PHYSICAL REVIEW B

VOLUME 35, NUMBER 15

15 MAY 1987-11

Local-space approximation for treatment of chemisorption:
Application to a model transition-metal system

Celso P. DeMelo
Departamento de Fisica, Universidade Federal de Pernambuco, 50 000 Recife, Pernambuco, Brazil

Maria Cristina dos Santos
Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, 50000 Recife, Pernambuco, Brazil

Maria Matos
Departamento de Fisica, Pontiﬁcia Universidade Catélica do Rio de Janeiro, Rua Marqués de Sao Vicente 225,
Gavea, Codigo de Enderecamento Postal 22451, Rio de Janeiro, Rio de Janeiro, Brazil

Bernard Kirtman
Department of Chemistry, University of California, Santa Barbara, California 93106
(Received 1 December 1986)

The local-space approximation (LSA) for the treatment of chemisorption is explored using a
model system which consists of a hydrogen atom interacting with a semi-infinite one-dimensional
chain of transition metal (tungsten) atoms within the Anderson-Newns approximation to the
Hartree-Fock Hamiltonian. Convergence with respect to the size of the Jlocal space is much more
rapid than for a finite-cluster calculation. In order to achieve the same accuracy, over twice as
many atoms must be present in the latter case. Comparison with a standard Green’s-function treat-
ment confirms the importance of including self-consistent charge transfer between the surface com-
plex and the neighboring substrate. Adsorbate-induced surface states are readily found and charac-
terized by the LSA technique. In addition, we show how the effect of adsorption on the work func-

tion of the metal can be determined.

I. INTRODUCTION

It has been a long-held view that when an atom or mol-
ecule adsorbs on a metallic surface the perturbation is, or-
dinarily, not significant beyond a small number of neigh-
boring atoms. In this way chemisorption is considered to
be a local phenomenon, and theoretical investigations usu-
ally concentrate on the “surface complex,” or cluster,
comprising the adsorbate plus a few interacting neighbor
substrate atoms.

On the other hand, the fact that cluster calculations do
not seem to converge rapidly with increasing size?~’
highlights the importance of properly embedding the clus-
ter within the entire system. This leads to the problem of
handling—in a self-consistent way—a semi-infinite sys-
tem with locally broken symmetry. As a result a variety
of embedding methods have been proposed®~° including
our own.! The former techniques often combine a
simpler description of the periodic substrate outside the
surface complex, with a higher level treatment of electron-
ic interactions within this region. However, self-
consistency is usually included in only a limited way and,
at most, for just a couple of atoms in the surface complex.
The transfer of electrons into or out of the surface com-
plex is not correctly accounted for nor is the charge con-
served as it should be.

Of the other embedding methods the closest in spirit to
ours is that of Feibelman and co-workers’ in the sense
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that both are matrix-oriented and that the density matrix,
in particular, plays a central role. We also especially note
the density-matrix procedure of Ying and co-workers!'!
which has been applied to the formation of surfaces and
vacancies in simple metals. As noted elsewhere!® their
method is based on a local-space approximation similar to
ours. In contrast with them, however, we use a combina-
tion of fragments approach that allows for important sim-
plifications without introducing further approximations.
Additionally, both Ying et al. and Feibelman et al. are
limited in ab initio calculations to density-functional (or
Hartree-Fock) theory which is known to seriously un-
derestimate binding energies. 12

Our local-space approximation (LSA) for localized elec-
tronic interactions in extended systems was first present-
ed!® about five years ago. When used with the Hartree-
Fock (HF) or Xa model'3 this approximation is based on
a density-matrix formulation'* of the electronic structure
problem. In the case of chemisorption our treatment al-
lows the surface complex (i.e., the local space) to be fully
coupled to the rest of the system and, at the same time,
conveniently projects the HF problem onto the local re-
gion where the perturbation caused by the adsorbate is
most felt. Therefore, subject to certain approximations
presented in Sec. II, one gets a self-consistent solution for
the entire semi-infinite system while the quantum chemis-
try calculation is reduced to molecular dimensions.

