
PHYSICAL REVIEW 8 VOLUME 35, NUMBER 15 15 MAY 1987-II

Establishment of an effective-mass Hamiltonian for abrupt heterojunctions
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For an abrupt heterojunction between two otherwise uniform semiconductors in one dimension we

suggest using the effective-mass Hamiltonian H = —
z

A' [m (z)] V[m(z)]a%'[m(z)] + V(z) with

2a+P= —1 and where m(z) is the position-dependent effective mass and V(z) is the position-
dependent conduction band edge. The wave-function matching conditions across the heterojunction
are continuity of m P and m +~V/. By imposing a simple physical criterion on the solution, P, of
the eigenvalue problem for H we find an experssion for /3 involving the underlying Bloch functions
appropriate to the two-component semiconductors, evaluated at the heterojunction. In a model cal-
culation we estimate ft=0 for GaAs-Al„Ga~ „As, independent of x.

INTRODUCTION

Calculations of physical quantities relevant to semicon-
ductors are often done using effective-mass theory (EMT).
For homogeneous semiconductors EMT is well estab-
lished via the Wannier-Slater theorem. ' For graded,
mixed semiconductors, however, the theory is on a weaker
foundation. One of the features of graded, mixed semi-
conductors that has given difficulty in attempts to derive
or justify an EMT is the fact that the effective mass of
the charge carriers depends on position. This property
leads to complications in defining the kinetic energy
operator in the effective-mass Hamiltonian.

In recent years there have been several attempts to es-
tablish an EMT—the extended Wannier-Slater
theorem —for slowly graded, mixed semiconductors; a
eoncensus has not yet been reached, however. For abrupt
heterojunctions little work has been done in deriving an
EMT but some restrictions have been placed on the form
the kinetic energy operator can take.

A related problem in the abrupt case is the determina-
tion of the matching conditions on the effective-mass
wave function and its derivative across the heterojunction.
This problem has been addressed in the literature; we
briefly review the results below after we have established
our notation.

Of course, if the Hamiltonian were known everywhere,
including the heterojunction, the matching conditions
would be readily available. In the absence of knowledge
of the Hamiltonian or common agreement on the match-
ing conditions the default matching conditions commonly
assumed in applications, ' are continuity of the wave
function and of the current. Frequently even the discon-
tinuity in the effective mass across the heterojunction is
ignored. "

Our earlier work suggests that a kinetic energy opera-
tor of the form' —,

'
[m (z)] p[m (z)]~P[m (z)], with the

(real) parameters a and P unspecified except for the con-
straint 2a+P= —1, is a prime candidate for constructing
a proper effective-mass Hamiltonian:

H= ——,fi [m (z)] V'[m (z)]~V[m (z)] + V(z) .

Here V(z) tracks the bottom of the conduction bands-
for type-1 heterojunctions, to which we restrict our
attention —and so is constant except for a finite discon-
tinuity across the heterojunction. In applications, a slowly
varying potential, W(z), due to a shallow impurity or
some external influence, would commonly be added to Eq.
(1). Such a potential is of no interest to us in the present
work and so is ignored.

Notice that away from the heterojunction, in regions
where m and V are constant, the Hamiltonian of Eq. (1)
reduces to the conventional and required form

g2
V' + V(z),

2m
(2)

where m and V are appropriate to the region in which z
lies. Thus, in practice, the eigenvalue problem for 0 is
solved by using Eq. (2) and by applying the matching con-
ditions derived from the Hamiltonian of Eq. (1) to the
solution P, across the heterojunction. These conditions
are continuity of m P and m +~V'P.

