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Local g factors, cyclotron effective masses, and cyclotron-orbit g factors (g.) for rhodium, palla-
dium, iridium, and platinum have been calculated using a relativistic linear muffin-tin orbital
method, including perturbation of a magnetic field. These calculations are compared with experi-
mental results from de Haas—van Alphen measurements. Both measurements and calculations give
an anisotropic g, factor for the I'-centered electron sheet and the X pocket while they give a rather
isotropic one for the a orbit existing on the open-hole sheet. This indicates that the spin-orbit cou-
pling is a major source of the anisotropic behavior of the g. factor in these metals.

I. INTRODUCTION

Experimental results for metals in a magnetic field con-
stitute a real challenge to theoreticians.! In particular the
amount of Zeeman splitting as measured by the g factor
in general depends on the wave vector and this anisotropy
may be influenced by spin-orbit coupling, spin polariza-
tion, and probably other factors.

A few theoretical calculations of g factors in the
platinum-group metals exist, both of point g factors in
platinum and palladium calculated by Mueller et al.’
which show a clear k dependence and of bulk values (see,
e.g., MacDonald®). From de Haas—van Alphen (dHvA)
measurements there is now clear experimental evidence of
a large anisotropy of the g factor on parts of the Fermi
surface in the fcc platinum-group metals (rhodium, palla-
dium, iridium, and platinum).*~% It is therefore desirable
to study this situation also from the theoretical side, first
of all, in order to account for the experimental results and
hopefully in order to be able to distinguish different
reasons for the g-factor anisotropy. Their Fermi surfaces
are well established from dHvA measurements (see, e.g.,
Carrander er al.,’ Dye et al.,'"° Hornfeldt et al.,'! and
Dye et al.'” as well as from band-structure calculations
(Mueller et al.'? and Andersen'*). These metals have the
I'-centered electron sheet (I'q) in common and are there-
fore well suited for a comparative study. In Refs. 5 and 8
the cyclotron-orbit g factor (g.) is investigated on the I'y
sheet and the a orbit existing near the W point on the
open-hole sheet in palladium and platinum. In Ref. 6 the
g. factor has been studied on the hole pockets centered
around the X point in palladium and in Refs. 4 and 7 on
the I'g sheets in rhodium and iridium, respectively. The
wave-function character on the open-hole sheet and the
X, pockets is mainly of d type, while the I'¢ sheets also
have s and p character.!* It is worth noting that the
open-hole sheet in palladium and platinum and the I
sheet in rhodium and iridium contributes with more than
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half of the total density of states, while the X4 pockets in
palladium and platinum contribute with less than 2%.
The calculations presented in this work are concentrated
to those parts of the Fermi surface in the fcc platinum-
group metals, where dHvA measurements of the g. factor
have been performed.

Despite the papers just mentioned it cannot be denied
that there has been very little done as far as calculations
for crystal electrons in a magnetic field is concerned.
This is not just by accident. To begin with, there are
several basic aspects, in particular concerning symmetry,
which are not at all as clearly worked out as in the corre-
sponding problem without a magnetic field. Secondly,
there are practical problems connected with the fact that
existing procedures and programs have to be extended. In
his survey'® Yafet has characterized the situation in a way
which is worth quoting: “To obtain the energy levels of
conduction electrons in a magnetic field is a considerably
complicated problem.” In Sec. III we discuss some of
these problems in a little more detail in order to specify
explicitly the theoretical framework for the actual calcula-
tions.

Thus there is a lack of balance. There are a number of
very good experimental data, but there is definite lack of
theoretical studies, which are needed to interpret and ex-
plain the experimental results. We have therefore started
a series of band calculations including both spin-orbit in-
teraction and a magnetic field. Some technical aspects of
these are discussed in Sec. IV. In Sec. V we present the
results and compare them with experimental data.

