
PHYSICAL REVIEW B VOLUME 35, NUMBER 15 15 MAY 1987-II

Macroscopic physics of the silicon inversion layer

M. G. Ancona
Code 6813, naval Research Laboratory, 8'ashington D.C. 20375

H. F. Tiersten
Department of Mechanical Engineering, Rensselaer Polytechnic Institute, Troy, tVeto York 12181

(Received 29 September 1986)

The diffusion-drift description of electrons and holes in a semiconductor is frequently used to ob-

tain a detailed understanding of the physics and engineering of semiconductor devices. We show

that, by generalizing the equation of state of the electron gas to include density-gradient depen-

dences, this standard description can be extended to describe much of the quantum-mechanical
behavior exhibited by strong inversion layers.

I. INTRODUCTION

For a detailed understanding of the physics and en-
gineering of semiconductor devices a macroscopic (contin-
uum) description involving the diffusion-drift current
equations is often used. While this description is fre-
quently employed to simulate transport along a strong in-
version layer at the Si-Si02 interface, it is widely believed
that for accurate modeling a quantum-mechanical
description is required. In the present paper, we show this
view to be incorrect by exhibiting how the macroscopic
description can be extended to analyze the silicon inver-
sion layer. In doing so, a description of a semiconductor
in which a strong inversion layer is present is provided
which is closely akin to that frequently employed in the
numerical simulation of semiconductor devices.

The primary limitations of a physical description such
as that involving the diffusion-drift current equations
arise from the fact that it is a continuum description.
That is, it is a description which involves quantities which
are averages of microscopic variables over arbitrary
volumes large compared to the spacing between discrete
elements yet small with respect to the spatial scales of in-
terest. The range over which such volumes exist defines
the extent of validity of the continuum theory. Thus, for
example, in the bulk of a semiconductor doped at 1&(10'
cm, use of the diffusion-drift description is question-
able when spatial variations not much larger than 100 nm
[(1X 10 ' )'~ cm] are of interest. Similarly, in a strong
inversion layer (where doping is unimportant) with a typi-
cal electron density of 1& 10' cm, a continuum theory
is applicable only over space dimensions large compared
to 10 nm. Because the inversion layer itself is on the or-
der of 10 nm thick, it follows that the usual diffusion-
drift description of the strong inversion layer violates its
fundamental continuum assumption and is therefore in-
valid.

The violation of continuum assumptions by the stan-
dard diffusion-drift description when applied to the
strong inversion layer suggests that no macroscopic
description of the strong inversion layer is possible, i.e., a
microscopic theory is essential. However, by weakening

the continuum assumptions appropriately, it is in fact
possible to extend the range of the macroscopic descrip-
tion into this regime. In particular, instead of allowing
the volumes over which microscopic averages are taken to
be of arbitrary shape, we restrict the class of averaging
volumes to be "pancakelike" regions lying in the plane of
the inversion layer. In this way, the average spacing be-
tween electrons projected along the direction normal to
the larger faces of the "pancake, " is reduced thereby per-
mitting continuum description of more rapid spatial vari-
ations in the normal direction. The price of this increased
normal resolution is a decrease in the ability of the theory
to describe rapid variations in the plane of the inversion
layer. We shall refer to the assumption involved as a
planar-averaged continuum assumption and, as an illus-
tration, the usual application of the diffusion-drift
description to the strong inversion layer can be viewed as
an implicit use of a planar-averaged continuum theory.
Whether a generalized theory of this type is sensible and
the extent to which one can push the normal resolution
are set by the spatial scales of interest both perpendicular
and parallel to the interface. For our work, a normal
resolution of 1 nm is appropriate. This implies that, for
an electron density of 1 X 10' cm, the lateral resolution
relaxes to 32 nm.

Given that a generalized continuum theory may be con-
structed, there is then the question of whether such a
description can account for the important quantum ef-
fects. As noted above, there is some doubt on this point
in the literature; it is known, for example, that the
diffusion-drift description in its usual form is inadequate
in this regard. Nonetheless, the existence of numerous
macroscopic theories which successfully describe quan-
tum phenomena, e.g., London's theory of superconductivi-
ty, belie the general statement. In the language of contin-
uum physics, the reason the diffusion-drift description
fails is not that its underlying balance laws are violated
but rather that its constitutive theory is inadequate.
Specifically, as we show here, the electrons in the inver-
sion layer no longer act as the simple Maxwell gas as-
sumed by the usual diffusion-drift description.