In the Hamiltonian of Eq. (1) the effective mass (m),
the conduction-band offset in the potential ( V), and the
parameter P are all EMT quantities to be specified either
through calculations in a more fundamental (e.g. , band
theory) model or through measurement. Both m and V
have been reasonably well determined by experiment; /3

has not.
We can look to prior model calculations of match-

ing conditions to shed some light on the preferred value of
/3. White and Sham, using a three-band k p approach
(conduction, light-hole and heavy-hole bands) to hetero-
junctions, deduced that the envelope functions, which
modulate the Bloch functions appropriate to each semi-
conductor, must be continuous and their normal deriva-
tives must be discontinuous across the heterojunction.
This result coupled with their calculation of the bound
states of a sandwich heterostructure leads us to conclude
that their EMT comes closest to our P= —1 case.

Zhu and Kroemer, using Wannier functions as crystal-
line basis functions in a tight-binding approximation, de-
duced an effective-mass Hamiltonian that contains a ki-
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netic energy operator like that in Eq. (1) with P=O and a
potential energy term that incorporates a Dirac delta
function at the junction in addition to the band offset.
Their matching conditions contain an unknown parame-
ter, S, to be determined empirically just as our p must be.
Apparently their S= 1 case corresponds to our P=O case.

Ando and Mori introduce a 2)&2 transfer matrix con-
necting p and Vp across the heterojunction. These are
more general matching conditions than in our model.
Nevertheless, in a tight-binding calculation applicable to a
chain of atoms having a single s orbital, they deduce a
form of the transfer matrix that encompasses our /3=0
case.

Ishibashi et al. extended the approach of Ando and
Mori to situations in which the band offset is not small
and thereby determined a transfer matrix appropriate to
nonparabolic bands. Since their transfer matrix involves
band-gap energies as well as effective masses their model
cannot be directly compared with ours.

Kahen and Leburton, using a hybrid band-structure
technique applied to superlattices, determined matching
conditions appropriate to our P= —1 case. Their result
incorporates band nonparabolicity through energy-
dependent effective masses.

It is thus apparent that there is no universal agreement
in the literature as to the correct EMT Hamiltonian nor
the correct wave function matching conditions. It does
appear that, in the context of our model, the choices P=O
or 13= —1 are somewhat favored. Doubtless experiment
will have to answer the question as to what value of f3, if
any, is correct.

In the present paper we pursue another approach to the
determination of P and express this parameter in terms of
Bloch functions appropriate to the two semiconductors,
evaluated at the heterojunction. Subject to our approxi-
mations, we find that P does not depend on the size of the
change in chemical composition across the heterojunction
but, rather, depends on the rates of change of various
quantities with respect to chemical composition. This im-

plies, for example, that GaAs-A1 Ga& As will have one
x-independent value of P while InP-A1„In, „P will have
another. That is, we will show under our criterion, that P
depends on the type of compound semiconductor but not
on the relative amounts of the components mixed in the
semiconductor —at least to the extent that crystal parame-
ters depend linearly on chemical composition.

Our procedure, used by White and Sham and also sug-
gested by Ando and Mori, for determining P is very sim-
ple. We recognize that the eigensolutions of H of Eq. (1)
describe scattering states wherein a "free" electron in
component semiconductor scatters from the heterojunc-
tion, being partially reflected and partially transmitted in
the process. If EMT is to be correct we suggest that the
reflection and transmission amplitudes calculated from
Eq. (1) should be the same as those calculated from a
more fundamental approach —one that involves Bloch
functions and exp1icitly incorporates the underlying
periodic crystalline potentials. By adopting this criterion
we find an expression for P valid for low-energy electrons
and small conduction-band offsets, necessary limitations
of conventional EMT. By resorting to a model calcula-

tion, using a Kronig-Penney —type model with 6-function
potentials, we are able to express P in terms of other EMT
parameters with the result that, for typical semiconduc-
tors P=O. This is in agreement, or at least consistent,
with some previous estimates. '

In Sec. II we set up the problem in the Bloch function
formalism; in Sec. III we implement the approach
described above and give expressions for f3 in terms of the
underlying Bloch functions; in Sec. IV we describe our
model calculation; and in Sec. V we discuss our results.

