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Three states of a polaron on the surface of a liquid-helium film in a uniform magnetic field
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An electron on the surface of a liquid-helium film in a uniform magnetic field is studied as a pola-

ron problem by an extended variational scheme of the Lee-Low-Pines theory. To describe the elec-

tron motion we employ a model, used in the path-integral formalism, in which an electron is coupled
to a fictitious particle by a spring. The ground-state energy is obtained for the limiting values of the

magnetic field strength and the electron-surface (ripplon) coupling constant. We find that the pola-

ron can assume three kinds of states for the limiting cases: a free state, a self-trapped state, and a
magnetically trapped state.

I. INTRODUCTION

Recently an electron on the surface of a liquid-helium
film has attracted attention as a two-dimensional (2D) po-
laron system. ' " In this system the electron is coupled to
an excitation of the surface of the liquid-helium film
called a ripplon. The strength of this coupling is varied
by changing the film thickness and the strength of an
electric field applied perpendicular to the surface. It is
known that in this system the polaron is in a free state or
a self-trapped state according to the strength of the
electron-ripplon coupling. Phase-transition-like behavior
from a free to a self-trapped state is obtained by two dif-
ferent methods of the polaron theory. ' Some evidence
of this transition was experimentally observed by An-
drei. "

In this paper we study how the polaron state changes
under the influence of a-uniform magnetic field applied
perpendicular to the surface. This problem was discussed
by Jackson and Peeters with the Feynman path-integral
formalism extended by Peeters and Devreese. ' Their
conclusion is that at a certain magnetic field the strongly
coupled polaron undergoes a transition from a self-
trapped state to a quasifree state, in which the Feynman
mass becomes the bare electron mass. On the other hand
Larsen pointed out that the energy obtained by the path-
integral formalism is not always an upper bound for the
true ground-state energy. ' This is a result of the fact that
the Feynman-Jensen inequality is not valid for the elec-
tron action in a magnetic field because it becomes a com-
plex number. We consider the problem by another
method.

The method we employ is an extended variational
scheme of the Lee-Low-Pines theory. To describe the
electron motion we employ a model in which an electron
is coupled to a fictitious particle by a spring. The ripplon
cloud is centered on the center of a cyclotron orbit of
these coupled particles. We calculate the ground-state en-

ergy, the polaron radius and the cyclotron radius of the
polaron. The explicit expressions for these quantities for
the limiting values of the magnetic field strength and the
electron-ripplon coupling constant are derived analytical-
ly. From these expressions we construct a physical image

of the states of the polaron in a magnetic field. When the
electron-ripplon coupling and the magnetic field are weak,
the polaron is in a free state in which an electron interact-
ing with virtual ripplons is on a free Landau orbit. When
the coupling is strong while the magnetic field is weak,
the polaron is in a self-trapped state in which an electron
is trapped in a ripplon cloud and is in diamagnetic motion
within a potential well due to the ripplon cloud. When
the magnetic field is strong, the electron is on a free Lan-
dau orbit and the ripplon cloud surrounds the orbit. We
call this state a magnetically trapped state.

In Sec. II we give the formalism of the problem with a
diagonalization of the coupled particles. In Sec. III the
analytic expressions of the ground-state energy are dis-
cussed for the limiting values of the electron-ripplon cou-
pling constant and the magnetic field strength. Analyzing
these expressions we construct a physical image of the po-
laron state. Section IV is devoted to the result and discus-
sion. In Appendix A a proof of a certain formula used in
the present paper is given and in Appendix B an improved
argument for the weak-coupling regime is presented and
compared with the result of second-order perturbation
theory.

