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In an electron-hole plasma, electron-hole collisions conserve the total momentum but relax the

electric current. The corresponding relaxation time ~, q is obtained from two coupled Boltzmann
equations. We take into account multivalley structure and screening. An exact solution is given

when the electron-hole plasma is in the quantum limit, while in the classical limit, we use a varia-

tional approach. We find that when the plasma density is increased at fixed temperature, ~, z goes

through a minimum reached roughly when the plasma becomes degenerate. The size of A'/~, q at
the maximum is mainly controlled by the exciton binding energy.

Recent experiments' on the reflectivity of extremely
dense electron-hole (e-h) plasmas created by femtosecond
laser irradiations of silicon samples have shown a free-
carrier absorption much larger than the usually quoted
value resulting from electron-phonon collisions. This in-
dicates the existence of a very short relaxation time (of the
order of 10 ' s) for the e- h current. This free-carrier ab-
sorption was associated' with a new mechanism which
can be seen only in dense e-h plasmas of semiconductors.
In a metal, or a doped semiconductor, electron-electron
collisions conserve the total momentum and the total
current, whereas in an optically excited semiconductor the
momentum is still conserved, in an e-h collision but the
total current changes, even if the electron and hole masses
are equal: e-h collisions produce a new relaxation mecha-
nism for the current.

In this paper we investigate this relaxation mechanism
by studying the conductivity of an e-h plasma at internal
thermodynamical equilibrium, i.e., with a well-defined
density n and temperature T. We define an effective rela-
tion time w, h for the conductivity as

ne ~, h
2

j= E,
m

m being an appropriate reduced e-h mass for which we
will make a definite choice later in the paper (the physical
results will be of course independent of this choice). The
conductivity is indeed controlled by e-h collisions if the
e-h collision probability A/~, h is larger than the
electron-phonon one A/7 ph The study of electron-
phonon collisions, for all regimes of density and tempera-
ture, will be made in a separate work.

The conductivity relaxation time ~, h depends a priori
on the plasma temperature T, the plasma density n, and
the Coulomb interaction, i.e., the electric charge e. In or-
der to clarify the presentation of the results, it is con-
venient to express the density n in term of a temperature
T„defined as

k T = (37r n)
2m

+e-h

T T
=k~T~dG

n ryd

(4)

The dependence of G on T,~d (i.e., in e ) will come from
screening. The purpose of this paper is to calculate the
function G ( T /T„, T /T, „d ).

We will consider a semiconductor with a multivalley
band structure, an isotropic electron mass rn, and an iso-
tropic hole mass mh. We consider only a single heavy-
hole band since the few light holes are not expected to
change qualitatively or even quantitatively our results.
The effective collision time ~, h is calculated explicitly for
an e-h plasma in the degenerate limit as well as in the
classical one. In both cases, the screening of the Coulomb
interaction by the carriers is taken into account.

The e-h current results from the changes of the electron
and hole distributions due to e-h collisions. These
changes are described by a set of two coupled Boltzmann
equations, one for the electron and one for the hole distri-
bution. An exact solution is obtained in the quantum lim-
it in a way similar to transport theory in Fermi liquids.
Using the Born approximation for the e-h collision cross
section, one finds

+e-h

T' T. ] /4

(5)

The explicit temperature dependence of ~, h in the quan-

( T„ is merely the temperature at which a gas of particles
with mass m and fixed density n becomes degenerate; if
this gas was cooled down to T =0, k&T„would be its
Fermi energy). In the same way the electrical charge is
expressed in terms of an effective exciton energy

me4
k~ Try

2A e

where e is the static dielectric constant. Because we deal
with e-h Coulomb interaction, the e-h collision relaxation
rate scales as T yd e . Then from dimensional argu-
ments, one has the following form for the dependence of
~, hone, T, andn:
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+e-h

3/2
T.-kgT, d T

T4
ln

T1-yd

Equation (6) shows that the effective e-h collision prob-
ability A/~, h decreases in the classical limit when, at a
given temperature, the plasma density goes to zero—as
there are no more particles to collide with. However,
from Eq. (5) the same is true also in the quantum limit,
when the plasma density becomes very large —because of
quantum phase-space restrictions for collision
processes —whereas by a naive argument, one would have
though that the denser the e-h plasma, the stronger the
effect of e-h collisions. Consequently, when the e-h den-
sity is increased at a fixed temperature, A/~, h shows a
maximum for T„—T, the amplitude of which is mainly
controlled by the size of the Coulomb interaction, i.e., the
effective exciton energy kg T~d.

