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A statistical model is presented for a spatially inhomogeneous two-dimensional electron gas in a
quantizing magnetic field, which simulates the effect of Poisson's equation and some essential prop-
erties of self-consistent screening. The model yields an effective background density of states be-
tween Landau levels and is used to explain a number of recent experimental observations. A three-
dimensional model of a heterojunction is introduced, which can account for the possible charge
transfer between the gate and the two-dimensional electron gas. We show that for GaAs hetero-
structures the variation of the depletion length as a function of the magnetic field may be neglected.

I. INTRODUCTION

Recently measurements of the capacitance, ' the ac-
tivation energy, the gate current, ' the specific heat,
and the magnetization of a two-dimensional electron gas
(2D EG), in a strong quantizing magnetic field, have
given strong indications for a considerable amount of den-
sity of states (DOS) in between the Landau levels (LL's).
The effect is seen both in GaAs-(Ga, Al)As heterostruc-
tures and Si metal-oxide-semiconductor field-effect
transistors (MOSFET's). The experimental results could
be reproduced by model calculations, based on the ad hoc
assumption that the DOS consists of broadened Gaussian
shaped LL's superimposed on a constant, magnetic-field-
independent background DOS. '

Conventional perturbation theory of the interaction of
the 2D EG with short-range impurities ' and also recent
exact theories of electrons in a random potential' ' "
predict that the DOS between the LL's should be vanish-
ingly small in the large magnetic field regime. Thus, the
occurrence of a finite background DOS between the LL's
is unexpected and requires explanation.

A mechanism which might be capable of producing a
considerable DOS between the LL's is scattering by long-
range Coulomb potentials, e.g. , of the donors which pro-
vide the electrons for the 2D EG in a heterostructure.
Since screening is the more effective the higher the DOS,
the level broadening depends on the position of the Fermi
energy and oscillates as a function of the magnetic field,
i.e., of the filling of the LL Such oscillations of the
linewidth of the LL's have indeed been observed recently
in cyclotron resonance experiments. ' Recent self-
consistent screening theories' ' indicate that, if the Fer-
mi energy is located between two LL's, the level broaden-
ing may become so large that adjacent LL's overlap con-
siderably even in the large magnetic field regime. ' ' In
this situation the predictions of these theories are, howev-
er, not reliable since they are based on assumptions
(neglect of coherent multiple scattering processes and
decoupled LL's), which lead to a semielliptical shape for

the DOS of an individual LL and a break down for over-
lapping LL's.

It has also been emphasized that spatial inhomo-
geneities in the electron density, which are known to be
present in all the investigated samples, can increase the ef-
fective broadening of the LL's. ' ' In a recent publica-
tion' we discussed a statistical model for inhomogeneities
which can produce an effective DOS between the LL's,
and can also simulate qualitatively some characteristic
features of the self-consistent screening mechanism. In
the present paper we apply this statistical model to the
calculation of measurable quantities and we will find that
it can explain the experimental results at least as well as
the ad hoc model of a constant background DOS.

Some of the measurable quantities, e.g. , capacitance and
specific heat, can be discussed within a strictly two-
dimensional model with constant electron density, and the
statistical model developed previously' can immediately
be applied. Others, e.g. , the recharging current which
flows between the 2D EG and the gate while sweeping the
magnetic field and, thereby, changing the capacitance, are
better discussed within the three-dimensional (3D) model
of the inversion layer. In order to give a coherent descrip-
tion, we start in Sec. II with the three-dimensional treat-
ment and reduce it, where possible, to the two-
dimensional model. In the Appendix we show, for in-
stance, that the magnetic-field dependence of the de-
pletion charges is of no importance for the GaAs system.
In Sec. III we discuss several interesting properties of the
statistical model, e.g. , the interrelation of its three-
dimensional and its two-dimensional versions. Finally, in
Sec. IV we compare the results of the statistical model
with experiments and other model calculations.