II. BLOCH FORMALISM

In the one-electron approximation the Hamiltonian for
a graded, mixed semiconductor in one dimension is given
by

V'+1 {z, Y(z)),
2m

where m is the free-electron mass, W(z, W(z) ) is the
quasi-periodic semiconductor potential in the virtual-
crystal approximation, and W(z) is the grading function
that describes the mixing of the components present in the
compound semiconductor.

In a situation where the compound semiconductor con-
sists of two components, such as GaAs and A1As, it is
common to let W{z) be the fraction of A1As present and
to write

P (z, W(z))=P G,~,(z)+W(z)[1 ~,~,(z) —F'o,~,(z)] .

(4)

We elect not to be so specific at this stage and simply
model an abrupt heterojunction by choosing

L& for z &0,
W(z) — I., f (&)

so that the quasiperiodic potential in Eq. (3) becomes

F (z,L~) for z &0,
1 (z, W(z)) —

g~( L ) f 0

We make the further simplifying assumption that

7 ( z, L;)=P (z,L;—) .

This latter condition leads to certain symmetry conditions
on the Bloch functions that simplify some of our final ex-
pressions.

We now seek solutions of

A'%(z) = 8'%(z),

where

V' + g (z,L1 ) for z ~0,
2m

V' + W(z, L2) for z ~ 0,
2m

and where the matching conditions across z =0 are con-
tinuity of 0 and VO.
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The eigenfunctions of Eq. (8) are not pure Bloch states;
more properly they are scattering states, 4'k', which may

be constructed from Bloch states, )t)k(z), belonging to the
separate regions z &0 and z & 0. Thus

t(k (z)+A'' g k (z) for z &0,
e'„"(z)—=

u~')Pk (z) for z &0,

k (z) for z &0,
qp) 2)( )

k (z)+A'~)pk (z) for z & 0,
(9)

and k; is positive and less than ~/a; where a; is the ap-
propriate lattice constant.

Appendix A contains a short summary of the properties
of the Bloch functions )t)k(z) appropriate to a periodic,
symmetric potential 7 (z). These will be useful later.
Note also that we are neglecting the band index as a label
in writing down the scattering states in Eq. (9) and in sub-
sequent equations. This does not constitute an approxi-
mation, however; Eq. (9) is the most general solution of
Eq. (8) for given energy.

The connection between 8' and k; is given by a disper-
sion relation 8'= 8")(k;) which, for k; near the assumed
band minimum at k; =0, may be written

Ak8'= 8")(k, ) = 8")(0)+
2m.

(10)

(Pk, )I'kj, ) =6~)6(k; —k,')

Thus, the k~ and kz appearing on the right-hand sides
of Eq. (9) in the definitions of 'P'k' (z) and 0'k '(z) are not

independent but are each determined by the energy. Of
course, if )Pk''(z) and )P'k (z) belong to different energies

then the k; associated with the former are independent of
the k associated with the latter.

with i = 1 (2) represents the state in which a right
l

(left) traveling electron is incident on the heterojunction
from the region z &0 (z &0) with wave number k) (k2).
)pk"(z) therefore exists only if k; &0. The normalization

l

of these states can be shown to be

1+a("
~~1)

1 —W~
"'

1)

~~2) gk, (0)

I+~")

Pk, (0) ae")/ak, (12)

III. DETERMINATION OF i3

We next seek solutions of the EMT eigenvalue equation

HN=EN,

where H is given by Eq. (1) with

8'' (0) for z &0,
)z)8' )(0) for z &0,

(13)

(14)

and we note that V(z) tracks the bottom of the conduc-
tion band and contains the discontinuity of the band edge
across the heterojunction.

The solutions of Eq. (13) are scattering states, N'k'(z),

and may be constructed from plane-wave states belonging
to the separate regions z & 0 and z & 0:

iklZ (]) Iklz
e ' +H'"e ' for z (0,

bk" (z) =—'

M~ "e ' for z &0,

In deriving Eq. (12) we have exploited the assumed
symmetry of the potentials, Eq. (7), by making use of Eqs.
(A7) and (A8) at z =0. We have also used Eqs. (A10) and
(A13) to simplify the results.