II. THE g. FACTOR FROM dHvA MEASUREMENTS

The amplitude of the dHvA signal depends on the g
factor through a cosine function which arises from a
difference in the cross-sectional areas due to the Zeeman
splitting into spin-up and spin-down sets of levels at the
Fermi level. (Henceforward we use the superscript aster-
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isk in order to distinguish between experimentally and
theoretically determined quantities.) The argument in the
cosine function is k7R *, where k is the harmonic number
of the dHvA signal and

R*=E,/E;  =g'm}/2 . (2.1)

E; is the Zeeman-splitting energy averaged over the cy-
clotron orbit, E; is the Landau level energy spacing, and
m/ is the cyclotron effective mass expressed in the free-
electron mass. The variation of the g' factor can be
determined from absolute amplitude measurements, from
ratios of the harmonics of the dHvA signal or from the
locations of field orientations where cos(k7R*)=0, that
is kR*=n —i—% where n is an integer, which are called
spin-splitting zeros (SSZ). These may be found as con-
tours of constant R* over the Fermi surface for the dif-
ferent harmonics. A mapping out of the SSZ contours is
the most straightforward method and using this together
with, for example, the absolute-amplitude method where
the experimentally determined amplitude is compared
with one calculated from the Lifshitz-Kosevich!® (LK)
theory, the anisotropy of the g, factor can be gained. The
gt factor is enlarged by a cyclotron-orbit Stoner enhance-
ment and is unique for each orbit on a specific sheet of
the Fermi surface. This is different from the averaged
bulk values which can be found through magnetic suscep-
tibility and conduction-electron spin-resonance measure-
ments. Since the g~ factor appears in a cosine function
there is an ambiguity in its absolute value. For the transi-
tion elements, with a considerable exchange enhancement,
a deviation of g from two is expected and it is therefore
not possible to determine its absolute value. However, the
dHvA effect offers a unique possibility to measure its an-
isotropy.

III. CRYSTAL ELECTRONS IN A MAGNETIC FIELD

Further information can be obtained from theoretical
calculations. At the present state-of-the-art band calcula-
tions are more or less routine, provided there are not too
many atoms per unit cell, if there is no magnetic field.
Relatively few calculations have been carried out, howev-
er, with a magnetic field term included in the effective
one-electron Hamiltonian. Before getting to the actual
calculations in the next section we notice a few important
differences between band calculations with and without a
magnetic field.

The ‘“normal” situation, which is described in all text-
books, is a crystal with an effective one-electron potential,
which takes into account the kinetic energy, the electro-
static interactions with the nuclei and with the other elec-
trons, and—in some average way—exchange and correla-
tion effects. Such a Hamiltonian commutes with all the
elements of the space group of the crystal.

When a constant magnetic field is present the situation
is a little more complicated. As pointed out by Brown!’
and Zak'® the translation operators are replaced by a
larger set of operators which depend not only on a lattice
vector but also on the paths leading from the origin to
that vector. These operators form a group, called the

magnetic translation group by Zak. That group must be
distinguished from the translation subgroup of a magnetic
space group (Shubnikov group).'®

Thanks to the fact that the magnetic translation group
is homomorphic to the usual translation group one can in-
troduce Born—von Karman conditions in the usual way.
Instead of the ordinary Bloch functions which can be fac-
torized in a plane wave and a function which has the
periodicity of the direct lattice, one gets a product of a
plane wave and two other factors, which depend on the
gauge chosen. We will not pursue these aspects any fur-
ther in the present paper, but we notice the existence of
important pieces of information which influence the
description of crystal electrons in a magnetic field.

The Dirac equation offers a more natural starting point
than the Schrodinger equation for a study of crystal elec-
trons in a magnetic field. An analysis based on that equa-
tion has led Moore® to a reformulation of the g factor as
a difference of expectation values of the energy operator
for wave packets which are well localized in momentum
space.

At the simplest level of approximation we can study the
influence of two kinds of perturbations on a band Hamil-
tonian Hp by means of first-order perturbation theory,
namely a Zeeman Hamiltonian

Hz;=ppB-(1+2s) (3.1)
and a Hamiltonian representing the spin-orbit coupling
H,, =&nl-s. (3.2)

Both these are written in a form appropriate for a free
atom, or slightly more generally a system with local
spherical symmetry, where one can define an orbital angu-
lar momentum /. In a description of the electronic struc-
ture of a crystal, one can still use these forms provided
one works with a method which distinguishes spherically
symmetric regions around the nuclei, such as the linear
muffin-tin orbital (LMTO) method.?! For symmetry con-
siderations it is however often advantageous to use the
more correct form?2

i%
2m?2c?