II. 3D MODEL OF THE HETEROSTRUCTURE

The electrical subband structure has been calculated by
several authors both for Si-MOSFET's (Refs. 18 and 19)
and GaAs heterostructures. In this paper the simple
self-consistent variational method of Fang and Howard'
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fi—a, a, + V(z) X, (z)=E,X, (z),
2m

(2.1)

B,KB,Q(z) = —4~p(z),

with

(2.2)

V(z) = —ey(z)+ & V, (z),

p(z) =p; (z) —e g [X;(z)] n; .

(2.3)

(2.4)

Here p; (z) represents the gate charges and assumed uni-
form acceptor and donor charges in the semiconductor
and the insulator, respectively. K stands for the (slightly
different) dielectric constants of these two materials and

within the Hartree approximation will be used for hetero-
structures that may have a gate. The effect of a variable
depletion layer thickness together with the question
whether the 2D EG is in equilibrium with the bulk will be
considered. In order to compare results with the gate-
current measurements' we will also discuss the case of
variable electron density n, due to an external circuit be-
tween the 2D EG and the gate. Initially the sample will
be assumed to be homogeneous in the directions parallel
to the insulator-semiconductor interface. In order to
determine the electrical subband structure the Schrodinger
and the Poisson equations for the electrons and the immo-
bile charges in the heterostructure have to be solved self-
consistently. The external magnetic field B perpendicular
to the interface will lead to the familiar LL splitting of
the subbands. The heterostructure is shown schematically
in Fig. 1. The coupled equations for the subband envelope
functions X;(z) and the charges p(z) in the effective-mass
approximation are then

m for their effective masses. n; (n, =no) is the areal elec-
tronic density of the ith band while b, V, (z) is the
conduction-band edge at the interface. Numerical solu-
tions of (2.1)—(2.4) by Stern and Das Sarma and varia-
tional solution by Bastard have shown that the neglect
of the penetration of the electrons into the insulator intro-
duces only a small error to the results. We will therefore
assume that the electrons are confined to the serniconduc-
tor and in order to obtain analytical results, to simplify
the later introduction of statistical inhomogeneities in n„
we adapt the ansatz for the wave function,

Xo(z) =
1/2

Q
3

ze
—'" (2.5)

—ep(d ) =EF +EG E„, — (2.6)

where EF is the Fermi energy level, Ez is the band gap of

where b is a variational parameter to be fixed by the self-
consistency requirement, and the origin is assumed to be
at the interface. In accordance with experimental evi-
dence at very low temperature T for the equilibrium prop-
erties we are interested in, only the lowest subband will be
assumed occupied and all the donors in the insulator are
considered ionized.

We consider two models for the inversion layer. In the
first the 2D EG is in equilibrium with the electrons of the
bulk semiconductor, and the depletion length d is calcu-
lated self-consistently for a given homogeneous acceptor
concentration.

In addition to the total charge neutrality of the hetero-
structure we require

~ E+E-E
-e

KD

, S

FIG. 1. A schematic figure of a heterostructure, where EF is the Fermi level; Eo is the lowest electrical subband; E, is the bottom
of the confining potential; n, is the density of 2D EG; Nz is the density of acceptors in the GaAs; ND is the density of donors in the
Gal Al„As; KD is the dielectric constant of the insulator; K& is the dielectric constant of the semiconductor; b,E, is the conduction-
band offset; AE~ is the Schottky barrier; eng is the gate charge density; Vg is the gate voltage; EG is the energy gap of the semicon-
ductor; and E& is the acceptor energy.
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the semiconductor, and Ez is the acceptor energy, i.e., the
Fermi level is fixed at the acceptor energy in the bulk
semiconductor. The charge neutrality is then reflected in
the condition that the electric field —P (z) vanishes as
z~+ oo. The calculations for this model are performed
in the Appendix where we see that for GaAs heterostruc-
tures the variation of n, and Nz d is insignificant and can
be neglected. This is due to the large depletion length of
GaAs heterostructures. The Nzd variation may, howev-
er, be important in materials with short d as, for example,
In„Gal „As«Pi «/InP (Ref. 25) and may in such cases
modify the measured capacitance significantly as is shown
in the Appendix. In the second model the 2D EG is not
in equilibrium with the bulk semiconductor and the de-
pletion charge Nzd will be considered constant. In this
case the electrical field at the interface —P'(0) = V'(0)/e
will be specified. This model will still be able to account
for a charge transfer via an external circuit between the
2D EG and a possible gate on the heterostructure, as is
needed to explain the gate-current and the capacitance
measurements, and we will discuss only this model in the
following.