In writing the expressions for )P'k'(z) in Eq. (9) we im-

plicitly assumed that the energy 8' was in an allowed
band for electrons in both the z & 0 and the z & 0 regions.
This will not always be the case for there are energies that
lie in an allowed band on one side of the heterojunction
but in a band gap on the other side. To appropriately
modify the expressions in Eq. (9) to cover such a case it is
only necessary to analytically continue the given expres-
sions in 8' and reject any terms that diverge with increas-
ing values of

~

z
~

. For example, suppose that the energy
is in an allowed band for z & 0 but in a forbidden band for
z &0. We should reject 'Pk '(z) and replace kq by iK2 (Kp

real and positive) in )Pk''(z). This leads to 4'k' (z) decreas-
1 1

ing exponentially as z~+ oo, i.e., the transmitted wave is
damped out as required physically.

where %k"(z) and 4"„",(z) belong to different energies unless
l l

k; =k . It is apparent from Eq. (11) that the subscript k;
in %k'(z) is a continuous variable that uniquely distin-

l

guishes states belonging to the same i but different ener-
gies from each other. The totality of states in a given
band thus consists of )Pk '(z) with 0 & k) & ~/a) and

1

'Pk '(z) with 0&k& &rr/az, k) and k2 ranging indepen-

dently of each other.
The reflection and transmission amplitudes, M~" and' are determined by matching 4'k'(z) and V%'k'(z) at

z =0. The result, in a form that will be useful later, is

—iklz
(2)

'e ' for z&0,
4 k~ (z)=;k~

) 2) )k&,2 e 2 +~~(2)e 2 for z&0
(15)

In accordance with the criterion proposed in the Intro-
duction we have used the same reflection and transrnis-
sion amplitudes in Eq. (15) we used in Eq. (9).

We now impose on the solutions in Eq. (1Sj the match-
ing conditions appropriate to the Hamiltonian of Eq. (1)
or Eq. (13), namely continuity of m @'k"(z) and

m +~V4&'k'(z) across the heterojunction at z=0, and use
l
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1+~(&)a= ln
m, tt'k, (0)

ln ln
q, (0)

m2
ln

m]

the reflection and transmission amplitudes of Eq. (12) to
obtain

V&a g 6[z+(2n+1)a/2] for z &0
n=0

X~(z, W(z))= '

Vqa g 6[z —(2n + 1 )a /2] for z & 0 .
n=0

m2
ln

m]

ln
&k, (0)' k, ae"'/ak,
q„,(0)' k, a@I "/ak,

k]p= In
1 +~(&)

m2
ln

m]
(16)

(20)

This is a series of 6-functions located at z = +a /2,
+3a/2, +Sa/2, . . . , where the potential strengths are
different in the z & 0 and z ~ 0 regions.

The desired Bloch functions to be used in Eq. (9) are
readily found to be, for —a/2&z &a/2,

These values of a and p will not yield an entirely ac-
ceptable effective-mass Hamiltonian since they are energy
dependent. However, we can extract acceptable expres-
sions by recognizing that in EMT energies must be near
the bottom of the conduction bands. We begin by simpli-
fying p of Eq. (16) for small values of k& and k2 in the
parabolic band approximation to obtain

r

K+k,
a

2

—i (K+k,-)z+ e ' sin
K —k;

where

ik z i(K —k, )z
gk =C(k;)e ' e ' sin

(21)

k~(0) m
P= ln

Pk (0)2 mp

m2
ln

m]
(17) K+ki

C(k;) = sin
2

a + sin a
2

and, incidentally, find 2a+P= —1 to be automatically sa-
tisfied.