Previous applications of the LSA method include
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model calculations for the chemisorption of atomic hy-
drogen onto a tungsten (100) surface,'® a treatment of the
interaction between finite molecular fragments,15 a study
of the localizability of hydrogen bonds in large systems, '°
and an investigation of solitons in polyacetylene.!” In all
these problems it has been found that the method gives
very good results for bond energies and for the projection
of the density (or the charge and bond order) matrix on
the local region.

In order to assess the efficiency of the LSA technique,
it is necessary in each individual case to establish how fast
the results converge with an increase in the size of the lo-
cal space. From a practical point of view the calculations
must converge—or, at least, one must be able to extrapo-
late reliably to the convergence limit—before the dimen-
sions of the local space increase to the point of making the
quantum chemistry treatment unmanageable. The pur-
pose of the present paper is to carry out such a study for a
model chemisorption system.

The particular model considered here is that of a hydro-
gen atom interacting with a semi-infinite one-dimensional
chain of transition-metal (tungsten) atoms within the
Anderson-Newns (AN) approximation'®!® to the HF
Hamiltonian. Due to the crudeness of the model we do
not insist that the results agree with experiment. Instead
we test the convergence of the LSA method and investi-
gate its advantages and limitations relative to other ap-
proaches. In order to ascertain the importance of self-
consistency throughout the entire system, our results are
compared to ordinary cluster calculations as well as a typ-
ical Green’s function scheme where self-consistency is im-
posed only on the surface complex. It turns out that a lo-
cal space containing just 8 metal atoms yields essentially
the same results as those obtained for a finite 20 atom
metal cluster.

In addition to the adsorption energy, we examine the
charge and magnetic moment of each individual atom in
the surface complex. By considering charged hydrogen
atoms we also determine the effect of adsorption on the
work function of the metal. Finally, the presence of an
adsorbate may induce the formation of surface states.
The latter have been observed experimentally for hydro-
gen on metal surfaces?® through the appearance of differ-
ence peaks in the photoemission spectra. Using our treat-
ment we show how to find and characterize such states in
a simple manner.

The organization of this paper is as follows. In Sec. II
we present a short review of the theory on which the LSA
method is based and, then, in Sec. III we give details of
our model calculations. The results are shown in Sec. IV
and a comparison with an alternative embedding treat-
ment is presented in Sec. V.

II. THEORY

The Hartree-Fock LSA method has been presented pre-
viously.!®!> Therefore, only a brief review is given here.
For the chemisorption problem we start with the nonin-
teracting subsystems A4 (for adsorbate) and M (for metal)
which are described by their first-order density matrices,
R4 and R™, respectively. Our goal is to determine the
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self-consistent density matrix, R, for the entire system
after the coupling between the hydrogen atom and the
metal chain has been switched on. Let us call R, the
combined density matrix for the noninteracting subsys-
tems. Since the atomic orbitals are assumed to be orthog-
onal in the AN model, Ry is just the direct sum R A4 RM
of the two unperturbed density matrices.

In addition to the density matrices one must also know
the unperturbed Hamiltonian matrices, h? and hM, each
of which is a sum of occupied and unoccupied blocks,
eg., h"=R*h4R4+(11—R" Hh*4 (11 —R"), correspond-
ing to the converged self-consistent solution for the in-
dependent subsystem. As in the case of the density ma-
trix, the total zeroth-order Hamiltonian is ho=h4+hY
:R0h0R0+( 1 —Ro)ho( 1 ——Ro)

After the interaction is switched on new terms will ap-
pear in the Hamiltonian matrix coupling the original oc-
cupied and unoccupied blocks. In the view, the final HF
solution is found by diagonalizing the self-consistent
Hamiltonian matrix into blocks corresponding to the new
occupied and unoccupied spaces. It is useful to think of
R and U=1—R as the respective projectors for these two
spaces.

A fundamental property of the first-order HF density
matrix is its idempotency, 14 je., R*=R. This condition
plus the relation tr( R)=N-—where N is the total number
of electrons in the combined system—assure both the
representability of the density matrix in terms of an N
electron (single determinant) wave function and charge
conservation. In order to correctly describe the transfer of
charge to and from the surface complex, these conditions
have to be maintained for the entire system.