In Sec. I we write the set of two coupled Boltzmann
equations describing the electron and hole distributions.
In Sec. II we give the exact solutions of these Boltzmann
equations in the quantum limit and show how the conduc-
tivity is modified if one includes electron-electron and
hole-hole collisions. In Sec. III we calculate the conduc-
tivity in the classical limit within a variational approach.

turn limit comes from phase-space restrictions, while the
last factor comes from the screening, (T„/T,~d)'~ being
just the produce of the exciton Bohr radius by the screen-
ing wave vector.

No exact solution of the Boltzmann equations exists to
our knowledge for a classical gas. In this limit, one usual-
ly uses a variational principle to get a solution. Using
again the Born approximation for the collision cross sec-
tion, one finds

In Sec. IV we discuss the behavior of the effective col-
lision time as a function of the plasma density, and give
orders of magnitude for ~, h.

In this work we have, for clarity, left the electron-
phonon collisions out of the Boltzmann equations. The
comparison between the effective collision time due to e-h
collisions with the one due to electron-phonon collisions
will be made in an independent publication, as well as a
discussion of the range of temperature and density where
the conductivity is expected to be dominated by these e-h
collisions. However, from now on it is clear that relaxa-
tion times of the order of 10 ' s observed experimentally
are likely to require a process different from the usual
electron-phonon interaction in order to be explained, and
this justifies the present investigation. We will see that
e-h collisions can indeed produce relaxation times as short
as 10 ' s.

I. BOLTZMANN EQUATIONS

The electron and hole distributions of an e-h plasma in
an electric field E satisfy the following Boltzmann equa-
tions in the linear approximation:

Ak]
( —eE)=I,(k)),

me

Ak2
~ (eE) =I„(k,) .

mh

The collision term I, includes an e-h collision term I, h

and an electron-electron collision term I, „similarly for
Ih. As a first step, let us consider only e-h collisions:

I, p, (k, )= —2(2') 1 d k2d k3d k45(e)+e2 —e3 —'e4)6(k)+k~ —k3 k4)

x [f',f,"(1 f', )(1 f4) —(1 f', )(1—f—", )f3f—4] W—(k', , k",, k3yk4) .

k~ and k3 are the electron momentum before and after
collision, k2 and k4 are the hole ones [see Fig. 1(a)];
e'=A k /2m, and e"=A k /2mh are electron and hole
energies. f' and f" are the electron and hole distributions
in the presence of the electric field while f, and fq are
their equilibrium values; f, =—f(k&). W' is the scattering
probability. For a screened Coulomb potential, within the
Born approximation, 8' is

The contribution I, h of the e-h collisions to the hole
collision integral Ih is obtained from I, h by changing
d k2 into d k] and multiplying by U, the conduction-
band degeneracy. Within the linear approximation for the

w(q)=2'
2

4vr(e /e)a
1+q a

where q=k3 —k] is the momentum transfer during the
collision and a the screening length. This Born formula
is valid only if the diffusing potential can be taken as a
perturbation, i.e., for a o » a or ka o » 1, where
ao ——A /e/me is the Bohr radius and k is the average
carrier momentum.

(a) (b)

FIG. 1. (a) Collision between one electron kl and one hole k2,
with a momentUm transfer q. (b) Bipolar coordinates. The z
axis is chosen along q and the plane xz is chosen to contain kl.
y is the angle between the planes (k~, k3) and (k2, k4).
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change in Fermi distributions, one can define p' and 1t" by

f1 =f'1 +f.1(1 f,'—1 )01,

fh 2 +fh 2 ( I fh 2 )P2 ~

The collision integral reads in terms of g,

I, h
———2(2~) J d k2 d k3 d3k45(e)5(k) W

&&f'1fh 2(1 —f'3 )(1 fh 4—)

It is then easy to verify that the exact solutions, to first

order in E, for the functions 1tj verifying the Boltzmann
equations (7) have the form