By permitting a more general equation of state for the
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electron gas, which contains a dependence on the density
gradient as well as the density, much of the behavior of
the strong inversion layer can be described. In particular,
we demonstrate that for such a gas in static situations (no
current flow), Newton's second law takes the form of a
macroscopic "Schrodinger equation. " This is obviously
no longer a classical description —it involves a coefficient
which would vanish if Planck's constant were zero—but it
is not a fully quantum mechanical description either: It
contains no phase information as this is lost in the contin-
uum averaging. Consequently, there are transport phe-
nomena, e.g. , Aharonov-Bohm oscillations, which are
beyond the range of this type of description. Nonetheless,
within its range of applicability, the macroscopic theory
has significant advantages. First, the description as for-
mulated here is constructed so as to always satisfy the
fundamental macroscopic laws of physics; there are no
microscopic assumptions of questionable or uncertain va-
lidity involved. Secondly, the equations of electrostatics
are coupled directly into the partial differential system
rather than requiring a self-consistent iteration procedure.
Also, boundary conditions are well-defined in the macro-
scopic approach, whereas microscopically boundary or in-
terface effects arise in volumetric regions which them-
selves have quantum-mechanical descriptions. Finally,
and perhaps most importantly, dissipative effects (scatter-
ing) are readily included in the approach developed here.
In contrast, microscopic quantum transport theories,
while applicable to a much larger class of problems, are
far more complicated.

II. GOVERNING EQUATIONS FOR THF.
SEMICONDUCTOR-INSULATOR SYSTEM

The governing macroscopic equations are obtained, as
in previous work, by postulating the basic elements and
interactions which together constitute a model or idealiza-
tion of the semiconductor. Forcing the model to obey
general conservation laws results in integral forms from
which the governing differential equations and boundary
conditions are then deduced. This system of equations is
underdetermined and must be supplemented by constitu-
tive equations descriptive of the specific materials under
consideration. As noted in Sec. I, for the present work
one of these equations —essentially the equation of state
for the electron gas—is central. In the macroscopic
description the electron-gas properties are set by a specifi-
cation of the dependence of the internal energy density of
the electron gas on the electron-gas density and other vari-
ables. The usual diffusion-drift description is obtained
when a simple logarithmic dependence on density
(Maxwell gas) is assumed. More generally a series expan-
sion in density (essentially the virial expansion of kinetic
theory) could be chosen. In the present paper, we are con-
cerned with gas properties in the vicinity of an interface;
that is, in a region across which electron-gas properties
change rapidly. In such a region it seems reasonable to
suppose that the energy density depends not only on the
density of the gas but also on the (large) gradient of the
density. As shown in this work, the introduction of such
a term along with the planar-averaged continuum as-
sumption does indeed allow one to discuss the strong in-

version layer.
As in our earlier investigation, we assume the semicon-

ductor to be modeled by three interacting continua: iner-
tialess electron and hole gases and a rigid lattice with
charge density p'. The two gases each possess a charge
density, p' or p", move with respect to the lattice with ve-
locities U' or U and are permitted to recombine through
charge source densities, y'= —y . Neighboring elements
of gas interact across their surface of separation through
fluid pressures p' or p". In addition, for the electron gas
we allow a more general interaction through a second-
rank tensor "double force" 6', and an associated surface
traction t', which are necessary in order that electron-
density-gradient dependences enter the theory. The dis-
tinction between double force b, ' and force (or pressure or
traction) is that force does work when matter moves over
a distance whereas 5' does work directly when the density
of the matter changes. The flow of each gas through the
lattice is impeded by (resistive) interaction forces E' and
E . Since all constituents are charged they also interact
electrostatically. Applying the conservation laws of
charge, linear momentum, and energy and the laws of
electrostatics to this three-continuum model results in the
following integral forms:

n-D dS = p'+ p" +p' d V,

cE

(2. 1a)

(2.1b)

—f p'dV+ f n v'p'dS= f y'dV, (2.1c)

f pdV+ f nv pdS= f ydV, (2.1d)

—f (np'+t ')dS+ f p'(E+E')d V=0,

np "dS+ p" E+E" d V=O

(2.1e)

(2.1f)

+p "+0' " dv
Bt

( —p'n. v'+t' v'+b. 'Vv' —p "n v"

—n v'p'E, ' —n v"p"E )dS,

+ f p'E v'+p E v +E dV.dP
V dt

(2.1g)

The vector n is the outwardly directed unit normal to the
surface S enclosing the arbitrary volume V fixed in space
and C is an arbitrary closed curve. In addition, c is the
stored internal energy per unit volume in the lattice, c'
and E are the internal energies per charge in the two
gases, P is polarization and 0 is the electric displacement.
The terms b;Vv' and t'.v' in (2.1g) represent the rates at
which work is done by the electron double force and its
associated surface traction, respectively.