II. FORMULATION

H;„,= g Vke'"'(ak+a k),
k

(lb)

where r and p are the electron position and momentum
operators, m the electron mass, —e the electron charge, c
the light velocity, ak and ak the annihilation and creation
operators for a ripplon with wave number k and frequen-
cy cok. The vector potential we choose is in a symmetric
Coulomb gauge

The 2D electron-ripplon system in a uniform magnetic
field 8 applied perpendicular to the surface is described
by the Hamiltonian:

2
1 eH = p+ —A + g ficokakak+H;„,

2m c k

with
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A=( B—y/2, Bx/2)= ——o. rB
2

(2) At(t) = exp[( —1)~crs t]

with a dyadic o. defined by o.=xy —yx, which is
equivalent to the matrix:

0 1 and

cos(sj t)

—( —1)~ sin(s, t)

( —1)~ sin(sjt)

cos(st t)

—1 0 (3)
a.t =w'/(w —s~ ), j =1,2, 3 . (10)

and satisfies the equation o. = —1. Following Jackson
and Peeters, we use the capillary wave number k, as a
cutoff for the ripplon wave number, and take

cok =sk
t ]/2
2~ah sk

Am

(4)

with k =
~

k
~

. Here fl is the area of the system, s is the
velocity of the third sound in a helium film, defined by
s =(g'd)' with d the film thickness and g' the accelera-
tion due to the van der Waals coupling of the helium to
the substrate. The constant g

' is defined by
g'=(3a, /pd )' with a, the coefficient of the van der
Waals potential' and p the helium mass density. The
capillary wave number is defined by k, =(g'pic)' with
r the helium surface tension. The dimensionless constant
a is the electron-ripplon coupling constant, which is
varied by changing the electric field pressing the electron
against the surface. '

with

v =K(1/m+1/m'),

m =K/m ',
co, =eB /em .

(12a)

(12b)

(13)

The vectors R~. (j =0, 1,2, 3) are the normal coordinates
of the model. The coordinates Ro and Rl are interpreted
as the center and radius of the cyclotron orbit for the cou-
pled particles, respectively. R2 and R3 are the coordi-
nates describing the relative motion of the particles. A
sketch for the coordinates is given in Fig. 1. We denote
the x and y component of Rj by Xj and Yj, respectively.
Then these operators satisfy the following commutation
relations:

Here the frequencies s 1
& s2 & s3 are given by the positive

roots of the equation:

s'(s —u ) —co, (s —w ) =0,

A. Electron coupled to a fictitious particle

To describe the motion of the electron coupled to the
ripplon we employ a model where an electron is coupled
to a fictitious particle by a spring. This model is
equivalent to one used in the Feynman path-integral for-
malism. ' '' The Hamiltonian for the model is

[XJ,YJ ] =6JJ'( —1)'2id, ,

[X&,X~ ]= [ Y&, YJ'] =0, j,j' =0, 1,2, 3

with

(14a)

(14b)

2

H = p+ —A +,p'+ —~r —r'~, (6)
2m c 2m 2

where m', r', and p' are the mass, position, and momen-
turn of the fictitious particle and K is the spring constant.

The diagonalization of H is equivalent to the diago-
nalization of a symmetric 8&8 matrix. We performed
this diagonalization following a method suggested by
Peeters and Devreese' and obtained the four normal coor-
dinates. In the Heisenberg picture the time evolution of
the position and momentum of the electron is given by

d =.2
1

fi j=0,
2m cue

Sj —LU
2 2

j =1,2, 3 .
3s~ +2( —1) sjco, —U2

Based on these commutation relations we introduce the
creation and annihilation operators Cj and
C (j =0, 1,2, 3, )

r(t)=Ra+ g Q, (t) R,-,
j=l

p+ —A (t) = g ( —1)'mstflt(t) o"R~,
C j=l

(ja)

(jb)

Xj =dj(C~ +Cj),

Y =( —1)~id~(C&. —Ct), j =0, 1,2, 3,

(16a)

(16b)

and the position of the fictitious particle is

3

r'(t)=R, + g x;Q, (t) R, ,

where CJ and CJ satisfy [CJ,C~ ]=6&&. The Hamiltonian
H is then described with these operators as

where
H = g Rst(C Ct+ —, ) . (17)
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B. Trial state and expression for the ground-state energy

Substitution of (7a) and (7b) into (1) yields

3

H= —g ( —1) +J sj.sj Rz R~ + gficokakak
2 k

+ QVk exp[ik. (Rp+R)+Rq+R3)](a k+ak) . (18)
k

We determine the ground state of (18) within a variational
procedure. The trial state we choose is

operator U~ reduces to the Lee-Low-Pines transforma-
tion. ' When v = ie and cu, ~ v, Ro+ R& reduces to
r/2 —o'p/men, which is the center of the cyclotron orbit
for a free electron. In this case the state (19) is essentially
equivalent to one given by Whitfield, Parker, and Rona. '