The self-consistency requirement for solving (2. 1)—(2.4)
with the variational ansatz (2.5) is now fulfilled in the fol-
lowing way. First the Poisson equation (2.2) is solved to-
gether with the ansatz (2.5) giving the potential V(z, b),
where b is the still-free variational parameter.

Next the variational ansatz (2.5), with a new parameter
b, is used to evaluate (Ez,„+V(z, b) )- which is then min-

imized with respect to b in order to derive the lowest sub-
band energy Eo(bo, b). The self-consistency is then satis-
fied by assuming that the parameter b used in the first
step is in reality the parameter bp determined from the
minimization of the subband energy, i.e., b:—bp. In
evaluating the expectation value of the potential ( V(z) ) a
term of the order of (z/d) is neglected due to the small
extent, 1/b, of the wave function compared with the de-
pletion layer thickness d (see the Appendix for details).
The variational calculation yields a relation between n,
and Ep —E„where E, is the depth of the potential well at
the interface [E,= V(0+ )]. The chemical potential

2

E —E = 4~e 3
P s ~ b 64 s

—
(
—n+ —1V d) (2. 1 1)

with

b= (n, +—„%„d)33~ 32

2aB

1/3

(2.12)

where a~ K~fi ——/me is the effective Bohr radius of the
electrons of GaAs.

We will now distinguish two different cases of this
model corresponding to different experimental setups.
When the current between the 2D EG and the gate is
measured as a function of B,' or when the capacitance is
measured, ' then the gate voltage Vg is essentially held
constant while n, can vary with B. In that respect we will
consider the case when Vz and Nzd is held constant. The
differential capacitance per area can then be found by dif-
ferentiating Eq. (2.10) with respect to n„usi ng Eq. (2.11):

edn,'
dV,

4nL 1 4m 55+ 2 +
K~ e D~ K~b 32

1+ 192 Ngd
+

55

1+ 32 Nqd

11 n,

(2.13)

where Dr is the thermodynamic density of states (TDOS):

dns
Dg ——

dp

The gate current per area is

(2.14)

dns
Ig ———e

dt v

Bn, C dB= —e
BB „'D dt

(2.15)

barrier, and Xz is the donor concentration. Ep is the
electric subband energy:

p =EF—Ep

is related to n, by

n, =j dED(E) f(E —p) .

(2.7)

(2.8)

On the other hand, the specific heat and the rnagnetiza-
tion are measured in heterostructures without a gate, and
n, is kept constant. In this case we set no restriction on
Vg but require n, to be held fixed. (For convenience we
set N~d =0 in this case. ) We introduce the free energy F
and the internal energy U per sample area:

The gate voltage V~ can be expressed in terms of EF—E„
the conduction band offsets at the A1GaAs-barrier sur-
faces and the variation of the electrostatic potential across
the barrier. Using the condition of charge neutrality,

oo

F=n,p —— dED E ln 1+eS
p

U= dED EE E —p

(2.16)

(2.17)

ng+NzL =N&d+n, ,

we obtain

(2.9)
where P = 1/kz T. Then the specific heat C„and the mag-
netization M can be evaluated:

4me L
e Vg

—p —(E, Eo)+ ng+K—, .
KL,

(2.10)
C aU

aT. , (2.18)

Here D(E) is the DOS, eng the density of gate charges, L
is the thickness of the insulator, K& is a constant depend-
ing on the band offset at the interface and the Schottky

aF
()B „y.

Bn,

aB , aB+ (2.19)
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This model has also been used to evaluate the capacitance
of a heterostructure. ' The expression for C in that case
is formally the same as the N„d~0 limit of Eq. (2.13).