H, =— s-[Vu(r)xV]. (3.3)

Here v(r) is the periodic crystal potential. We assume

that the bands E (k) for the crystal without spin-orbit

coupling and without an external magnetic field are given
by the solutions of

Hg,(k,r)=E,(K),(k,r) . (3.4)

An  orbitally  n-fold-degenerate  level  E,(k),

pu=12,...,n gives rise to a 2n-fold degeneracy when

spin is taken into account. In spinor notation the corre-
sponding function space is spanned by

Y, (k,T)
é?,y—l(k’r): 0 )

0 (3.5)
$aulr)= |y (kr) |
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where u=1,2,...,n. The spatial part of the Zeeman
operator (3.1) is given by
a
hy= [ g |Hz(aB)d¢
B, B_
=ugB-I1 R 3.6
“B +MB B, —B, (3.6)

where B_ =B, —iB,, B, =B, +iB,, and a({) or B({) are
the two spin functions. The first term in this operator in
general splits the 2n-fold degeneracy. When both terms
of h; are taken into account we get pairs of levels
separated by the energy 2ugB. In other words the g fac-
tor is isotropic and independent of k and B.

When the spin-orbit coupling operator (3.2) is combined
with the basic band Hamiltonian Hp (in the absence of a
magnetic field) the symmetry properties of the system are
described by the double space group of the crystal.!®??
The spinors which will be the eigenfunctions of the prob-
lem

(Hpl+hg o)k, 1)=E (K)$,(k,r), 3.7
where
a
heo= [ |g|HsolaBP)ds
1 L I
=10 - (3.8)

transform according to the irreducible representations of
the double group of the wave vector G{ (k). A nondegen-
erate level of the problem (3.4) becomes a doubly degen-
erate level of (3.7). Degenerate levels of (3.4) may split as
a result of the perturbation A,,. A symmetry analysis
based on the connection between a space group and its re-
lated double space group gives important information as
to possible splittings.?
If the spinor

o (k,r)=

(3.9

d}vl(k’r)
¢v2(k3r)

is a solution of (3.7) with eigenvalue E,(k), so is its time-
reversed partner?>

—¥h(k,1) — ¥l —kr)
O¢,(k,r)= dhn) |7 | vk r) (3.10)
The time-reversal operator is
) 0 —1
O=—io,K= 1 o K. (3.11)

This particular degeneracy may be split by the Zeeman
operator. We have

(8¢, |hz [©¢,) =ppB[A,(—k)+A,(—k)]
+Bz[Sv22(“k)_Svll( _k)]

—B_.S,(—K)—B_S,5(—k) .
(3.12)

Here

hi(k)= [ Ul DI, (k,)dv

(3.13)

Syk)= [ vl (k,r)dv
where i,j =1,2. Since

Ayi(—k)=—A,(k), (3.14)
and

Syl —k)=S,;(k), (3.15)
we have

(©¢, | hz |©8,)=—(,|hz|d,) . (3.16)
The g factor,

g=g(kB= | 2Ot z100) | (3.17)

upB

which characterizes this splitting then depends on k and
we can expect anisotropy both because of the A,;(k) and
the S,;;(k). Furthermore, the g factor will exhibit a ten-
sor nature since for a specific k different values can be
obtained for different directions of the magnetic field.

The Zeeman term (3.6) reduces the symmetry of the
system. The final solutions of the full problem

(Hgl+hg, +hZ)(év:Evév s

transform according to a subgroup of the previously men-
tioned double space group. Important qualitative results
from the dependence of the g factor of the direction of the
magnetic field can be obtained from a detailed symmetry
analysis.”

In the present paper we have investigated the influence
of the spin-orbit and the Zeeman operators on the band
structure within a set of basis functions of the linear
muffin-tin orbital (LMTO) type.?! The final energy lev-
els, from which the g factors are obtained, are the eigen-
values of the full matrix representing the Hamiltonian in
(3.18) in the LMTO basis.

