemical ordering considered (no chemical order-
ing, complete chemical ordering with homogeneous
dispersion, and complete chemical ordering with phase
separation) as obtained using the above procedure are
shown in Figs. 6—11. Considering first the case of no
chemical ordering (Figs. 6 and 7), we see that the e& and ez
spectra for this case evolve smoothly with increasing x,
reflecting the fact that the tetrahedron probabilities P;
vary smoothly across the entire composition range from
x =0 to 1 (see Fig. 1). For the two kinds of complete
chemical ordering considered (Figs. 8—11), however, et
and ez evolve much more rapidly for x &0.5 (Si-rich al-
loys) than for x &0.5. This is due to the fact that for
complete chemical ordering, the probabilities P; for Si-
centered tetrahedra all must equal zero for x & 0.5 (except
for Si-C4), while for C-centered tetrahedra the P; must all
equal zero for x &0.5 (except for C-Si4). The more rapid
variation of e& and e2 for x &0.5 for complete chemical
ordering is thus directly due to the fact that the weaker
Si—Si bonds in Si-centered tetrahedra, which absorb at
lower energies that either Si—C or C—C bonds, fall from
100%%uo of the bonds in the film for x =0 to O%%uo as x in-
creases to 0.5.

The main differences between the e& and eq spectra for
the cases of complete chemical ordering with homogene-
ous dispersion and with phase separation appear to occur
for Si-rich alloys with compositions in the range
x =0.2—0.4. We note that these two types of chemical
ordering must yield identical e& and e2 spectra for x =0.5,
where only Si-C4 and C-Si4 tetrahedra are present in the
films. Figures 8—11 also serve to indicate that bonds
alone (i.e., Si—Si, Si—C, and C—C bonds) are not the
proper structural units determining the optical response of
the alloys since, although the two forms of complete
chemical ordering considered (homogeneous dispersion
and phase separation) correspond to the same fractions of
Si—Si, Si—C, and C—C bonds present in the alloys, the
distribution of these bonds in the tetrahedra is very dif-
ferent. This leads to the different predictions for e& and
e2 for these two forms of complete chemical ordering.

The tetrahedron model as developed above can also be
employed to obtain predictions for the optical energy gap
parameter E,pt defined by'

ep(E)=B(E —E,p, ) /E (10)

where B is a constant. We have fitted our predicted re-
sults for ez from Figs. 7, 9, and 11 to the above expression
and have obtained the values of E pt shown in Fig. 12 as a
function of composition x for the three types of chemical
ordering considered. We note that where necessary, par-
ticularly for C-centered tetrahedra, predicted values for ez
have been obtained for energies well above 6 eV in order
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FIG. 12. Optical energy gap E„pt vs carbon fraction x for
disordered Sil „C„alloys as predicted by the EMA (see text).
Curve 1: prediction for the complete chemical ordering with
homogeneous dispersion; curve 2: complete chemical ordering
with phase separation; curve 3: no chemical ordering.

to reach the energy region where Eq. (10) is applicable.
It is clear from Fig. (12) that the three types of chemi-

cal ordering yield significantly different predictions for
E pt For the case of no chemical ordering, E,~, increases
smoothly as a function of x, from 1.9 eV for amorphous
silicon (x =0) to 5.2 eV for amorphous carbon (x =1).
This smooth variation of E,~, with x reflects the smooth
variations in the predicted values of e& and e2 for this case
as displayed in Figs. 6 and 7. For the two cases of chemi-
cal ordering considered, E,z, initially increases more rap-
idly with x, reaching the value of 3.6 eV at x =0.5, which
is thus the prediction of the model for chemically ordered
amorphous silicon carbide. At this composition
(x =0.5), only Si-C~ and C-Si4 tetrahedra are present in
the films and homogeneous dispersion and phase separa-
tion yield identical predictions. At x =1 all three predic-
tions coincide, as expected, and yield a value of 5.2 eV for
E,~, . That such a value has not yet been observed for
amorphous carbon films is due to the presence of non-
tetrahedrally-coordinated carbon, i.e., a graphitic corn-
ponent, in the films prepared so far. ' Such a graphitic
component has been included in the analysis of our mea-
sured e& and e2 spectra obtained for a series of
a-Si& „C:H alloy films and presented in the following
paper.

IV. CONCLUSIONS

We have developed a Si- and C-centered tetrahedron
model for the determination of the dielectric function of
disordered silicon-carbon alloys. This model has been
shown to provide a useful formalism for calculating e&

and e2 for such alloys as functions of composition x and
different types of chemical ordering. In addition, the



8088 K. MUI AND F. W. SMITH 35

model has been used to predict the behavior of the optical
energy gap as a function of the above variables. The pre-
dictions of this model are compared with experimental re-
sults for e&, e&, and E,~, for a series of a-Si~ „C:H al-
loys in the following paper.
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