III. THE STATISTICAL MODEL

Models of the 2D EG in a strong magnetic field, used
to interpret experimental results, commonly include only
the broadening of the LL's caused by short-range impuri-
ty scattering. ' While the real broadening of LL's ob-
served in experiments is in general larger than the short-
range scattering theories ' predict, attempts have been
made to account for the additional broadening by inho-
mogeneities in the electron density n, .' The introduc-
tion of inhomogeneities in n, may be a simplified method
to account for the scattering of electrons with partially
screened long-range charged impurities or their interac-
tion with the spatial inhomogeneities in the donor and the
acceptor distributions. In that case the statistical distribu-
tions of n, and p would have to be evaluated by solving
self-consistently the Schrodinger and Poisson equations,
not only for the direction perpendicular to the interface,
but also in the 2D EG layer parallel to the interface.

This is a difficult task closely related to the theories of
self-consistent screening for long-range impurities. ' Here
we will instead select simple forms of distributions and
compare the results, for the measurable quantities, quali-
tatively with experimental results. It will also become evi-
dent that some forms of the statistical model indeed mim-
ic to a great extent the properties of the more involved
self-consistent screening theories. Since the Poisson equa-
tion is not used for the 2D EG in the directions along the
interface, the statistical model introduced here considers
an ensemble of independent homogeneous subregions
rather than spatial fluctuations within one sample.

Owing to the relation (2.8), the chemical potential p, to-
gether with the electron density n, will be a random vari-
able. Their probability distributions will be related by'

1 1D(E)=, g exp(2~)'"r ~i' „,(E E„)—
2I

(3.2)

where I and E„are the magnetic-field-dependent
broadening parameter and the energy spectrum, respec-
tively. Here we will adopt the results of the self-
consistent Born approximation for I and select the elec-
tron mobility such that'

I (B)=0.3VB[T] meV . (3.3)

The energy spectrum chosen will be that of free spin de-
generate electrons in a perpendicular magnetic field:

E„(B)=A'co, (n + —, ), (3.4)

where ~, is the effective cyclotron energy for GaAs. The
following parameters will also be used; n,, =2.25&10"
cm, Nz d = 1.44 &( 10" cm, T= 1.64 K. It should be
emphasized that the qualitative behavior of the statistical
model is independent of these choices. In Figs. 2—6 we
show the typical features of the three statistical models to

I I

I I

I

I I

I I

I I

I I

I I

I I

I I

and An, will both in general be functions of B since the
deviation of n, o is fixed. To distinguish between these
three possibilities the names p-, n, -, or n, 0-Gaussian
model will be used. To demonstrate the properties of the
statistical model quantitatively, in the following the single
particle DOS D(E) will be assumed to be of a Gaussian
form, as predicted by higher-order short-range scattering
theories: '

dn
P„(p)=P„(n,(p))

dp
(3.1) I I I I I I I I I I I I I t

Thus for the model where n, is held constant a simple
convenient form of a distribution will be selected either
for P„orP„.While the specific form of a distribution is
definitely sample dependent, qualitative properties of the
statistical model may be expected to be independent of the
chosen distribution to some extent. With this in mind we
will discuss the cases when either P„orP„is a Gaussian
distribution. In addition, the Gaussian form of Pz to-
gether with the specific form of D(E) chosen below will
allow for illustrative analytical calculations of some of the
model properties. Since the Fermi level EF is considered
to be constant over the whole sample, the fluctuations in

p have to be understood as being caused by the random-
ness of the electrical subband energy owing to fluctuations
of the electrostatic potential along the interface. On the
other hand, for the model where n, is a function of 8 we
will require n, o n, (B=0) to be——Gaussian distributed im-

plying that go=a, (B=0) is also Gaussian distributed due
to the linear relation between these two variables at zero
magnetic field. In this model the standard deviations Ap

30
5 6 7 8 9 10

[b)
11 12

(meV )
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0 1 2 5 E)

B (T]

FIG. 2. (a) The probability distribution of the chemical po-
tential p of the n, -Gaussian model with An, /n, =0.01 for
B=4.5 T (dashed line) and B=4.65 T (solid line),

n, =2.25X10." cm, T=1.64 K, and 1 =0 3/B[T] meV. .