(3.18)

IV. METHOD OF CALCULATION

The LMTO method in the atomic sphere approxima-
tion (ASA) with a muffin-tin potential has been used in
order to calculate the cyclotron-orbit-averaged g factor
(g.). The routine was constructed by using the equations
given by Skriver in Ref. 21 for the Hamiltonian and over-
lap matrices. To the Hamiltonian matrix the perturbation
from spin-orbit interaction (3.8) (Ref. 24) and from an ap-
plied magnetic field B (3.6) was added. In order to cut
down computing time, orbitals with angular momentum
quantum number / >2 were neglected. To calculate the
lattice sums appearing in the structure constants of the
LMTO method, the technique outlined by Nijboer and de
Wette?> was used. The routine was constructed in such a
way that the structure constants were calculated for each
given k point, then the Hamiltonian and overlap matrices
and finally the eigenvalues for that specific k were ex-
tracted.

When a magnetic field is applied, only Bloch states on
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extremal areas with k perpendicular to the magnetic field
contribute to the cyclotron orbit. For a given B the direc-
tions which are perpendicular to the field may be calculat-
ed in the crystal coordinate system (6,¢), for any origin.
For such a direction (6,¢) and for a given band index the
length of the k vector was changed until the Fermi energy
was found within an accuracy of 0.05 mRy and thus giv-
ing kr in the (6,¢) direction and for that specific Fermi-
surface sheet. The determination of ky was carried out
with B=0 T giving a doubly degenerate Fermi energy
and once kyp was found a new calculation was performed
with the same (6,¢) and kr but with B =10 T, thus split-
ting the degeneracy into E+ and E ~ energy levels. A lo-
cal g factor for a Fermi surface sheet perpendicular to the
magnetic field may then be defined as

g(kp)=(E*—E~)/ug |B| . 4.1)

In order to compare calculations of g factors with experi-
mental measurements (dHvA) a calculated cyclotron-orbit
g factor (g.) can be related to the local g factors through
a time-weighted average of g factors at the Fermi surface,
g (kz), which may be written as?®

2w |kplg(kpdde' | 2 |kp|dg'

8= fo — fo < > (4.2)
extremal kF V) extremal kp V)
orbit orbit

where v, is the component of v=(1/%)(VE),, in the

plane perpendicular to B and the denominator is equal to
2mm, /% expressed in the free electron mass.

The extremal cross-sectional area A4 of the specific
Fermi-surface sheet, perpendicular to the applied magnet-
ic field, is related to the dHvA frequency F through the
Onsager relation F =74 /2me and was calculated from

27

A=+ fo |k |2dg' . 4.3)
extremal
orbit

The calculations of the g, factor, m., and 4 were per-
formed using (4.2) and (4.3), integrating along the cyclot-
ron orbit on the Fermi surface sheet with the Simpson in-
tegration technique and A¢p’'=2.5°. v, was calculated for
each Ag’ using

E(kp+Ak)—E (kp—Ak)

b= 20K “@.4)

with Ak =107327/a, where a is the lattice constant. The
difference in the calculated values of 4 compared to the
experimentally determined ones were smaller than 10%
for all the investigated metals and directions (except for
the small X pockets in platinum). Regarding the differ-
ence in m,, see Sec. V. Using A¢’'=1.25° changed g, less
than 0.2% and for 4 and m, the change was even small-
er.

The routine was tested in several ways. With B=0T
the calculated eigenvalues were the same as those calculat-
ed using the LMTO routine (including spin-orbit cou-
pling) described in Ref. 21. With A, =0 the local g fac-
tor was equal to 2 and independent of k and B. The local
g factor was found to be independent of the magnetic
field strength for sufficiently small fields. The symmetry

of g, was the same as that for 4 and m, in the symmetry
directions for the I'¢-centered Fermi-surface sheet, that is
fourfold symmetry in the [100] direction, twofold symme-
try in the [110] direction, and threefold symmetry in the
[111] direction.