The trial state (19) is composed of the ground state of H
and the coherent state of ripplon centered on the position
Rp+R, . The unitary operator U~ transforms
RJ (j =0, 1,2, 3) and ak as in the following:

U, R, U, =R~. + (5~.p+ 6i, ) ( —1
V 2' gr g ka ka k,

k

with

I
e) =U, U, Io), (19)

U (a k U& = exp —ik'( Rp+ R~ )

j=0, 1,2, 3, (23)

U( ——exp —i(Rp+R() gkakak
k

U2 exp g(fk k fk k)
k

(20)

(21)
with

—+2ib, (k, k')akak ak,
k'

(22)
h(k, k') =(d() —d, )k cr.k'/2 . (25)

where
I
rk) and

I ej ) are, respectively, the vacuums for
ak and CJ, satisfying (&k

I
&k) =1 and (e~.

I e& ) =1. The
variational parameters are fk in (21), U in (12a), and w in
(12b) which determine RJ, C&, CJ and

I e& ). When U =w
and co, &v, Ro+R& becomes r. In this case the unitary

The unitary operator U2 transforms ak as

U2akU2=ak+fk . (26)

A derivation of (24) is given in Appendix A. Taking the
expectation value of (18) by (19) leads to the following ex-
pression:

E=(e IH
I
e)

=m (s ~d, +s2dq+s3d3)+ g (Acuk+2ms )d )k )
I fk I

k

+ Q Vk exp —(dz+d3)k l2 2g I
fk'

I

sin h(k, k') (fk+ f*k) .
k'

(27)

(0 e '
I
0) = (0

I
exp(KC~ —Ic CJ)

I
0)

—k 2d2g2=e (29)

Here we have used the following equations under the as-
sumption that

I fk I

'= If k I

':—
(oIR,'Io) =(oI4dg(c,'c, + —,') Io)

24(

(x)

exb b g (ex —1)"b
n=O ". (32)

where b and bt satisfy the relation [b,bt] =1.
In the following two limits we can neglect the term

2 k' k sin 6 k,k'—:T' compared with the term
(dt-kdt)k /2 (=T) in (27). (() Weak-magnetic field
limit: In this limit T and T' are reduced to

with Ir=id~ I k„+i(—1)jk»], and

(0 Uq exp 2i g b, (k, k')akak U2
I
0)

= exp —2g fk sin A(k, k') . (30)
k'

k 4 wT~ 1—
4mv v'

2 2

,
4mv4 v' (33)

(31)

To obtain (29) and (30) we utilize the following identities:

e rb —r*b e
—

I r I
'»e r b e

—r'
For sufficiently small gp, it holds that T» T'. (2)
Strong-magnetic-field limit: In this limit T and T are re-
duced to
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T~k
4m co,

2

T'~k
2m coc k'

(34)

2

E= 1—
2 U2

I
V~

I
exp[ —(1—w /v )Ak /2mv]

(39)
ficoI, +(w /v ) A' k /2m

For sufficiently large co, it holds that T&&T'. If we
neglect T', the expression (27) becomes a quadratic form
with respect to f~. Minimizing (27) with respect to fq

leads to

This expression is equivalent to the early result obtained
by a modified variational scheme of the Lee-Low-Pines
theory. '

V q exp[ —(dp+d3)k /2]

Acog+2ms )d )k
(35)

III ~ ANALYTIC EXPRESSIONS
FOR THE GROUND-STATE ENERGY

Substitution of (35) into (27) yields

E =m(s )d i+s~dz+s3d3)2 2 2 2 2 2

I
V„ I'exp[ —(d', +d', )k ]

%col, +2ms ~d, k
(36)

r, —= ((OI —,R)IO))' =d) . (38)

In the absence of a magnetic field we obtain from (36)

In the next section we minimize (36) with respect to v and
w and obtain the explicit analytic expressions for the
ground-state energy. We introduce the polaron radius r&

and the cyclotron radius of the polaron r„which are easi-
ly calculated in terms of d&,

rz =((0
I

—, (Rz+R3)
I

0))' =(d~+d3)', (37)

k exp[ —(dz+d3)k ]—os dk
0 $ +2$ (d (k

where we have used units such that A =m =k, = 1.