Away from interfaces, the field variables are continuous
and, by standard arguments, differential forms can be de-
duced:
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V.D =p'+ p"+p', (2.2a)

E—:—VP,
e

at
+V-(p'v') =y',

h
P +V (

h h) yh
at

—Vp'+ V.r'+p'(E+E') =0,
Vp

h
+ph( E+Eh ) 0

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2f)

dE. d c hd c
+p +p

pe (p')2 dt p" dt p' dt dt

'-V '
= —peEe ve —phE -vh —ye ce+ + ~

p' (p')'

h e
h p + h + 9 Vye

. ph . p'
(2.2g)

where in reaching (2.2e) and (2.2g) a standard argument
due to Cauchy allows 6' and its associated t' to be written
in terms of an electron double-pressure vector g' and an
associated stress tensor v' as ng' and n.r', respectively.
The specific form of the double-pressure is chosen be-
cause, as shown in the Appendix, it corresponds to the
internal energy density of the electron gas depending on
the density gradient. In addition, to obtain (2.2g) we have
employed (2.2c)—(2.2f), the material derivatives,

d 1 p'E'-v' —p F" v"
dt T

eVe
ye ~e+P 7

' P
p' (p')'

e h

V e h h+P
p p

&0. (2.5)

d
dt

a d'
at' dt

d+v'. V, =—+v .V, (2.3a)
Bt dt Bt

the fact that

P VP VeVe (2.3b)

E, C h C,+P'
d +P S

' n'-Vp'
, +p' (p') 2 dt

9' d'Vp' p" d"p' —E dp =Tdn (2.4)
p' dt p" dt dt dt

where g is the entropy per unit volume. Equations (2.3)
and (2.4) then imply that, for a uniform temperature state,
the rate-of-entropy-production inequality is of the form

and the assumption that
e

v'= —p'V (2.3c)
p

which is made in order that c.' depend only on volumetric
deformation and not explicitly on the components of mac-
roscopic strain.

Equation (2.2g) is commonly called the first law of
thermodynamics for the macroscopic system under con-
sideration. Just as in Appendix A of Ref. 3, the form of
(2.2g) allows the second law of thermodynamics to be
written as e=E(P),

h h( h)

s'= e'(p', Vp'),

(2.6a)

(2.6b)

(2.6c)

where the temperature (entropy) dependence has been left
implicit. Inserting (2.6) into (2.4) and carrying out the
time differentiation of c.' and c.", we observe that since the
time derivatives of p', Vp', P, and g are independent and
can hold arbitrary values, their respective coefficients
mush vanish. The resulting equations are the recoverable
constitutive equations, which may be written as follows:

Equations (2.2), (2.4), and (2.5) are the differential equa-
tions that describe a general three-constituent semicon-
ductor. Being 13 equations in 33 unknowns, this system,
as noted at the start of this section, is underdetermined
and additional equations must be supplied. These auxili-
ary equations are the constitutive theory which describes
the specific material properties of the particular system
under consideration. Their functional forms may be de-
duced from the requirements imposed by the need to satis-
fy (2.4) and (2.5). The equations deriving from (2.4) are
termed the recoverable or nondissipative constitutive
equations while those from (2.5) are dissipative. The
former are of primary concern for this work.

The form of (2.4) shows that the internal energies E, E',
and c." have the desired functional dependences, i.e.,
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D=D(E), (2.7a) —f n(P+P")dS+ f E'dV=O. (2. 14)
ph g h

h P hh g h
(2.7b)

, =p', +s' ~s' (s')' (2.7c)

V h hVyh

where the chemical potential is defined by

(2.8a)

Bc,e (2.7d)
p' 0Vp'

The dissipative constitutive theory arises from (2.5) and
as discussed in Ref. 3 gives rise to relations for E', E,
and y'. These equations together with (2.7) make the dif-
ferential system fully determinate and, when consistent
boundary conditions are appended, allow for the formula-
tion of well-posed semiconductor boundary-value prob-
lems. Before discussing the boundary conditions, howev-
er, we digress to discuss a more useful form of the govern-
ing equations.