The potential parameters, spin-orbit coupling parame-
ters, and Fermi energy for the fcc platinum-group metals
were obtained from self-consistent LMTO calculations us-
ing the Fortran routine package written by Skriver and
described in Ref. 21. The procedure was as follows: fcc
structure constants were generated for a mesh of 505 k-
points for s, p, and d orbitals. The eigenvalues and
wave-function character of these k points were calculated
with a Hamiltonian including spin-orbit interaction. The
I-projected and total state densities plus the I-projected
and total number of states were calculated and together
with generated atomic and frozen-core charge densities in-
serted into the routine which calculates self-consistent po-
tential parameters and ground-state properties. The
exchange-correlation potential given by von Barth and
Hedin?’ was used. These new potential parameters were
then used to calculate new eigenvalues, thus closing the
band-iteration loop. The potential parameters in Ref. 21
were taken as starting parameters, i.e., from self-
consistent calculations where f orbitals were included.
Only three band iterations were necessary for conver-
gence.

g(l?,:) Pd

2.0t
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0

%d ] |

(G-3RI . .-

50 r—

25

0

0 30 60 90

(100] (111] (110]

FIG. 1. The local g factor at the Fermi level g(ky) and per-
centage d character of the wave function as a function of angle
in a (110) plane on the I', sheet for palladium. The magnetic
field is in a [110] direction and perpendicular to the (110) plane.
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V. RESULTS

A. Local g(kyr) on the ' sheet

With a magnetic field in a [110] direction the cyclo-
tron orbit on the I'y sheet passes all the three different
types of symmetry directions [100] (two), [110] (two), and
[111] (four). The local g factors g(ky) and the amount of
d character of the wave functions for such an orbit, with
B parallel to [011] (¢'=0 to ¢’ =7/2), are shown in Fig.
1 for palladium and in Fig. 2 for rhodium. A fundamen-
tal difference between these metals is the value of g(kg)
at [111] with a maximum for palladium while g(kz)=0
in rhodium. In iridium and platinum the variation of the
local g factor is similar to that of rhodium.

When studying the band structure in a [111] direction
we found for all the fcc platinum-group metals, that the g
factor is equal to zero for two of the d bands. This is due
to symmetry. The double group for A points C2 has two
one-dimensional irreducible representations A; and As
which are degenerate all the way from I" to L. When a
magnetic field is applied the symmetry is reduced since
only the inversion and the rotations around the field
direction commute with the Zeeman Hamiltonian.>* In a
plane perpendicular to the [111] direction there are three
(six) directions of the field that “‘preserve” a twofold rota-
tion from C?%,, namely +[011], +[110], and +[101]. In
these cases the two representations A4 and A5 will be sub-
duced to two different one-dimensional representations of
the subgroup,”’ thus preventing any splitting. A more de-
tailed analysis will be given elsewhere. In platinum, rho-
dium and iridium one of the two d bands with A, and As
symmetry cuts the Fermi level in such a way that it con-

qlke) Rh

2.0r

0
%d

75 r
50+

25T

0 B L R . "

0 30 60 90
(1001 (111] (110]

FIG. 2. Same as Fig. 1, but for rhodium.

tributes to the I'-sheet giving rise to a large d character in
Fig. 2 at [111] and a value g(kz)=0. In palladium, a
band with high s-character crosses the d band with A,
and As symmetry and cuts the Fermi level (see also Ref.
2) giving rise to a g factor in the vicinity of 2. The band
with A4 and As symmetry in palladium instead contri-
butes to the L pockets and therefore g(kr)=0 in the
[111] direction on this part of the Fermi surface in palla-
dium.