To proceed further let us take the band discontinuity
8' '(0) —8' "(0) to be small or, more properly,
b,W= L2 L& to be—s—mall. Then we can expand m2 and
1(k (0) in Taylor series in b, :

Bm
m2 ——m]+

~0k
Pk (0) ok, (0)+ (18)

which yields

aq, (0)= —1 —2
Po(0) BW

am
m BW

(19)

IV. MODEL CALCULATION

In order to obtain an estimate of P for use in EMT we
resort to a simplified Kronig-Penney calculation. For the
heterojunction potential of Eq. (6) we choose

and, of course, a= —(1+P)/2.
This shows that p depends on the rates of change of

quantities with respect to the grading function but not on
the size of the changes. Thus P for, say, a GaAs-
Al„Ga~ „As heterojunction (with x —=W) is independent
of x—to the extent that our approximations are valid.

Equation (19) constitutes our primary result: an expres-
sion for the EMT parameter P in terms of underlying
band theory quantities. It is thus on the same footing as
two other EMT parameters —the effective mass and the
conduction-band offset.

In order that our EMT Hamiltonian of Eq. (1) be useful
in calculations we must obtain a value for P. We there-
fore turn to a model calculation of this parameter in the
next section.

+2 sin
K —k,

a sin
I~ +ki sin(Ka)

a
2 Ka

—1/2

cos(k ~ a /2) sin(k2a /2)
sin(k, a/2) cos(k2a/2)

(22)

We now wish to use this result in Eq. (16) to find P. In
doing so we must limit ourselves to small" values of k]
and k2. For the sake of definiteness let us take the
conduction-band discontinuity

b, 8'=—8"I(0) —8"I(0) & O

and let kq~0. Then k~ may be determined from Eq. (10)

Wk =68' .
2m]

(23)

X(2~)-'"
AK

and where K is defined by 8'—:
2m

The solution in, say, the interval (2n —1)a/2 &z
& (2n+ 1)a/2 is found by using the actual value of z in
the external phase ikz but by using the value (z —na) in
the term in the square brackets of Eq. (21). That is, the
value used for z in the latter term must lie between —a /2
and a/2. This guarantees the translation invariance prop-
erty, Eq. (A4): u (z+a) = u (z).

Let us now evaluate the EMT parameter p using Eq.
(16). From Eqs. (12), (Alo), (A13), and (21) we find

A, (0)' a@"/ak,

q (o)' ar"'/ak,
2

A, (0)'(t'A, (0)

A, (0)~ti'k, (0)
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We then have, from Eqs. (22) and (23), as k2~0
k, 1 ~llI cos(k, a/2)~(k, a/2) ~1——,z I ', a'
kp 1+~"I sin(k, a /2)

m&a=1—A8' =1-
6A'

(24)aw
and so, using Eqs. (18) and (24) in Eq. (16),

m a B8'/(3W
c}m /(3W

(25)

This expression is entirely in terms of EMT parameters
which are known experimentally. For a GaAs-A1 As
heterojunction Casey and Panish' give Es,„=(1.424
+1.247x) eV for 0 &x &0.45, m =(0.067 +0.083x)mls
where mo is the free-electron mass, and a =5.60 A. Mill-
er et al. ' estimate the shift of the conduction-band edge
with changing chemical composition to be 57% of the
shift of the band gap, so that b. =0.57(1.247x) eV. Using
these parameter values we find P= —0.03. Even a Si-Ge
heterojunction yields a p of the same order of magnitude.
This would suggest that P=O might be a reasonable value
for many heterojunctions, thus giving the matching condi-
tions across the junction as continuity of Jim'~ and
Vy/m '".

V. SUMMARY

with 2cz+p= —1 and where V(z) denotes the bottom of
the conduction band appropriate to the semiconductor at
the point z. By adopting a simple physical criterion we
were able to find an expression for P in Eq. (19) in terms
of the Bloch functions of the two semiconductors,
evaluated at the heterojunction. The physical criterion we
adopted was that the reflection and transmission ampli-
tudes describing the scattering of electrons from the
heterojunction and calculated from EMT are the same as
those calculated in a more fundamental approach using
Bloch functions. Since these amplitudes serve to define
basis functions in the two approaches [Eqs. (15) and (9),
respectively] physical quantities calculated in EMT and
calculated using the Bloch formalism should agree.