For B=4.5 T the average (p) is inside a LL while for B=4.65
T it is well between two LL's. (b) The standard deviation of p
as a function of the magnetic field B for An, /n, =0.01 (solid
line) and 0.03 (dashed line). Ago is the standard deviation when
B=O.O T.
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be discussed below. In Fig. 2( )
'
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For the Cxaussian DOS D (E) in Eq. (3.2) the
Gaussian model yields the analytical results

n, =j dED, rr(E)f(E —(p)),
where D,rr(E) has the ss the same form as the input DOS D (E)
[cf. Eq. (3.2)] with 1 replaced b 1 eff~

f'.rr= [1 '+(~V)'1'" (3.6)

The TDOS does also have the simple form

(3.5)

(dn, ldp) =B(n, )IB(p) .

As we have shown previously' the ualita
properties of the -Ga

e qua itative physical
ies o t e p-Gaussian model are clearly illustrated

using the simple approximation:

An,
Ap~

(dn, /dp &

(3.7)

Here it becomes clear that the assumption ofp ion o a small but

p in epen ent of B does not correctly simulate the
behavior of a real sample. It ld 1wou ead to vanishingl
small An, between LL's where the TDOS is small OnS is small. One
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FIG. 5. (a) The standard deviation of the chemical potential
Ap as a function of B for the n 0 Gaussian model with

An, o/ n, o
——0.01 (solid line) and 0.03 (dashed line).

n, o
——2.25' 10" cm, N&d =1.44&(10" cm ', and I and T

are as in Fig. 1. Apo is the deviation of p at B=0.0 T. (b) The
standard deviation of the electron density An, as a function of B
for An, o/n, p

——0.01 (solid line) and 0.03 (dashed line).
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FIG. 6. (a) The effective TDOS for the n, -Gaussian model
with An, /n, =0.0 (dotted line), 0.03 (dashed line), and for the
p-Gaussian model with An, /n, =0.05 (solid line) vs magnetic
field B. n, =2.25&&10" cln ~, T=1.64 K, and 1 =0.3v B[T]
meV. (b) The TDOS for the n, o-Gaussian model for
An, o/n, o

——0.0 (dotted line) and 0.03 (solid line) vs B,
n, o ——2.25)&10'' cm, Nzd =1.44&(10" cm -', and T and I
are as in (a).

would thus have constant n, in an inhornogeneous sample.
Fluctuations in acceptor and donor distributions would be
unscreened. The presence of unscreened charges would
lead to large potential fluctuation through the Poisson
equation, implying large b.p [cf. Eq. (2.7)] in contradic-
tion to the initial assumption. Therefore, we assume for
the p-Gaussian distribution that An„not Ap, is indepen-
dent of B. The choice of a constant An„ independent of
B, leads to a self-consistency relation between the effective
LL width and the average TDOS at the Fermi level, yield-
ing a finite TDOS between the LL's. It is interesting to
note that this aspect is shared by recent theories of self-
consistent screening of long-range scattering' ' where
the screening of the impurities determines the level
broadening and therefore the DOS, while the broadening
itself depends on the DOS at the Fermi level. In the fol-
lowing calculations concerning the p-Gaussian distribu-
tion we will not use the oversimplified approximation
(3.7).

As is seen in Fig. 6(a) the p-Gaussian model is not as
efficient in creating a DOS between the LL's as the n, -

Gaussian model for corresponding An, values. The quali-
tatively different properties of these models may be under-
stood from the different mechanism involved in creating
the DOS in between the LL's. The largest contribution to
the "background" in the n, -Gaussian model is drawn
from the centers of the LL's [cf. Fig. 2(a)], while the @-
Gaussian model emphasizes the tails of the LL's. This
difference is also the cause for the large effective
linewidth of the p-Gaussian model at low magnetic field
B, where the tails of the LL's overlap significantly [cf.
Fig. 3(c)]. The effective linewidth increases sharply, when
an integer number of LL's is occupied. This effect is in
accordance with results of self-consistent screening calcu-
lations' ' where, on the other hand, an oversimplified
approximation leads to elliptically shaped LL's. So in
contrast with our simple model these self-consistent
screening theories do not give physically realistic results
for the TDOS of overlapping LL's.