We define the local space as the set of atomic orbitals
| i) which span the region where the effect due to the in-
teraction will be most felt. In other words, these orbitals
describe the surface complex (SC) formed by chemisorp-
tion. The corresponding projector (S is the overlap ma-
trix)

o= > |i>(S_l)ij<j =X [i)€i |
i,jESC i€sc
plays a fundamental role in our treatment.
After the first self-consistent cycle the current density
matrix, RV, can be written in the general form:'4

RY=Ry+ARV=(Ro+v)(1+vT0)"U(Ry4+vT), (1

in which v =UyXR, and X is an arbitrary symmetric ma-
trix that is ultimately determined by the stationary condi-
tion on the energy. It has been shown'® that AR‘" cannot
be confined to the local space if the idempotency condi-
tion is to be satisfied. Hence, in the LSA we assume in-
stead that X is confined to the local space, i.e.,
X~QXQ =X,. Here Q is the matrix representation of @
Note that v still extends over the entire system due to the
Ry and U, projectors on either side of X,. Consequently,
ARV extends over the entire system as it must. Although
arguments can be given to justify the LSA the most con-
vincing rationale comes from actual calculations such as
those presented here. It turns out that replacing X by X,
reduces the HF problem to the dimension of the local
space while self-consistent readjustments of charge remain
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possible over the entire interacting system.

In order to conveniently compute the updated density
matrix we introduce the set of auxiliary matrices (o® )o>
(URU)Q, etc. defined such that

AR =Ry(0®)gRo+Ro(aRV)o U,
+UQ(O'UR)QR0+U0(UU)QU0 (2)

in which!®

(0R)g=—(0"Y)o(Up)oXg, (0V)g=Xp(Ro)g(c"Y)g
(3a)
and

(0RY) g =Xp[1p+(Us)pXo(RoloXol™'=(aR)} .

(3b)

Thus, once X, is obtained AR is readily evaluated and
subsequent iterations may be treated similarly. The cu-
mulative change in the density matrix, AR, is given by

AR7=Ry(R)gRo+Ro(RY)q Uy
+ Ug(7PR)oR o+ Uo(tY)o Uy , 4)

where each 7 is obtained by summing the corresponding
0o matrices over all iterations. Following this procedure
we can relate all changes in the electronic structure due to
the interaction between the adsorbate and the metal to the
initial density matrix R,.

The entire process is driven by successive optimizations
of the matrix Xy using the HF stationary condition on
the energy which may be written as

8E =2tr[h(R)0R]=0, (5)

where 6R is a deviation from the exact density matrix and
h is the effective one-electron Hamiltonian for the com-
plete system. For idempotent linear variations [see Eq.
(1)] 8BR=RXU + UXR. Using the LSA and the cyclic
properties of the trace, one can express the above relation
as

8E =0=2tr[(UhR +RhU)pXy] (6a)
or, equivalently (since Xy, is arbitrary),
(URR +RhU)o=0. (6b)

Note the natural way in which the HF problem is project-
ed onto the local space, even though the matrix
UhR +RhU remains nonlocal. In addition to R itself
both A and U are functions of the density matrix. Since
R =R+ ARy the stationary condition (6b) depends upon
Xg, in a complicated manner, through Eqgs. (2)—(4).

In previous papers'®!> we have solved a linearized ver-
sion of Eq. (6b) for Xp. Sometimes, however, this pro-
cedure leads to a local energy minimum.!® In order to en-
sure a global minimum and obtain the most rapid conver-
gence it is preferable to employ the following two-step
method. First, the system is driven to form the strongest
bond possible between the adsorbate and the surface metal
atom. That is done by choosing an Xy which has unit
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elements in the bond positions and is zero everywhere else.
The same X, is applied repeatedly®’ until the density ma-
trix is no longer affected. Then, from this new starting
point the method of conjugate directions®* leads to the ab-
solute minimum.

As discussed in Ref. 10 the chemisorption energy, AE,
is calculated from

AE =tr({Ro[h (Ro)+h (R)]Ro}o(™R)g
+{Uolh (Rg)+h (R)IRo}o(TRY)g
+{Ro[h (Ro)+h (R)]Up}o(r¥R)g
+{Uo[h (Rp)+h(R)]Up}o(tY)g) . 7

Clearly, once the self-consistent 7o matrices are known
then AE can be evaluated by summing over just the local
space.