As shown in Ref. 3, when the electron or hole gas is
materially homogeneous (and gradient dependences are
not important), it is possible and more convenient to
transform the Auid pressure to a chemical potential.
Since in the present work the hole gas meets these condi-
tions, we have the relation

n. [D]=cr, (2.15a)

(2.15b)

n p'v'+p v + at
(2.15c)

[0+0'*]=f'*,
where

'*ndS= lim E'dV,

(2.15d)

As an aside, we note that the existence of the form (2.12)
which permits (2.13) and leads to a description of the
strong inversion layer (as shown in Sec. IV) is equivalent
to saying that a quasi-Fermi level (or electrochemical po-
tential) description of the strong inversion layer is possi-
ble. Furthermore, it thus remains meaningful to speak of
(2.13) as a diffusion drift -equation with a generalized dif-
fusion "force" given by the gradient of the generalized
chemical potential P'*.

A consistent set of boundary conditions is now obtained
by applying the integral forms (2.1a)—(2.1d), (2.10), and
(2. 14) to an arbitrary pillbox region encompassing a por-
tion of the interface and taking the limit as the volume
collapses to the interface in the usual way. Performing
this procedure we find the conditions,

a(&".")

Bp
(2.8b) [0+0']=f", (2. 15e)

—V(P+P")+E =0. (2.9)

From this, an integral form, valid even when field vari-
ables are discontinuous, may be postulated:

—f n(P+P")dS+ f E"dV=0 . (2.10)

For the electron gas, it turns out that a similar transfor-
mation may be effected also. Assuming material homo-
geneity, it can be shown that

Q( eee) ~e—V v'+ Vp'= p'V, +V.
~p p

(2.11)

Consequently, a generalized chemical potential formula-
tion can be implemented, with

e

gee ye+ V
p

(2.12)

Following Ref. 3, (2.8) permits (2.2f) to be transformed
into an equation in which p" does not appear explicitly:

where

f f"ndS= lim f E"dV
S 0 V

n. [ge]=0 . (2.16a)

and we employ the notation [C] to denote C+ —C
where n is the unit normal directed from the minus to the
plus side of the interface. Equation (2.15a) defines the
surface charge density o and f'" and f" are the forces per
charge exerted by the interface on the electron and hole
gases, respectively. ' As was done in Ref. 5, a surface
thermodynamics and a surface constitutive theory can be
set up from which functional forms for f'* and f" are ob-
tained. Lastly, in addition to the above conditions, two
other conditions arise as a result of the introduction of
electron-density-gradient dependence and consequently
double force 6' into the theory. The first results from the
fact that the normal components of the double forces ex-
erted by each side of an interface must balance. Since
6'=ng' this immediately gives the condition

where

a(p")
Bp

The second additional condition, which is obtained from
the variational approach given in the Appendix, demands
that the electron density be continuous across interfaces:

with which (2.2e) becomes

—V(P+P'*)+E'=0 .

From (2.13) we can than postulate the integral form

(2.13)

(2.16b)

To summarize then, the description of the semiconduc-
tor when electron density gradients are important consists
of the differential equations (2.2a) —(2.2d), (2.9), and (2.13)
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with (2.8b), (2.12), and expressions for E', E", and y' to-
gether with the consistent set of boundary conditions,
(2.15) and (2.16).

III. PARTIAL SPECIFICATION OF THE
CONSTITUTIVE THEORY FOR THE Si-SiOp SYSTEM

As in our earlier work, it is reasonable to assume that
(2.6a) takes the form usual for a linear dielectric and that
(2.6b) describes the holes as ideal, i.e.,

Concerning the remainder of the constitutive theory, we
shall assume that the electron and hole gases in the oxide
are such that the oxide is an insulator, i.e., with
p'=p"=0. Because of this, (2.1b) requires p'=0 at the
surface in the semiconductor. This, in turn, implies that
in the insulating limit the condition (2.16a) is automatical-
ly satisfied and may be dropped. Lastly, for this paper
we leave E', E", y', and the surface constitutive theory
for f" and f unspecified.