P'(k) =-
kT m,

P"(k)=
kT m~

(12)

where r'(k) and H(k) are unknown functions of the
momentum moduli only [we want to stress that Eqs. (12)
are not relaxation-time approximations but exact solu-
tions]; from Eqs. (7) and (11), r, and rh should satisfy

f, , (1 f, , ) =2(2—n) Jd k2 d k3 d k4 5(e) 5(k) Wf, ,fh2(1 f, 3 )(1—fh4)—
k] k3

X
k mp,

~ k).k2 ~ k) kq
+2 +4

k k
(13a)

fh2(1 —fh2)=2v(2m) Jd k1d k3d k45(e) 5(k)Wf, ,fh2(1 —f, , )(1 fh4)—
~k2 k4

W2
—74

kq

mp,

me

kq k) k2.k3
7] T3

k k
(13b)

One is now left with the resolution of Eq. (13). Before
proceeding to discuss this resolution in the degenerate and
in the classical limits as is done in Secs. II and III, one
can look at the expression of the e-h current in terms of ~'
and H. By definition, if the electric field E is along the x
axis, the current j along this direction is

Ski , Ak2j„=g( —e) 'f', + ye "f," .
k

1
me k mh

2

(14)

J- —
3 m, (2~)3 2m kBT 1"'1 "1

1 d k2 & kg g p p

mh (2' ) mh B

With use of the fact that for the unperturbed distribution
f there is no current, j„ is finally expressed from r' and

as

n =vK, /3w =K~/3w (16)

Let us now examine how the calculation on the right-
hand side of Eqs. (13) goes on. First, one performs the
integration on k4 using the function 5(k). Then one
makes a change of variables using bipolar coordinates [see
Fig. 1(b)]. We introduce the vector
q = k& —k3 ———k2+ k4. Then

Fermi liquids. The quantum limit leads to a very crucial
simplification in Eqs. (13): The energy and momentum
conservation laws together with the Fermi form of the
electron and hole distributions impose that all the electron
and hole momenta stay close to their Fermi value within
an energy range k~T. For an e-h plasma density n and a
conduction-band degeneracy v, these Fermi momenta K,
and K~ for electrons and holes are such that

(15) d k2 d k3 ——2~ dk2 k3dk3 k4dk4dq dy,
k)

(17)

The electric current is the sum of an electron contribution
and a hole contribution as expected, but the collision
times ~, and ~~ result from a set of two coupled integrals
equations (7).

II. QUANTUM LIMIT

For a degenerate e-h plasma, Eqs. (13) can be solved ex-
actly analytically by a procedure similar to the one used in

being the angle between the planes (k1, —k3) and
( —k2, k4) as shown in Fig. 1(b). The factor 2m comes
from the integration on the azumuthal angle around k~.
The introduction of the vector q is particularly appropri-
ate since the scattering probability is expressed in terms of
this momentum transfer [see Eq. (9)]. Moreover, this
change of variable allows us to eliminate the angular part
of the integrals. As a result the scattering probability ap-
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pears only in parameters. The fact that the k's stay close
to the Fermi momentum implies that

q =(k& —k3) =k &+k3 —2k&.k3—2K, —2k|.k3 . (18)

ki.k3 ——K, —q /2,
k2-k4 ——Kg —q /2,

f k4.ki dg= f —k2 k|dy=2~q /4 .

(19)

Consequently, the scalar products appearing in Eq. (13)
are easily expressed in terms of q;

By referring back to Eqs. (13), one can rewrite them in a
much simpler form:

r, (x) r, (x') t

n ( —x)= fdx'dx3dx45(x +x'+x3+x4)n(x')n (x3)n(x4) a
me me mgme

r, (x') rq(x')
+p + (20a)

Kf, rg(x)
n( —x)= f d xd xd3x45( x+ x+ x+3x4)n(x') n( x)3n(x4) a

mp,

rg(x') r, (x')
+p

me

rg(x')
+

mp
(20b)

meWqqdq
ro ' w(0}

(21)

The constant ~o has the dimension of a time
2 2

(o)
(2~)4

(Note that the momentum transfer q varies from zero to
twice the shortest of the two Fermi momenta K, and K~.,
here this is K, as it is always the case in semiconductors).
In order to decouple the two integral equations (20), let us
introduce two new functions defined as

r, (x) rg(x)
J(x)= +

Ply,

r, (x) Kg rg(x)
L (x)=

m, K,' mg

(22)