Information about the electronic structure of the sur-
face complex is contained in Ry, the projected charge and
bond order matrix. The diagonal element (Rgp); is the
charge associated with the ith orbital of the surface com-
plex, while (Rgp);; is a measure of the bonding interaction
between the orbitals i and j. Clearly the difference
Angc=tr(R —Ry)g is the total amount of electronic
charge transferred to the surface complex from the rest of
the system due to the interaction.

One can carry this analysis a step further by diagonaliz-
ing Ry. The resulting eigenvectors represent®* localized
orbitals of the surface complex which best approximate
localized orbitals of the extended system. The corre-
sponding eigenvalues give the (partial) occupancies of
these surface complex orbitals; an eigenvalue equal to uni-
ty indicates a surface state.

III. CHARACTERIZATION
OF A NONINTERACTING SYSTEM

We will consider here the chemisorption of a hydrogen
atom onto a semi-infinite one-dimensional chain of
transition-metal atoms. For this system the spin-
polarized AN Hamiltonian can be written as

h= 2 |¢ao>(8a +JRa —a,a—a)<¢a0|

o

+k2 |¢ka)£ka<¢k0|
+2(|¢00’>Va5<¢30[+;¢SU>VGS(¢GUI)’ (8)

where ¢,,, is the free adsorbate (i.e., hydrogen atom) atom-
ic orbital of spin o. ¥y, is a pure metal eigenfunction; ¢,
is the atomic orbital of the “surface” substrate atom
which couples to the adsorbate; and V, is the adsorbate-
substrate interaction constant. The remaining metal
atoms are involved in bonding to the adsorbate only in-
directly. In Eq. (8), e,=—13.6 eV corresponds to the
ionization potential of hydrogen and electron repulsion is
included explicitly just for electrons of opposite spin on
the adsorbate. The effect of the Coulomb potential
JR, ;.4 _o is to prevent an excess transfer of charge from
the metal band to the adsorbate.!” In the present case
J =12.9 eV which is the difference between the ionization
potential and electron affinity of the hydrogen atom.
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The term in Eq. (8) containing a sum over k introduces
the dependence on the characteristics of the metal band.
In order to compare with our previous results!® we
parametrize the semi-infinite chain to represent a tungsten
surface. As a good approximation, then, the metal band
is assumed to be half occupied with a total d-band width
of 10 eV. The Fermi level is at —4.6 eV,'%2* and the sub-
strate is taken to be initially in a nonmagnetic state
(exq=¢txp=¢x). Chemisorption induces spin polarization
of the metal substrate as we will see shortly.

We seek the unrestricted HF solution for the AN Ham-
iltonian taking

(RO)aa,aazl’ (Ro)aﬁyaﬁzo : 9)

Since ¢,, is assumed to be orthogonal to all metal orbitals

ROZRA+RM: |¢aa)<¢aa| + 2 |¢ka)<¢koi .

k,o(occ)

(10)

In order to carry out the LSA treatment the density ma-
trix of the metal must be transformed to a site representa-
tion. For this purpose we consider an infinite chain
described by a tight-binding Hamiltonian with one orbital
per site,

+ o0
e 3

i=—o0

[dier ;| + |6:)Va{dbi 41| +H.c. (11)

Here €, is the self-energy of the atomic orbitals in the
metal chain and V), is the nearest-neighbor coupling.
Following Kalkstein and Soven?® the semi-infinite chain is
imagined to result from slicing the entire chain in half.
For consistency with the AN Hamiltonian no charge
readjustment is considered at this stage. Thus, metal
atoms in the surface region have the same charge as metal
atoms in the bulk as we will see later.