In a realistic statistical model one would not only ex-
pect Ap to be a function of B as in the p- and n, -

Gaussian model [cf. Figs. 2(b) and 3(b)] but also An,
would depend on B and the filling factor. The n, o-

Gaussian model has such properties, as is seen in Figs.
5(a) and 5(b), where in addition to bp, becoming large at
integer filling factors as in the other models, An, also de-
creases in the same regions. This model is just slightly
less effective in creating a background than the n, -

Gaussian model (cf. Fig. 6) due to the slight dips occur-
ring in b, n, in between LL's as is seen in Fig. 5(b), and the
simultaneous reduction in the Ap peaks in Fig. 5(a) as
compared to the n, -Gaussian model [cf. Fig. 2(b)]. It is
also clear from Fig. 4(b) that the whole LL does contri-
bute to the effective background in contrast to the other
two models. As a result, the probability of the chemical
potential being in between the LL's is neither vanishingly
small as in the n, -Gaussian model [cf. Fig. 2(a)] nor as
great as in the p-Gaussian model. The n, distribution in
this model seen in Fig. 4(a) [contrasted with the n, distri-
bution for the p, -Gaussian model in Fig. 3(a)] is very close
to being Gaussian with a very sharp extremely high peak
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superimposed where n, as a function of n, o develops a
flat region, seen in Fig. 4(c) [cf. Eq. (3.1) with p replaced
by n, o] with n, o corresponding to an integer filling factor
at the respective magnetic field 8.

It is thus clear that these three statistical models do in
many respects reflect qualitatively properties of more so-
phisticated microscopic models' ' and at the same time
are not beset with the problems of unrealistic DOS.

IV. QUALITATIVE COMPARISON
WITH EXPERIMENTS

The experiments for measuring the specific heat, the
capacitance, ' the magnetization, ' the gate current, ' or
the gate voltage of a 2D EG in a heterostructure have all
been carried out for different values of the electronic den-
sity n„the temperature, and the mobility. In most cases
a simple parametric model of a Gaussian DOS superim-
posed on a constant background DOS has been used to in-
terpret the experimental results. In order to present a
coherent picture of the statistical model we have chosen
one common set of parameters (cf. Sec. III) and will com-
pare the results of the statistical model qualitatively with

the simple background model and experimental results.
We use Eq. (3.2) as the input DOS, which for the parame-
ters chosen is vanishingly small between the LL's, so that
the resulting apparent background DOS is clearly an ef-
fect of the inhomogeneities. In Figs. 7—9 the results are
presented. The specific heat for the n, -Gaussian model is
shown in Fig. 7(a) and for the ILI-Gaussian model in Fig.
8(a). It is evident that the 3%-n, -Gaussian distribution
(An, /(n, ) =0.03) creates much higher and smoother ef-
fective background in between the LL's than the 10%%uo-

simple background model, while the 5%-p-Gaussian
model creates about the same amount of background as
that model. Away from the regions of integer filling fac-
tors the specific heat C, of the statistical model coincides
with the values given by the simple model with no back-
ground. This is due to the fact that in contrast with the
simple background model the effective background in the
statistical model is not created by taking away a fraction
of the states from the initial Gaussian DOS in favor of a
constant, magnetic-field-independent background. Com-
pared to the experimental results which are fitted reason-
ably well with a 20% background it can be seen that the
n, -Gaussian model would do the same for b,n, /(n, )

E
O

hC

P
S
E

C)

0 lllllll

(

20
b) B (T)