(40)

A. Weak-magnetic-field limit

Assuming that co, «1 (cu, & v) and retaining terms to
the second order in cv„we reduce Eq. (40) to

In this section we minimize (36) with respect to v and w

and obtain the explicit analytic expressions for the
ground-state energy for the limiting values of the
electron-ripplon coupling and the magnetic field. Substi-
tution of (4) and (5) into (36) yields

E(a,cv„v, w) =s ~d ~ +s zd z+s 3d 3
2 2 2 2 2 2

E——(I u) a (I e I~ "I~~U) dk k~
2 1 —Q 2s

2~c 2 ~c 1 —u 3+ u +
2 8 U 2

—(1 —u)/2U

(1 u) 2v
(41)

=co, /2 —2saI 1 —2s ln[(1+2s)/2s] I (42)

The first term in (42) is the zero-point energy of an elec-
tron in a magnetic field and the second term is the pola-
ron energy in a free state without a magnetic field. This
expression is almost equivalent to one obtained by the
second-order perturbation theory except the modulation
of the zero-point energy due to the mass renormalization
by the electron-ripplon coupling (see Appendix B). To
understand this effect we present an improved argument
in Appendix B. From Eq. (42) we can construct a physi-

where p is defined by z = w /U .
In the weak-coupling limit (a «1) the electron is al-

most free so that the ground state is obtained by taking
the variational parameters U and w such that v =-w, im-

plying that the mass of the fictitious particle m' is zero.
Then Eq. (41) becomes

kE=cv, /2 —as f dk
s +k/2

3s
1

chic

a

then the ground-state energy becomes

a V'aE= ——+
2 2

1

12
3s ~c
8 2m,

+
2

COc

+ (44)

with m, =4a/9s . The polaron radius and the cyclotron
radius are, respectively, given by r&

——( 1/2U) ' and
r, = (1/2', )

' . The first four terms in (44) give the

cal image for the polaron such that an electron interacting
with virtual ripplons is on a free Landau orbit. This im-
age is suggested by the fact that in this limit the polaron
radius is given with r =0 and the cyclotron radius is
r, =(I/2', )'~ . This image may be depicted in Fig. 2(a).

In the strong-coupling limit (a ~~ 1) the electron
motion is strongly restricted within the ripplon cloud.
Minimizing (38) with respect to v and u we obtain to the
first order in co,

1/2 1/2

U= CX 9s
(43)

4 4a
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B. Strong-magnetic-field limit

In the strong-magnetic-field limit (co, »1) assuming
that v =w and co, & U, we obtain from (41) irrespective of
a

E= —,'co, —ace, (1—e '~ co, ) . (45)

FIG. 1. The coordinates of the coupled particles in a magnet-
ic field. The circle and the square represent an electron and a
fictitious particle, respectively. Definition of R, and
(j =0, 1,2, 3) are given in the text.

ground-state energy of the strongly coupled polaron
without a magnetic field, the fifth term is the zero-point
energy of a free particle (with mass m, ) in a magnetic
field, and the last term is due to the diamagnetic motion
of the electron in a potential well of the ripplon cloud sur-
rounding the electron. This image is depicted in Fig. 2(b).

In this limit the polaron radius is given by rz
——(1/2', )'

and the cyclotron radius is r, =0. In the strong-
magnetic-field limit the cyclotron radius of the electron
becomes very small and the region in which the electron
moves around is so small that the coherent ripplon cloud
can be created even if a is small. The first term in (45) is
the energy of an electron on a free Landau orbit and the
second term is the energy due to the ripplon cloud. This
image is depicted in Fig. 2(c). Jackson and Peeters called
this state as a quasifree state because the Feynman mass,
reduces to the bare electron mass. Within our theory the
model mass U /u also reduces to the bare electron mass,
but this does not mean that the polaron is in a free state.
The model mass is only a parameter to determine the
motion of the electron. If the model mass reduces to the
bare electron mass the electron motion is of course
equivalent to a free electron motion, but it does not neces-

(a)

FIG. 2. Sketch for the states of the 2D polaron in a uniform magnetic field. The electron is described by the small circle with its
locus. The mesh shows the helium surface. (a) Free state for co, «1 and a «1, (b) self-trapped state for co, «1 and a »1, (c) mag-
netically trapped state for ~, && 1.
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sarily mean that there is no ripplon cloud around the elec-
tron.