The electronic structure of the semi-infinite chain, with
Hamiltonian 4 */%, may be derived from a knowledge of
the spectrum of the operator

Gle)=(e—h=/?)"1 (12)

in the site representation. This spectrum is determined by
means of the transfer-matrix (TM) method?® which has
proved to be very convenient for studying electronic struc-
ture of one-dimensional systems. The TM method takes
advantage of the translational properties of the system by
defining a transfer function

G,’J(E)

T =
(e) Gi,j-—l(s)

(13)
which can be used to decouple the set of equations ob-
tained when one projects Eq. (12) in the site representa-
tion.?” Thus, one can readily find any desired element
G;;(¢) and, from

Ryj=—(1/m) fEFImGij(E)dE , (14

the elements of the density matrix for the semi-infinite
chain. It is easy to show that for the present model
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1 ..
PX 1=J
R;j= 10, i—j even (15)
(_1)(i-j+3)/2 1 (_1)_/

i+j+2’

. i—; i —j odd
where i,j =0,1,2,... . Using the above values of R;; to-
gether with ho=h*=’? it is straightforward to obtain the
required matrices (RohoRy)p and (UphoUy)g for the
semi-infinite chain. In order to reproduce the correct d-
band width we take the coupling Vj;= —2.5 eV; g, of
course, is the Fermi energy of —4.6 eV.

Once the coupling, ¥V, between the hydrogen atom and
the substrate is switched on, the system is perturbed and,
after relaxation, will reach a new stationary state corre-
sponding to the adsorbate chemisorbed on the metal
chain. Since electron repulsion on the adsorbate is includ-
ed explicitly in the AN Hamiltonian we must update this
Hamiltonian after each self-consistent iteration by substi-
tuting into Eq. (8) the current values of the spin occupan-
cies of the adsorbate orbital.

Since the variation of R is subject to the idempotency
constraint, self-consistent readjustments will occur not
just for R,, ,, but for all elements of the density matrix.
This is the essential feature of the LSA method which
makes it different from the usual embedding techniques.
In the latter there is no simple way of accounting for re-
laxation of electronic charge beyond the surface complex.
Furthermore, with the LSA method the usually tedious
step of recalculating the Fermi level for the extended sys-
tem is avoided; the idempotency condition (and charge
conservation) automatically ensure that the proper num-
ber of energy levels are occupied.

IV. RESULTS

Chemisorption of a hydrogen atom will induce both
charge and spin polarization in the metal substrate. In
this connection, it is convenient to define

n=R{+Rf
and (16)
pi=Ri—R]

as the charge and magnetic moment of atom i, respective-
ly. We will examine the fluctuation of these quantities
along the chain as a function of the number of metal
atoms in the local space N,,.

First, the convergence of the binding energy and the
atomic charges was investigated for a fixed coupling pa-
rameter V,;=—4.156 eV. This is the value of V,, which,
for the largest Ny, used (i.e., Ny, =8), leads to a binding
energy in agreement with the experimental value of 3.0 eV
for hydrogen chemisorption on W(100).2®8 We present in
Table I the binding energy and atomic charges for
Ny <8. There is, clearly, significant electronic charge
transfer from the metal to the hydrogen atom which in-
creases with the dimension of the local space. Between
Njpr=1 and N,; =8 the net charge on hydrogen goes from
0.129e to 0.181e while the corresponding change in the



35 LOCAL-SPACE APPROXIMATION FOR TREATMENT OF . .. 7851

TABLE 1. Variation of the binding energy (AE,) as well as the electronic charge on hydrogen (ny) and on the first seven atoms of

the metal chain (n, ...

»n7) as a function of the number of metal atoms included in the local space (N,;). The energies are in eV;

the charges in units of e. Angc=tr(R —Ry)g is the net amount of electronic charge transferred to the surface complex from the sur-
rounding metal. The adsorbate-surface coupling is ¥,;= —4.156 eV; the Fermi level of the metal is at —4.6 eV; and the total d-band

width is 10 eV.