I I I

I I I I I I I I I I I I I I I'I I I I I I I I I I I I I I I I I I I I I I lrl I I I I I I I I I I I I

1 2 3 4 5 6

0 I I I I

20
I

(b)
5 6

B (T)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
T

-20
1 I I I I I I I II I I I I I I I I I I I I I I I I I I I I II I I I I I I I II I I I I I it I I I I I I I I I I I I I

12

0 1 2 3

(c)
4 5 6

B (T)
12

0

(c)
5 6

B (T)

10 10

8 8

6

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
I

5 6
B (T)

IIIIIIIIIIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

5 6
B (T)

FIG. 7. (a) The specific heat, (b) magnetization, and (c)
chemical potential of the n, -Gaussian model for hn, /n, =0.0
(dotted line), 0.03 (solid line), and for An, /n, =0.0 with a 10%
background (dashed line) vs the magnetic field B. The parame-
ters n„T,and I are as in Fig. 6(a).

8. (a) The specific heat, (b) magnetization, and (c)
chemical potential of the p-Gaussian model for hn, /n, =0.0
(dotted line), 0.05 (solid line), and for hn, /n, =0.0 with a 10%
background (dashed line) vs the magnetic field B. The parame-
ters n„T,and I are as in Fig. 6(a). Mo ——2ekT/hc.
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—1—2%, while the p-Gaussian model would not be able
to recreate the low-B-field characteristics of C, due to the
large fluctuation of n, needed to reproduce the effective
background for large B. [This strongly depends though
on the form chosen for 1 (B).]

The capacitance measurements have been fitted both
with a simple background model' and with a statistical
model for low B.' In both cases a model assuming con-
stant n, is used instead of one in which the gate voltage
Vg is fixed. This discrepancy has been pointed out, but
the simple n, -constant model was used since the differ-
ence is small for the parameters of interest. But this
difference becomes much more pronounced in the case
when inhomogeneities of n, are included. The minima in
the capacitance C [cf. Fig. 9(a)] become much broader,
comparable with the experimental results, ' when the n, 0-

Gaussian model is used. This is due to the fact that in
this model n, is variable as is seen in Fig. 9(c) and there-
fore the minima of C which occur for integer filling fac-
tors are not located at fixed B values during the averaging
process.

The gate-current' measurement is probably most sensi-

tive to the form of the DOS. If neither a simple back-
ground nor inhomogeneities are used in the n, o model to
fit the experimental results then the current peaks occur-
ring at integer filling factor become too sharp and too
high. If a simple background model is used [cf. Fig. 9(b)]
the height of the peaks increases with increasing B as is
seen in experiment until at higher B they become smaller
with a flat top. This behavior contradicts the experirnen-
tal results and may point to the artificiality of the flat B-
independent background. On the other hand, the n, o-

statistical model reproduces the experimentally observed
gradual increase of the current peaks with increasing B
very well, see Fig. 9(b).

The magnetization measurement has been fitted with
extremely high LL broadening (I =1.2 meV) and no
background. We have found that it may even better be
fitted with lower broadening (I =0.6 meV) and very high
background (40%), which points in the direction that the
assumption of Gaussian shaped LL's may not be adequate
in this case. It is therefore clear that in order to fit the
statistical model to the experimental results, one would
need a delicate balance between larger LL widths and
rather high statistical fluctuations. This may indicate
that in this multilayer sample the fluctuations are larger
than believed.

In Figs. 7 and 8(c) it is seen that the p, -Gaussian and
the n, -Gaussian models can account for the smoothening
effects as well as the simple background model. The gate
voltage V~ between the gate and the 2D EG layer has
been measured for a heterostructure as a function of B.
Such measurements seem to be extremely susceptible to
external noise and inconclusive up until now. For a com-
plete discussion we show though the chemical potential,
which is proportional to V~, in Figs. 7 and 8(c).