IV. RESULT AND DISCUSSION

In this paper the 2D polaron in the electron-ripplon
system under a uniform magnetic field is studied with an
extended variational scheme of the modified Lee-Low-
Pines theory. To describe the motion of the electron we
used a model in which an electron is coupled to a ficti-
tious particle by a spring. In this model the mass of the
coupled particles does not always represent the mass of
the polaron.

The polaron takes three kinds of states for the limiting
values of the electron-ripplon coupling constant and the
magnetic field as summarized in Fig. 2: (a) The free state
in which an electron interacting with virtual ripplons is on
a free Landau orbit realized when co, « 1 and a « l. (b)
The self-trapped state in which an electron trapped by a
ripplon cloud is in a diamagnetic motion in the potential
well of the cloud realized when cg, «1 and a»1. (c)
The magnetically trapped state in which an electron on a
free Landau orbit is surrounded and trapped by a ripplon
cloud realized when co, &~1 irrespective of the value of a.

The limiting expressions (42), (44), and (45) are essen-
tially equivalent to those obtained by Jackson and Peeters
(notice that their unit for the energy is fi k, /2m but ours
is A k, /m). This suggests that, in spite of Larsen's criti-
cism, ' their formulation gives the correct result so far as
the magnetic field and the electron-ripplon coupling con-
stant take the limiting values. This does not mean, how-
ever, that we can use the path-integral formalism assum-
ing the validity of the Feynrnan-Jensen inequality in the
presence of a magnetic field. If we apply our method to
the optical polaron in a magnetic field, the results do not
agree with those obtained in terms of the path-integral
formalism.

To obtain the magnetically trapped state we use the
condition that the term T' should be negligibly small as
compared with T in (27) based on the limiting expressions
(34). This condition is not satisfied for the 2D optical po-
laron (i.e., ~1, =1 and Vq =

I &27ra/kQ]' ') in the
strong-coupling regime. For the 2D optical polaron the
term gzk ~ fq ~

in T' is proportional to aa«, if we use

(35) for fq, therefore T and T' become the same order in

co, and moreover T' becomes larger than T for the
strong-coupling limit. The magnetically trapped state for
the 2D optical polaron, therefore, does not appear in the
strong-coupling regime, which is a different result from
that of Peeters and Devreese. By the same reason the 3D
optical polaron cannot take the magnetically trapped state
in the strong-coupling regime. We think that the self-
trapped state and the magnetically trapped state are re-
sponsible for a phase-transition-like behavior of the
strongly coupled polaron, if it exists. As the magnetic
field increases the polaron changes its state from a self-
trapped state to a magnetically trapped state. Based on
this consideration we are doubtful about the presence of a
phase-transition-like behavior induced by a magnetic field
in the 3D optical polaron discussed by Peeters and De-
vreese. '

APPENDIX A

+ [S,[S,[S,A]]]/3!+
e "e = expIA +B -+[A,B]/2+([A, [A,B]]

(A1)

+[[A,B],B])/12+. . . I,

(A2)

Equation (23) is obtained by straightforward application
of (AI). ~e denote Ro+R~ by R and d~ —d, by d2.
Then the operator U] is described by

U, = exp —giR. kagag
k

(A3j

If we write the x and y component of R by X and Y, then
these operators satisfy

[X,Y] =2id

Utilizing (A2) we rewrite the operator U, as

U] ——U'] U]',

with

(A4)

(A5)

U~ ——exp[ —iXA ] exp[ —i YA»),

Uj' = exp[id A A»] .
tHere A„= gzk„aqaq and A» = gzk»a qadi commute

each other. Using (Al), we obtain

e «Xe «=X —2d g k»aqaz . (A6)
k

The transformation of az by U] is given as follows,
i YA iXA —iXA —i YA

] ag '] ——e e a]e e

iYA —i'=e 'exp[ —ik X]age
iYA —iYA i YA —i YA= exp[ —ik e «Xe «]e «a qe

= exp[ ik R —id k. k» —ik„A—»]aq . (A7)

Here for the step from the first to the second line Eq. (Al)
is used and from the third to the fourth line Eq. (A6) is
used. Using the formula (Al) and the relation

[A„A»,aq]= —(k k»+k, A +k»A»)aq,

we obtain

UI' aqU", = exp[id (k k»+k A»+k»A )]aq .