NM AEb ny n, nj Ry ns Ng ny Ansc
T
1 2.560 1.129 0959  1_ 0936 _  1.000 0.990 1.000 0.996 1.000 0.089
2 2.776 1.156 0.937 0985 ~,_ 0975 _, 0979 0.999 0.991 1.000 0.078
3 2.869 1.164 0.922 1.000 0.981 ,_ 0963 __  0.997 0.992 0.999 0.067
4 2.924 1.170 0.917 1.013 0.980 0.987 ,_ 0977 _ 00988 0.997 0.066
5 2.957 1.174 0.912 1.019 0.978 0.993 0.988 | _0.974 0.996 0.064
6 2.980 1.177 0.909 1.025 0.976 0.999 0.988 0.989" "1 0.983 0.062
7 2.995 1.179 0.906 1.029 0.974 1.002 0.987 0992 0991 ~  0.061
8 3.013 1.181 0.903 1.033 0.973 1.006 0.986 0.996 0.991 0.059
o ® 3.107 1.192 0.890 0.053

“Asymptotic values were obtained by extrapolation using Eq. (17) as discussed in text. The result given is the average of separate cal-

culations on the even and odd series.

binding energy, AE,, is 0.453 eV. As we have found pre-
viously,!® for Np; =1 the excess electronic charge on hy-
drogen comes primarily from beyond the neighboring
metal atom. On the other hand, as the surface complex is
enlarged the subsequent increase in negative charge on hy-
drogen is almost exactly balanced by a decrease on the
first metal atom. The latter atom contributes a little over
half the excess negative charge on hydrogen in the limit
Ny — oo which is obtained in the manner described
below. Along the chain successive substrate atoms follow
a pattern of alternating increase and depletion of charge
reminiscent of Friedel oscillations.?

The atomic charges on the local space and the binding
energy of the adsorbate vary monotonically with N, al-
though there are two slightly different series (see below)
depending upon whether N,, is even or odd. We have ex-
trapolated these quantities to Ny = oo using a least-
squares fit to the power series:

+—— (17)

(Np )2~

b

=a
S (Nyp) + (N
For even N,, the limiting values are AE,=3.111 eV,
ny=1.193¢, and n,; =0.887e. As a measure of the extra-
polation error we may compare the corresponding results
for odd Ny: AE,=3.102 eV, ny=1.190¢, and
n;=0.893. In Table I we list the average values which
should be correct® to about +0.014 eV in the energy and
+0.009¢ in the number of electrons. This accuracy is cer-
tainly suitable for most purposes. Of course, the conver-
gence properties for a three-dimensional substrate remain
to be established but we are hopeful that a surface com-
plex containing roughly the same number of atoms will
show a similar degree of convergence.

Note that the net charge on the surface complex, Angc,
differs from zero even for an infinite local space. This
difference is well beyond the estimated® extrapolation er-
ror and we will also see later on that an analogous, but
even larger, effect occurs for spin polarization. So there is
evidently some charge transfer across the boundary due to

the LSA. In Table I a changing pattern in the calculated
charge on a given atom is observed as one crosses over the
dashed lines which represent the boundary between the lo-
cal space and the remaining substrate. Within the local
space, however, the variation of atomic charge with N, is
well behaved. Furthermore, for a given N,, these charges
are virtually identical to those obtained by a cluster model
calculation (using a much larger number of atoms) that
will be discussed later.

It should be noted that the atomic charges outside the
surface complex are determined by the LSA—through Eq.
(4)—even though they do not appear directly in the treat-
ment. We verified that charge is conserved for the entire
system, as it must be, by going further into the bulk for
Ny =7. Contributions from the next 22 atoms (to make a
total of 30 in the local space) reduces the total charge
from 0.0608e to 0.0099¢; including the next set of 30
atoms reduces this figure further to 0.0050e. Thus, the
correct value of zero is being approached although the
charge density wave persists for a long distance into the
substrate.

Spin polarization behaves like charge polarization ex-
cept that most aspects are exaggerated. The atomic mag-
netic moments in Table II, for example, converge much
more slowly than the atomic charges as the size of the
surface complex increases. Likewise, the spin oscillations
are much larger than the charge oscillations. We have
found'® in previous (unrestricted HF) studies on closed
shell systems that the LSA induces a small anomalous
spin polarization. However, the effects seen here are of
much larger magnitude and arise as a consequence of the
Hamiltonian used (see also below).

An examination of the net magnetic moment for the
surface complex, Augc, reveals that there are two different
series of values depending upon the parity of N,,. (It was
this observation that led us to do the separate even and
odd N,, extrapolations described above.) Nonetheless
both series lead to the same limit for Augc within 0.002e.
The magnetic moment on the surface metal atom, i.e., p,
does not behave monotonically for odd N,,. Therefore, it
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TABLE II. Variation of the magnetic moment on hydrogen (1) and on the first seven atoms of the metal chain (u,, . .
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.,7)asa

function of the number of metal atoms in the local space (N,). The magnetic moments are in units of e and Augc is the net moment

on the surface complex. See Table I caption for parameters used.