—EU kT p"
c."= ' + ln

q q qN,
(3.1)

IV. APPLICATION TO A STATIC QNE-DIMENSIONAL
PROBLEM

kT
p = p

q
—E kT p"

ln
q q qN,

(3.2a)

(3.2b)

where q is the charge on an electron and E„and N„are
the valence band-edge energy and effective density of
states, respectively.

From (2.7b) and (2.8b), we then have

d P
dx

semiconductor, 0 &x & oo,

(4.1)

As an illustration of the theory developed above, we ex-
amine the static situation in an idealized one-dimensional
metal-oxide-semiconductor (MOS) capacitor. Applying
the equations of Sec. II and III to such a structure, the
following boundary-value problem can be formulated:
Oxide, —t„(x & 0,

2

b d lnp'
2 dn

(3.3)

where we have used the fact that the normal component
of the gradient must dominate. As expected, inserting
(3.3) into (2.7d) then yields

g'=b n
d'-
dn

and (2.12) gives
'2

b d p' b dlnp'

p dn 2 dn

where

(3.4a)

(3.4b)

These forms can be expected to be valid at low hole densi-
ties (p" (10' q cm ).

For the electron gas, we need instead to select both den-
sity and density-gradient dependences. Leaving the for-
mer unspecified for the moment, one would expect that
for the latter the lowest-order form would be with the
double-pressure g' linear in the density gradient [just as
(3.2a) is the lowest-order pressure-density relation]. It is
readily shown that this is obtained if (2.6c) takes the
form

(p+p'*) =o,
dx

(P+Pll) 0
dx

2p

dX

—1 (p'+p +p ),
~s

where

~(p'eo) b d'p'
+

3p p dx

ir, p"

q qN, q

and with boundary conditions

P= Vs at x= —t,„
[P]=0, x =0
p'=0, x =0
[0+0'*]=f'*
[P+P/I] f/l 0

b dp'
2(p')2 dx

2

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(4.2e)

(4.3)

(4.4a)

(4.4b)

(4.4c)

(4.4d)

&(p'E'o)

Bp

and the coefficient of proportionality b is a new macro-
scopic coefficient which characterizes the strength of the
density-gradient dependence in the electron gas. Ideally,
its value should be deduced from experimental measure-
ment. The possible dependence of b on electron density
will be considered below but for now we assume it con-
stant. Finally, for the gradient-independent Eo(p') one
could employ an ideal-gas form such as (3.1), or, for
higher densities, a Fermi-Dirac form or perhaps some
more general equation.

d '
$~0, p'~pI„~O, lI)"~0 as x ~ ao . (4.5)

dX

As in Ref. 3, the conditions (4.4c) and (4.4d) are not in-
dependent and, in practice, can be replaced by a specifica-
tion of the surface potential, lt(x =0). This serves to
decouple the equations in the oxide from those in the
semiconductor and, in this way, below, we discuss only
the latter. The oxide equations can be solved subsequently
and lead to an equation for the gate voltage required to
produce the assumed surface potential.

Treating the semiconductor equations, we see that (4.2a)
and (4.2b) can be integrated immediately. Employing
(4.2d), (4.2e), and the conditions (4.5) we have,
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/. T
(5+ ln Ph ——0,

pb
(4.6)

4+ 0() 4b—*+ b d p' b dp'
p' dx

' 2(p')

where

=0 (4.7)

gb* —d *(x~ca ')

and

pb ——p (x —~ ~)h h

The similarities between (4.7) and known equations can be
made apparent by changing variables according to

s =( —p')'", (4.8)

which, as in Ref. 8, introduces the fact that —p' must be
non-negative into the equations. The differential equa-
tions (4.7} and (4.2c) then become

2

2b , +S(—$+b() 6b )=0
dx

(4.9a}

(S- —pge " —p')
Cg

(4.9b)

where p has been eliminated by using (4.6).
The correspondence between this system and the

quantum-mechanical description of Stern-' is evident: By
viewing S as a "wave function, " (4.9a) is recognizable as a
"Schrodinger equation" with the energy eigenvalue re-
placed by a function of electron density and the usual
coefficient containing Planck's constant replaced by the
macroscopic constant 2b. In addition, the boundary con-
ditions (2. 16a) and (2.16b) and the fact that the former
condition is dropped in the above problem are also in ac-
cord with quantum mechanics (infinite barrier problem).
These connections in the static case with the usual one-
electron effective-mass Hamiltonian approach imply that
b =A-'/(4qm*) where m* is a continuum average of the
electron effective mass(es) normal to the interface. With
this identification and an appropriate choice for the zero-
gradient chemical potential $;&, the system (4.9) must lead
to results in agreement with quantum-mechanical calcula-
tion. That is, the electron density profiles calculated by
solving (4.9) f'or particular surface potentials must agree
with those computed by Stern. — Since (4.9) are macro-
scopic equations„ they make no predictions about any n1i-

croscopic quantities such as subband structure. If such
things are of interest, one must employ a microscopic
description.