B. Cyclotron effective mass

The cyclotron effective mass (m.) has been studied by
means of the dHVA technique on the I'y sheet, a orbit,
and X, pockets in palladium and platinum by Windmiller
et al.”® and Ketterson and Windmiller.?’ In Fig. 3 the
variation of m/ is presented, which has been determined
from the spherical harmonic expansion given in Refs. 28
and 29, in the symmetry planes on the I'q sheet in palladi-
um and platinum. When effective masses from theory
and experiment are compared, it is normally done by set-
ting mS =(14A)m,, where A is ascribed to the electron-
phonon coupling. In Fig. 3 the calculated m. enhanced
with A=0.43 for both palladium and platinum are also
shown. The largest deviation of 6% occurs at [110] for
palladium. Comparison with Refs. 9 and 11 shows that
the A values for the ' sheet seem to be of the same size
in rhodium and iridium as in palladium and platinum.
For the a orbit A is 0.6 for palladium and 0.4 for plati-
num and for the X, pocket the values are 0.9 and 0.8,
respectively. The agreement regarding the variation of
the effective mass on the 'y sheet is good and the
electron-phonon interaction can thus be regarded as fairly
isotropic in line with results reported previously.'% 122829

mC
L ~
/," \
3.0 )
2.6 /
/
L o ./ Psae
s’ /o =
~ S
. ] :
2.2t N S :
/: \ L .'/_// . /
/ AN S e
ST N et
1.8 N N S " L "
0 30 60 90/45 30 0
{100] (110) (111 [110]) (100) [100)

FIG. 3. The calculated cyclotron effective masses, enhanced
with a factor 1.43, for palladium (@) and platinum (O) in the
symmetry planes on the I'q sheet. For comparison the measured
cyclotron effective masses (weak solid line) are shown for the
same metals which were deduced from a spherical harmonic ex-
pansion presented in Refs. 28 and 29.



35 EFFECT OF SPIN-ORBIT COUPLING ON THE CONDUCTION- . ..

C. Cyclotron-orbit g factors

In Fig. 4 the calculated g. factors in the symmetry
planes on the I'g sheets in palladium, platinum, rhodium,
and iridium are presented as functions of the direction of
the magnetic field. The main feature for all the fcc
platinum-group metals is a large dip in the graphs at
[110] while a smaller dip occurs at 35° from [100] in the
(110) plane. It is for these directions of the magnetic field
that the cyclotron-orbit passes the [111] directions. With
the magnetic field in the [110] direction four [111] dire-
tions are passed, while for the field in the direction of 35°
from [100] in the (110) plane two [111] directions are
passed. It therefore seems that the major contribution to
the anisotropy of the g, factor comes from the anisotropy
of the local g factors in the region near [111]. The
behavior of the g, factor in palladium and rhodium is
very similar, with somewhat larger dips in rhodium than
in palladium. The variation of the g. factor is much
larger for platinum and iridium. The value of the g, fac-
tor at [100] and 35° out in the (110) plane are nearly equal
for platinum and iridium but when comparing the differ-
ence between the maximum at [111] and the minimum at
[110] this is much larger for platinum than for iridium.
Both palladium and platinum have a maximum at 15°
from [100] in the (110) plane but it is more pronounced in

9. Rh
2.5

2.0

25

2.0

25t

2.0

Pt

3.0

2.0

" . a4

90745 30 0
(110) (1000  [100]

1.0 s L " i
0 30 60

[100] (110) (111]

FIG. 4. The calculated g, factor in the symmetry planes on
the T’ sheet in palladium, platinum, rhodium, and iridium (@).
The g. factor for the noncenter orbit at [111] is also shown (0).
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FIG. 5. The calculated g. factor in the symmetry planes for
the a orbit in palladium (@) and platinum (OJ).

platinum than in palladium. The gross features of the an-
isotropy of the g, factor are rather similar to the experi-
mental data presented in Refs. 5 and 8 but there are some
differences. For platinum, the variation of g near [100]
and [110] does not show up in the calculations and for
palladium the maximum at [111] is more pronounced for
gr. The latter difference may, however, be due to hidden
SSZ contours in the area where the central orbit splits off
into one center and two noncenter orbits (for details see
Ref. 5) which could lead to a somewhat different picture
for the g* factor. Calculations have also been performed-
for the noncenter orbit at [111] and its g.-factor value is
shown in Fig. 4 for the different metals. An experimen-
tally determined variation of g~ for the noncenter orbit
has only been presented for palladium and platinum.>3
Both the theoretical and experimental values for the non-
center orbit are smaller than those for the center orbit at
[111].