By resorting to a simple Kronig-Penney —type model
we found an expression for P, Eq. (25), entirely in terms
of EMT parameters. Commonly used heterojunctions ap-
pear to require P=0 which, in turn, requires continuity of
Plm ' and VP/m ' across the heterojunction. This re-
sult is consistent with some previous determinations ' of
matching conditions; it does not agree with others, ' '

some of which ' favor P= —1.
Several simplifying assumptions (some basic to all

EMT models) were involved in our derivation: (a) there is
an abrupt change in the underlying crystalline properties
at the heterojunction, with no band curvature, (b) the
underlying crystalline potentials are spatially symmetric,
(c) the junction is located one-half of a respective lattice

For an abrupt heterojunction between two otherwise
homogeneous semiconductors we suggest using the
effective-mass Hamiltonian

H= ——, lrl [m (z)] V[m (z)]~V[m(z)] + V(z),

constant from the nearest lattice points, (d) the
conduction-band discontinuity across the junction is
small, (e) electrons have energies near the bottoms of the
conduction bands, (f) the bands are parabolic, and (g) the
problem is one-dimensional. In applications not con-
sistent with our approximations we cannot put great faith
in the value P=O. However, we do feel that Eq. (1) for
the EMT Hamiltonian has merit even in these situations
if P is viewed as a parameter to be determined by fits to
experimental data, just as m and V are.
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APPENDIX.
PROPERTIES OF BLOCH FUNCTIONS

An electron of mass m in a periodic one-dimensional,
symmetric potential, / (z)= 7~( —z) with lattice constant
a is governed by the Schrodinger equation

V'P+ 1 (z)g = Sg,
2m

which is satisfied by Bloch functions

g«(z) =e'"'u„„(z), (A2)

where n is the band index and where the crystal momen-
tum, k, is limited to the first Brillouin zone: k

~
& rrla.

The functions u„q (z) satisfy

V u«+2lkVu« —
z

7 (z)u„k =(k —2m @'/fi )u„k

and

u„k(z+a)=u„j, (z) .

(A3)

(A4)

These conditions yield a dispersion relation connecting
4 and k which we acknowledge in the following by treat-
ing 8' as a function of k. Our normalization will be

giving

a a
dz u„l, (z)u„k(z) = 6„„

2m
(A5)

+ oo

(g„k~g~ k )—:I dz g«(z)p~ k
—6(k —k')5 (A6)

From Eqs. (A 1)—(A4) it is possible to show that the
functions u„k(z) are such that

g«(z) =P„* k (z) =g„*k( —z),
and, therefore, that

(A7)

With these symmetry properties the conserved current

ink ( Z ) = [ l//nk (Z ) V1/f«( Z ) —l(ink ( Z ) V l/l~ k ( Z ) ]2' l

takes a simple form when evaluated at z =0:

(A9)
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j k(0) 0 k(0)V 4»(0)
mi

(A 10)
We integrate Eq. (Al 1) over z from 0 to a and use the

symmetry property, Eq. (A4), to obtain

tt'nk V 0n'k' 4'k'V ink ( + @)ink 4'k'

or
V(fn»V 4'k' 0n'k'VOnk ) ( ~ +)4nkPn'k'

(Al 1)

Another useful expression for j„k(0) can be derived
from Eq. (Al) and its complex conjugate. We let P„» and
tt„k be solutions belonging to energies 8' and 8", respec-
tively. Then

(e' "'—1)[g„*»(0)VQ„»(0)—(('„k (0)VQ„*»(0)]

a(8"—8') dz g„*k(z)P„k (z) . (A12)
g2 O

Finally we take n'=n, and let k'~k, 8"~8' and use
Eqs. (A5), (A7), (A8), and (A10) to obtain from Eq. (A12)

(A13)
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