The function J(x) is the one entering the expression for
the current; as from Eq. (15) one sees that

j=ne E f J(x)n(x)n( —x)dx . (23)

where x =(e— Iu)/k sT is the reduced energy. (x,x') cor-
responds to (x&,x2) in Eq. (12a) and (x2,x, ) in Eq. (12b).
x3 and x4 have also been changed into —x3a, d —x4.
The functions n (x) =(e"+ 1) ' come from the Fermi dis-
tributions fo. We have used Eq. (16) to obtain Eq. (20b).
The specific form of the scattering probability appears
only in the coefficients a and p and does not enter else-

where in the integral equations:

2m ~ W q dqa=
W(0) K,

0= dx'dx3dx46 x+x'+x3+x4 n x' n x3 n x4

X [L(x) L(x'}]—, (24b)

where s is a constant, independent of the density

s =Kg/(K, +Kg, )=(1+v i
) (25)

as
= (x +~ )J (x) —(1—P/as )cosh—

2

(x+x')J(x')dx'
sinh[(x +x')/2]cosh(x'/2)

(26)

Then one expands J(x) (which is easily seen to be an even

function of x) over a set of eigenfunctions @ (x),

J(x)=2cosh —g C 4 (x),
v=]

where the 4& (x) are defined by
I

dx'N (x')
sinh[(x —x ') /2]

f+„(x)+„(x)(x +~ )dx =5„
One can show that

(27)

(x +sr )@„(x),
(28)

(x) 2 (2v+1)in
dx =—

cosh(x /2) m. v(v+ 1)
(29)

From Eqs. (26)—(29) one obtains easily the coefficient C
as

The integral equation (24a) is now similar to the one
found in Fermi liquids and will be solved using a similar
procedure. Equation (24b) will be considered later. The
integrations over x3 and x4 are performed and leads to

Then the Eqs. (20) can be rewritten in terms of J(x) and
L (x) as

1- (2v+ 1)'
C = ——

~ P+as[v(v+1)/2 —1]
(30)

X n (x4)[J(x) —(1—P/as )J(x ')], (24a)

n( —x) = fdx' dx3 dx4 6(x +x'+x3+x4)n (x')n (x3 }
es

By referring back to expression (23) for the current, the
integration is straightforward using Eq. (27), and one fi-
nally gets the exact expression for the current of an e-h
plasma in the quantum limit
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j=ne Eg —,'C 3

e (2v+ 1)=n P, ~ v(v+1) [1+(a/P)s[v(v+1)/2 —I] IDdt

(31)

distribution created by e-h collisions as we will see below.
Electron-electron collisions add a new term I, , to the col-
lision integral I, defined in Eq. (7). One has
Ie =Ie e +Ie p With

I, , (k ) ) = 2u(2~) f d'k, d'k, d'k~ 5(e) g(k) P'

4we a K, (um, +u' mg)
(32)

The two coefficients a and P, defined in Eq. (21), de-

pend on the explicit form of 8'. The calculation of o; and

P is straightforward if one uses the Born approximation
(9). Noting that this approximation can be used only if
the screening length a is smaller than the Bohr radius ao
or smaller than (Ka)ao, the Born approximation implies

K,a » 1 (i.e., T„»To), because the Thomas-Fermi
screening length is given by

&(fif3(1—f )(I f4)—
—'I —f»(1 f3)f2f—4l

(37)

Similarly, a new integral I~ ~ for hole-hole collisions ap-
pears in Il, . Then we proceed as before using Eqs. (10)
and (12), in order to get a set of two integral equations for
r, and r~ similar to Eqs. (13). Using the simplification of
the quantum limit, one finds that electron-electron col-
lisions add a new term

ne EwO 6
2

(K,a)
m

(33)

For completeness, let us look at the solution of Eq.
(24b) for the function L (x), the knowledge of both J(x)
and L (x) being necessary to find r, (x) and r~(x), i.e., the
Fermi distributions in presence of an electric field. A pro-
cedure similar to the one used for J(x) shows that the
solution of Eq. (24b) is

x v'3
L (x)=2c cosh —4&(x) = —c

2 ' 2~
(34)

when c is an undetermined constant. This undetermina-
tion comes from the translational invariance of the prob-
lem. The proper choice for c has to be imposed physical-
ly. It comes from the conservation of momentum during
collisions:

In this limit Eqs. (9) and (21) give P=vm/4ro(K, a),
while a/P is very large and on the order of (K,a) . Phys-
ically, this happens because only collisions with small
momentum transfer are important. Consequently the
v= 1 term of the expansion (29) gives the result with an
excellent accuracy. Physically, this is because the limit
P~O corresponds to a situation where we have only for-
ward scattering. The collisions do not destroy the current
and the conductivity is infinite. The corresponding diver-
gence comes from the v= 1 term, and therefore this term
is a very good approximation for small 13. Finally,

m, r, (x)
UCX

mp me

r, (x')

me
(38)

to the large square brackets of Eq. (20a), and that hole-
hole collisions induce a new term

m„' r, (x) r, (x')
a'

m, mg mg2
(39)

III. CLASSICAL LIMIT

in the large square brackets of Eq. (20b), a' being obtained
by changing K, into KI, in o.. As one can see, the intro-
duction of e-e and h-h collisions does not change the
structure of the integral equations (20) for r, (x) and
rh (x), but only modifies the numerical coefficients:
ar, (x) becomes a, r, (x) with a, =a(1+urn, /m f )

and arqK~/K, becomes af, r~(x) with aq =aK&/K,
+a'm~/m, . The calculation goes on similarly, introduc-
ing two new functions, J(x) defined as in Eq. (22) and
L(x) =a, r, (x)/m, —ahr~(x)/m~. The solution J(x) is
just obtained from Eq. (24) by changing a into
a=(a, +ah)/a, ai, and similarly for the expression (31)
of the e-h current.

Since e-e and h-h collisions do not change P (this is
linked to the fact that the current is not changed by these
collisions), they do not change the v= 1 term of expression
(31) for j and our final result Eq. (33) remains valid.

gk)f )+ gk2f2 =0
kl k2

(35)

if we assume that the total momentum is initially zero.
Using Eqs. (10) and (12), this conservation law becomes

~, x —~~x n xn —xdx=O (36)

and the constant c can be easily deduced from it.
Up to now, we have only considered e-h collisions and

neglect e-e collisions in the collision integral I, . e-e col-
lisions cannot by themselves relax any current (if only one
spherical electron mass is considered) since they conserve
the total momentum. However, they modify the electron

To our knowledge the Boltzmann equations (7) or (13)
cannot be solved exactly for an e-h plasma in the nonde-
generate limit. The usual technique ' is to replace r, (x)
and rh(x) by trial functions which can be taken as

r, (x) = $ r,„x",
n=0

rpj (x) —g rhzx
n=0

(40)

and to use a variational principle in order to find the best
choice for these trial functions. This variational princi-
ple states that J, h/(J, + Jq) should be minimum with
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J g: y W5(e) 6(k)(ljii + yp 1/ 3 I//4)

1,2, 3,4

&&fif2)(1 f3)(1—f4»

simplification turns out to be the approximation mostly
used as it already gives a good result; we will also employ
it in this paper. It is then straightforward to show that J,
and J~ are simply

mg

Bf, i irik)
~ ( —eE),

m,

~fh z .(eE) .
ac"

(41)
e 2E2

J, =n
k~T m,

e 2E2
Jg ——n

k~T mg

while the quantity J, h can be written as

(43)

J, +Jg ——J, g . (42)

The calculation is considerably simplified by keeping
only the lowest-order term in the expansion of the ~; this

The variational principle flexes the shape of the w func-
tion up to a multiplicative constant; this constant is deter-
mined going back to the Boltzmann equation: it should
be such that

2
e EJ, I,

——n +
k~ T m~ m~

Jp ~

Tp

~p is a constant having the dimension of a time

1
2 mern

W(0)(kiiT ) (kiiT)'
9~ $ m +m~

while Jo depends explicitly on the form of W(q):

(44)

(45)

Jp ——
W[(2mkii Tu /fi )'~ ]

u d ud u1d u2e ' '5 u
me+my

memg
1/2

u (uimh +u2m, )
1/2 1/2 (46)

where u =A k /2mk&T. The integrations over u1 and u2
are straightforward if one replaces the 6 function by its
standard integral representation

u m(m, +mi, )

4m, m~

W[(2mkgTu 2/iii )
~ ]

W(0)

Jp =w 2u exp7/2 3

0

(47)

In order to explicitly get Jp, one needs to have 8'. Before
doing so, one can note that the electric current defined in
Eq. (9) depends on Jo as

~ 2 1e Vhj=ne E +
m, mp

E p

m Jp
(48)

when we have used the normalization condition (42) with
the expressions (42) and (43) for J„+Ji„and J, i, .