Ny HH Hi H2 M3 Ha Hs He M7 Apsc
1 0.604 —0.186 '_ Q_.41_9_ = 0.000 0.067 0.000 0.028 0.000 0.418
2 0.493 —0.188 0.283 vt 0.114 _ 0.120 0.006 0.050 0.001 0.587
3 0.436 —0.192 0.241 —0.016 - _0._245_ - - 0.013 0.080 0.003 0.470
4 0.402 —0.184 0.211 —0.031 0.164 U _O.QSQ_ _ 0.106 0.009 0.562
5 0.377 —0.179 0.193 —0.040 0.146 0.007 '_ _0_18(_)_ - 0.015 0.503
6 0.355 —0.173 0.177 —0.043 0.129 —0.004 0.121 l_ _0.969_ - 0.563
7 0.340 —0.168 0.166 —0.045 0.120 —0.013 0.110 0.014 0.525
8 0.322 —0.162 0.154 —0.045 0.110 —0.016 0.097 0.005 0.564
o0 ? 0.239 —0.136° 0.576

*Asymptotic results for puy, i, and Augc were found by extrapolation using Eq. (17) as discussed in text. The value given is the aver-
age of separate calculations on the Ny odd and even series. For uy the two extrapolations differ by 0.036e; for u; they differ by
0.017e (see also footnote b); for Augc by 0.002e. In order to leave a margin for safety one should multiply these differences by 1.5 to

establish the error bounds.

®Since the sum py +u, is better behaved than u, itself we extrapolated the former to obtain the tabulated result.

turns out to be preferable to extrapolate the sum py—+p,;
instead of u, itself. The error bounds on the magnetic
moments, which are reported in a footnote to Table II, are
substantially broader than those for the corresponding
charges.

As expected!’ the spin-density wave penetrates consid-
erably further into the substrate than the charge density
wave. We have previously mentioned calculations where
the density matrix outside the local space was determined.
In these calculations it was found that, for the first 30
atoms, the net charge in the surface region is 0.0le. On
the other hand the magnetic moment is only 0.91¢ and,
therefore, the residual spin density in the surrounding sub-
strate (0.09¢) is 9 times larger than the charge density.

For comparison purposes we did a series of finite-
cluster calculations using the AN Hamiltonian with the
same parameters as above. In order to correspond with
the local space treatment only clusters with an even num-
ber of metal atoms were considered. In Table III we
present values of the binding energies, atomic charges and
magnetic moments for a hydrogen atom interacting with a
2,4, 6, 10, and 20 atom finite metal chain. The same gen-

eral behavior of the atomic charges and magnetic mo-
ments is observed with or without embedding. Spin polar-
ization effects are once again more pronounced confirm-
ing the earlier suggestion that they must be inherent to the
model. Note, in particular, that the nonmonotonic
behavior of u; is again present. However, the rate of con-
vergence is much slower for the cluster calculations;
roughly twice as many atoms are needed to reproduce a
given local space treatment. In fact, the cluster calcula-
tion for N, =20 yields essentially identical results®! to
those obtained with the LSA for N,, =8. The slower con-
vergence in the case of an isolated cluster is a consequence
of the fact that the charge and spin disturbances intro-
duced by chemisorption have to be damped over a much
shorter range than in an embedded cluster.

We have also determined the effect of the adsorbate on
the ionization potential of the metal. This was done by
employing the same Hamiltonian and parameters to treat
the chemisorption of H* (and, for comparison, H™) on
tungsten. From another point of view, after self-
consistent charge readjustment this system may be
described as the ion which results when an electron is re-

TABLE III. Finite-cluster calculations for chemisorption of atomic hydrogen on a tungsten linear chain containing N, metal
atoms. All other symbols, units, and parameter values are as given in the captions of Tables I and II.