Then the transformation of a~ by U] becomes

U]a~U& ——U]' U'] a~U~U'~'

(A8j

(A9)

= exp[ i k R id —(k„A. »
——k»A„)]aq

= exp —ik R —id g k o.k'at a& az .
k'

(A10)

This is the relation to be demonstrated.

In this appendix we give a proof for (24). The follow-
ing formula is essential for the proof.

e Ae =A+[S,A]+[S,[S,A)]/2!
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APPENDIX B

In this appendix we give an improved argument for the
weak-coupling regime to obtain the mass renormalization
effect in the zero-point energy in (42). We employ the fol-
lowing unitary transformation:

2
U2ak U2 ——ak+ fk+gk. R~+id

& ggk"o gk(ak —ak ),
k'

(82)

U2R) U2 ——RJ —5)ti 2dto ggk(ak —ak ),
k'

U2 ——exp g [(fk+gk'R&)(ak ttk)]
k

(81) j =0, 1,2, 3 .

Using U2 we define the trial state as follows,

(83)

To make the calculation as simple as possible we assume
that fk fk f——k a——nd gk ——gk

———g k. In the limit of
U =~ this operator reduces to the operator given in Eq.
(18) of Ref. 18. The operator U2 transforms ak and Ri
(j =0, 1,2, 3) as follows:

le&=U, U2 lo& . (84)

We assume that fk and gk are proportional to a' . Then
the expectation value of the Hamiltonian (1) by (84) be-
comes to the order of a as in the following:

2 2 2 2 2 2 —(d ~ +d 3 )k /2&=m (s )d )+s2d2+s3d3)+ g 2Vkfke
k

+ g (fkgk)
Ac@~ +2ms ~d ]k

2ms )d]k 0

2ms )d )k 0 Jk
I truuk +2ms, d f ( k d ) + I ) ]d ) gk

(85)

V k exp[ —(d2+d3)k /2]
(2ms )d )) d )k'

A'cuk+2ms )d )(d)k +1)Scag +2ms, d, k—2 4 2

Substituting of (86) and (87) into (85) yields

E =m (s ~d ~ +s2d2+s3d3)

Vk
l

'exp[ —(d2+d3)k ]

k (2ms )d ) ) d )k'
Acoj, +2ms )d )k-

fuok +2ms )d ) (d (k + 1)

Minimizing (85) with respect to gk and fk, we obtain

2ms )d )k ofkgk=-
Acok +2ms ~d ~ (d ~

k + 1 )
2 2 2 2

and

(86)

(87)

(88)

The ground-state energy in the weak-magnetic-field
limit is given by choosing u = tu and cu, & u in (88):

m'k'
l

Vk
l

expl. (d2+d3)k

I Acok + A' k /2m I

Ace,E= 1—
2 m

Vk
l

exp[ —(d 2 +d 3 )k']
Ace +A k /2m

(89)

The first term of (89) is equivalent to the energy of a free
particle in a magnetic field with mass m * given by

l
Vk

l
exp[ —(d2+d3)k ]=1+g (810)

m „m IRcok+fi k /2m ]

This is the same expression for the polaron mass as de-
fined by the Lee-Low-Pines theory.

The energy for the strong-magnetic-field limit is given
by taking u =tu and cu, & u in (88). The resultant expres-
sion is the same as given by (45).

Within the second-order perturbation theory' ' ' we ob-
tain the ground-state energy

jV
2

—X f dt exp —t — (1 —e
2m toe

—tccp /cogc
j (B11)

From this expression we obtain the same expression as (89) for the weak-magnetic-field limit and as (45) for the strong-
magnetic-field limit.
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