The use of the Born approximation for 8' relies on ei-
ther one of the two conditions ap »a or kap » 1. Equa-
tion (32) for the screening length gives in the case of a
nondegenerate e-h plasma

4~e a =k&T/2n, (49)

so that the first condition a «ap reads TpydT ((
while the second one reads T,yd ((T Since for the non-
degenerate limit, T„«T, one finds that the Born approx-
imation is valid for a classical e-h plasma if T~d &&T

T]/2T3/2
up=

2ma kg T
(51)

Noting that up is small when the Born formula is valid,
one simply finds j(uo)-uolnuo . Going back to the ex-
pression (48) for the electric current, one finally finds in
the Born approximation

E +pJ=
7/2 41 —2

up nup
(52)

IV. DENSITY DEPENDENCE OF THE
EFFECTIVE e-h COLLISION TIME

We have obtained in Sec. II the exact solution for the
conductivity in the quantum limit (T«T„) and have
given its explicit form [Eq. (33)] within the Born approxi-
mation. In terms of T, Ted& and T„,one finds

T T„
=k~ T„d

+e h
"

Tn Tl y

5/2 vmemp

m (mu +m )''meV mg
(53)

while it is never valid if T «Tpyd We will restrict our-

selves in the following to the range of validity of the Born
formula. The coefficient Jo is then Jo ——m. ~ j(uo) with

2u exp[ —u m (m, +mh )/4m, mp, ]
j(uo) = . . . du (50)

0 (1+u /uo)
and
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The factor (T/T„) is due to the usual phase-space re-
striction in the quantum limit, while the factor
(T„/T~d)' comes from screening. As T„—n ~, we
conclude that the effective e-h collision time diverges at
large density, as n ~, mainly due to quantum restriction.
We have introduced an arbitrary reduced mass m in the
definitions of J, T~d, and T„; one can easily check that
m disappears from the electric current J as it should. The
band-structure effect appears only within the last set of
large parentheses in Eq. (53). If we choose
m '=m, +mh ', this term equals 12 for m, =rnh and
v = 1, while it is 3S for silicon.

The nondegenerate limit ( T„«T) studied in Sec. III,
gives for the effective e-h collision time within the Born
approximation ( To « T),

. 3/2-
T.

=k~ T~d
+e-h

T2
ln T3/'27 & ~2

n ryd

16 ~e~h
X 9~3~2 m (m, +mh )

(54)

to leading order in T/T„. One finds that the collision
probability is proportional to the e hdensity -(T„—n)
and goes to zero when there are no more carriers, as ex-
pected (see Fig. 2). The ln term is a slowly varying func-
tion which comes from screening. The band-structure
part, placed with the last set of large parentheses, is sim-
ply 32/9m -0.6 with our choice m '=m, '+mh ', it
does not depend on v as expected for independent classical
carriers.

To our knowledge there is no analytical way to solve
the set of two coupled Boltzmann equations in the inter-
mediate regime when T- T„. We have seen in the previ-
ous results Eqs. (53) and (54), that fi/r, h goes to zero
when n is very small and also when n is very large.
Therefore one can reasonably expect for A/~, h, as a func-
tion of n, a smooth curve with a maximum in the inter-
mediate region T-T„. In this range the low- and the
high-density results both lead to A/~, h proportional to

keTo—

~2/3
n n

FIG. 2. Density dependence of the e-h collision time in the
degenerate and the classical limit. T„varies with density as
n . kz To is the effective exciton binding energy ( To = T„yd in

the text).

the exciton binding energy kz T„~d [noting that
( T„/T,sz)' or ln( T„/T, sq) vary very slowly with

T„/T,„d]. The numerical factor has to be estimated from
an interpolation between the two limiting results. It could
possibly be of the order of 10. For silicon this gives a re-
laxation time in the 10 ' -to-10 ' -s range.

CONCLUSION

We have shown that the conductivity relaxation time
~, h due to e-h collisions increases as n when the e-h
plasma density becomes very large, due to quantum
phase-space restrictions. It also diverges, as n ', for a
very dilute system because there is no more collision.
Consequently, one expects for A/~, h a maximum, at in-
termediate density, when the e-h plasma becomes degen-
erate, the size of the collision probability A/~, h at the
maximum being mainly controlled by the Coulomb in-
teraction, i.e., the exciton binding energy. This is in con-
tradiction with the naive idea that the effect of e-h col-
lisions should be more important in densest plasmas.
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