The analysis of the static, one-dimensional problem
given above demonstrates that much of the behavior of
the strong inversion layer, heretofore described using
quantum mechanics, can be understood within the frarne-
work of a diffusion-drift description. As shown in this
work, this is achieved by permitting the internal energy
density of the electron gas to depend upon the electron-

density gradient as well as on the density itself. The gen-
eral planar-averaged macroscopic description developed in
this way is applicable not only to the static case but also
to dynamic situations for which a quantum-mechanical
description is far more complicated. In view of this, we
believe that the approach outlined here will have value for
analyzing transport in silicon MOS field-effect transistors
as well as in various "quantum-well" devices.

Note added in proof. Numerical calculations [M. G.
Ancona, in Proceedings of the Conference on 1Vumerical
Modeling of Semiconductors, (Boole, Dublin, in press)]
have verified the expectations of Sec. IV concerning agree-
ment with Ref. 2. Also, a more rigorous microscopic
derivation has yielded the formula b =A'/(12m *q).

APPENDIX: DERIVATION OF THE GOVERNING
EQUATIONS IN A NONDISSIPATIVE CASE

FROM A VARIATIONAL PRINCIPLE

For nondissipative situations, one can deduce the
governing equations of macroscopic systems from a varia-
tional principle (Lagrangian). For our situation this ap-
proach has two advantages over that used in Sec. II: (1)
the desired form of the energy density of the electron gas
(i.e., with a gradient dependence) is specified at the start
and (2) because we discuss a fluid it turns out that one of
the boundary conditions is much more evident. Following
Toupin we postulate the variational principle (treating
only the electron gas for simplicity and employing indicial
notation with the Einstein summation convention):

6 f p'E'dV= f F 6y;dV+ f F 6y;dS

+ f F; D(6y; )dS, (A1)

Bcp' +p', ; (6y, ),

(A3)

Inserting (A2) with (A3) into (Al), integrating by parts
twice, and applying the divergence theorem or surface
divergence theorem, we find

~here S is a smooth surface enclosing the volume V, the
F~ are generalized forces, the components y; are the Eu-
lerian coordinates of the electron gas, D signifies the nor-
mal derivative, and 6 indicates variation holding the La-
grangian coordinates of the electron gas fixed. Assuming
e'=e'(p', V'p'), the left-hand side of {Al) can be rewritten
as

6 f p'E'dV= f p'6E'dV,

where

f (p'; —rz, z F)6y;dV —f (np' —n r';+—D;{n tl;')+F; )6y;dS+ f (njn;gz F)D(6y;)dS=O, — (A4)
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where p', g,', and r;'J are as given in (2.7c), (2.7d), and
(2.3c).

Since the variations 5y~ and D(5y~ ) are arbitrary and as
usual are taken to be continuous across any boundary,
their coefficients (in brackets) must vanish thereby lead-
ing, with appropriate identifications of the F;, to (2.2e)
and to boundary conditions similar to (2.15d) and (2.16a).
In addition, the continuity of 5y~ and D(5yj) implies the
continuity of (5yj) J and thence the continuity of 5p'/p',
and thus p' which represents an additional boundary con-
dition,

(A5)

to be applied for the solution of semiconductor
boundary-value problems. This was the condition assert-

n; ~I';v&' jdS (A7)

is also consistent with the variational principle and, if this
is assumed, the entire description is unchanged with the
exception of (2.3c). The form (A6) is used in Sec. II be-
cause it yields a stress tensor in conformity with that cal-
culable from equilibrium quantum-statistical mechanics.

ed in (2.16b). Finally, for consistency with the variational
principle, g'; does work on the electron gas according to

nz q'; v&', dS (A6)

as was assumed at the start of Sec. II. It should be noted
that the expression

~Note that a macroscopic description in which the strong inver-
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