From the above discussion we have seen that the statist-
ical model can explain most of the experimental results at
least as well as the simple background model. In contrast
to the latter it can explain physically the apparent DOS in
between LL's. It has also been emphasized that the sta-
tistical model is a phenomenological model, and a micro-
scopic approach is needed in order to derive more realistic
distribution for n, .
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APPENDIX: THE 2D EG IN EQUILIBRIUM
WITH THE DEPLETION LAYER
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FIG. 9. (a) The differential capacitance, (b) the gate current,

and (c) the electron density of the n, o-Gaussian model for
hn, o/n, o ——0.0 (dotted line), 0.03 (solid line), and for
An, o/n, o

——0.0 with a 10% background (dashed line) vs magnetic
field B. The parameters n, o Ngd, T, and I are as in Fig. 6(b).

0
The thickness of the insulator is 845 A. For the gate current in
(b) we assume the sweep rate dB/dT =1 T/min and sample
area 0.8 mm .

V(z) =—

—b~ bz 3+n e ' +2z+—
2 b

+ ( EF +F-G E„). — (A 1 )

Here the coupled Schrodinger and the Poisson's equa-
tions (2.1)—(2.4) will be considered for the boundary con-
dition (2.6), i.e., the 2D EG is in equilibrium with the de-
pletion layer. In the region z )0 (cf. Fig. 1) one obtains

2
4~e' &~d z z

1 —2—+
K~ 2 d d
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Now one can use the fact that 1/b &&d to neglect the
term of the order (z/d) when taking the expectation
value of V(z). Again we will arrive at the set of nonlinear
equations (2.7)—(2.10) where the functional dependence of
E, and Eo on n, is now changed:

2. 5

2. 0

1.5

4~e'
K~ 2

15n,

bd 16b

4~e2 N~ d2
E, =(EF+EG E„—)— +

K~ 2 b

Ab
Eo = +(EF+EG —E„)

Sm

(A2)

(A3)

1.0

p. 5

0
CD

C -p. 5
IX)

-1.0

We solved this set of equations [(2.7)—(2.10) and (A2) and
(A3)] with the condition that Vs =const, thus deriving n,
and Nzd as functions of B. The result is shown in Fig.
10 where we can see that the variation of n, is small, of
the order of 1%, and that the variation of the depletion
charge Nzd is even smaller by an order of magnitude.
Compared with Fig. 8(c) we therefore see that the varia-
tion of n, is almost entirely due to changes in ng, the gate
charge. In the main text we therefore consider the model
when d~ap with Nod=const. On the other hand, as
mentioned before the Nz d variation can be of importance
in materials with short depletion length d (but still
d & 1/b). In that case for example the capacitance be-
comes

-1.5

-2. 0 ~ I ~ I I I ~ I ~ t ~ I I I I I I I I I 4 a I I ~ a I a a I I a 4 ~ I I I I ~ I I I ~ I I I I I |I I I I I I a I I I I I I I I I ~ I ~ I I I I I I I I j I I

B (T)

FIG. 10. The electron density n, (B)—n, (0) (solid line) and
the depletion charge density N&d(B) —N&d(0) (dashed line) vs

the magnetic field B, n, (0)=2.25&(10" cm, N&d(0)=1. 44
&(10" cm, and Nq ——10' cm, and the parameters T and I"

are as in Fig. 6(b).

dnaC=e
de

DrP+N„(1+DER)

[DrP+Ng ( 1 +Dr R ) ]/Co —[DOPA +B( 1 +DER )]/8

where Co ——KD/4~L and

Bn,
Dp ——

Bp
(A5)

4~e
d

4
Kq bd

10 1

11 bd

16 N, d1—
5 n,

32 Ngd
1+

11 n,

4~e 2

Kq b

24&e

Kg

1+ 48 Nqd

11 n,

1+ 32 Nod
11 n,

32
11bd

1+ 32 Nqd
11 n,

(A6)

(A7)

4~e 19 10 11—
Kq 32b 19 bd

1—16 N&d

5 n,

1+ 32 Ngd
11 n,

(A8)

(A9)

This reduces to Eq. (2.13) for the case d ~ m,
N„d=const. In the limit N„d~0, d~ao, Eqs. (2.13)
and (A4) have the same limiting form that has been used
to fit the capacitance measurements. '
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