In Fig. 5 the calculated g, factor for the a orbit in the
symmetry planes is presented (it only exists in palladium
and platinum). In contrast to the anisotropic behavior on
the I'¢ sheet the g. factor is here clearly isotropic. This
has also been shown to be the case experimentally.

In Fig. 6 the calculated g, factors for the ellipsoidally
shaped X, pockets in palladium and platinum are shown.
The large variation on this small part of the Fermi surface
with nearly pure d character is surprising but this was
also shown experimentally in Refs. 6, 30, and 31 to be the
case for palladium. The two maxima of the g. factor
occurring at approximately 20° from the “belly” of the el-
lipsoid are more pronounced in palladium than in plati-
num. Noticeable are the low values ( <0.7) for the entire
X4 pocket in platinum and the low value at [001] for both
palladium and platinum. The X, pocket for platinum has
been examined experimentally to some extent by Cavalloni
et al.®' Their measurements are not in contradiction to
the theoretical values presented in this work.
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FIG. 6. The calculated g, factor in the symmetry planes for
the X pockets situated at [001] in palladium (®) and platinum
(d).

VI. DISCUSSION AND CONCLUSIONS

The primary purpose of the present investigation was to
study to what extent band theory can account for the ex-
perimentally observed anisotropy of the g factors in the
platinum-group metals. The main result is that this does
indeed seem to be the case, but this statement needs to be
qualified. Band theory normally means effective one-
electron theory in the sense that many-body effects are
taken into account in some kind of average way, and
despite impressive advances in density functional theory it
is somewhat of a mystery that it works so well. Apart
from that basic problem we also have here all the compli-
cations connected with the external magnetic field. Even
if in principle we stand at the band theory level there are a
number of practical aspects connected with the particular
procedure used and various approximations associated
with it. Qualitative, and to a certain extent quantitative
agreement, has been achieved between theory and experi-
ment but there is definitely room for improvement:

(i) The f orbitals have been neglected in the present
study and the basis set should be extended to also include
these.

(ii) Effects of spin polarization might have an influence
on the g factor and should be studied.

It must also be remembered that:

(a) The cyclotron-orbit Stoner factor is expected to in-
fluence the experimentally determined g factors and may
account for some of the differences when comparing
theory and experiment.

(b) Landau condensation is not included in band theory,
but is believed to be of minor importance when comparing
theoretical calculations to experimental measurements.

If one compares the difference between the maximum
and minimum values of the measured R* (AR ™) with the
maximum and minimum values of the calculated R (AR)
one must also in some way take into account the Stoner
enhancement and using the experimentally determined

R
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FIG. 7. The calculated values of R on the I', sheet in palladi-
um, enhanced with a factor 7.1, and the measured R* (solid
line) with the integer part of R* equal to 12.

bulk values (S): for palladium I';: AR*=2.6, S =7.6,°
AR =0.4; palladium X,: AR*=1.7, §=7.6,> AR =0.5;
iridium T'¢: AR* <0.7, § =1.3,7” AR =0.5; platinum T':
AR*=1.5,5=3.1, AR =1.1. For rhodium enough data
are not yet available but an anisotropy in R* has been ob-
served. From the data above it is clear that it is not a
correct approach to simply multiply AR with S to achieve
AR ™. Some possibilities emerge:

The cyclotron-orbit Stoner enhancement is anisotropic
in such a way that RS shows less anisotropy as compared
to the case with an isotropic S.

The Stoner enhancement is smaller for the I'¢ sheet and
the X, pockets.

The anisotropy due to spin-orbit coupling will not be
enhanced in the same way as its average bulk value.

In Fig. 7 a comparison between the theoretical R and
experimental R* (Ref. 5) of palladium is presented in the
symmetry planes. All the R values have been multiplied
with a factor of 7 in order to give the same value of AR as
AR*. The experimental curve for R* from Ref. 5 was
plotted with the integer part of R* equal to 12.

Previously there have been very few theoretical works
in this field and the present work must be seen as a first
step in an investigation of cyclotron-orbit g factors in
metals. It is shown that the behavior of the measured g
factor which is anisotropic on the I'¢ sheet and the X,
pockets while it is isotropic on the a orbit, can be ex-
plained by the spin-orbit interaction.
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