Ny AE, ny (uy) ny (uy) ny (uy) ny (u3) ng (pq) ns (us) ne (we)
2 2.358 1.114 0.973 0.913
(0.665) (—0.162) (0.497)
4 2.648 1.142 0.950 0.963 0.996 0.950
(0.557) (—0.194) (0.360) (—0.022) (0.300)
6 2.776 1.155 0.936 0.987 0.990 0.969 0.998 0.965
(0.495) (—0.198) (0.295) (—0.037) (0.234) (—0.007) (0.218)
10 2.899 1.168 0.921 1.011 0.982 0.988 0.994 0.982
(0.419) (—0.190) (0.228) (—0.048) (0.172) (—0.018) (0.155)
20 3.011 1.181 0.904 1.034 0.973 1.007 0.987 0.999
(0.326) (—0.164) (0.157) (—0.048) (0.112) (—0.025) (0.098)
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TABLE IV. Binding energy and atomic charges for chemisorption of a proton on a neutral metal chain as a function of the num-
ber of metal atoms in the local space. The binding energy is measured with respect to a neutral hydrogen atom and a charged metal
surface. Otherwise all symbols, units, and parameter values are as defined in Table 1.

Ny AE; nu ny n, ns ng ns ne ny Andc
]
1 1.755 1.080 0.805 v 0362 1.000 0.898 1.000 0.958 1.000 0.885
2 2.412 1.140 0.837 0.730 0726 _ 0.836 0.984 0.932 0.996 0.706
3 2.593 1.154 0.848 0.809 0926 ~1_ 0616 _ 0978 0.908 0.994 0.738
4 2.723 1.164 0.855 0.872 0.940 0.812 1_ _0.804 _ 0.876 0.980 0.644
5 2.786 1.169 0.859 0.900 0.948 0.849 0.946 ' _0._73_2 _ 0.972 0.670
6 2.843 1.173 0.862 0.928 0.951 0.884 0.956 0.854 _ _O.§4§ _ 0.609
7 2.875 1.176 0.864 0.942 0.953 0.901 0.966 0.876 0.954 0.631
8 2911 1.179 0.866 0.958 0.954 0.919 0.968 0.901 0.963 0.587
0 ? 3.109 1.194 0.877 0.525

®Limiting values were obtained by extrapolation using Eq. (17) as described in the text and taking the average of the even and odd
series. For AE;" the two extrapolations differ by 0.024 eV; for ny they differ by 0.002¢; for n, by 0.001¢; for And- by 0.021e. In or-
der to leave a margin for safety one should multiply these differences by 1.5 to establish the error bounds.

moved from a one-dimensional metal containing an ad- and

sorbed hydrogen atom. From the change in binding ener-

gy for ionic versus neutral adsorption one obtains the ioni-

zation potential of the metal with the adsorbate present. AE, =8E~ +er—ga—J,
In general, there will be a change from the bare metal
value due to the influence of the adsorbate on the surface
dipole.

In Tables IV and V we present the results for H* and
H™, respectively. Note that the self-consistent treatment
redistributes the initial charge so that ny and n, are the
same within extrapolation error®? for H*, H™, and neu-
tral adsorption. Plots of charge differences indicate that
this is true of all atoms within the local space except that
in H™ the charge oscillation might be slightly larger than
the other two cases. Thus, for ionic adsorption, the excess
positive or negative charge is completely delocalized.

It is convenient to measure the binding energy AE;" of
the ion with respect to a separated neutral hydrogen atom
and the appropriate charged metal surface. That is to say,

(19)

where 8E ™ is the electronic binding energy with respect to
H* or H™ and the neutral metal surface. The energy
difference AE, —AE," is equal to the change in the ioni-
zation potential of the metal due to chemisorption. For
the case at hand we find an insignificant change of 0.002
eV. The extrapolation errors are such that any value
greater than 0.04—0.05 eV would be meaningful and this
figure could be reduced by considering larger local spaces.
Our result is reasonable but the model is too crude to per-
mit a comparison with experiment especially in view of
the fact that work function changes are very sensitive to
surface structure.’® The small change of 0.022 eV calcu-
lated for the electron affinity is consistent with that ob-
tained for the ionization potential.

AE) =8E* —ep+¢, (18) The degree to which the interaction between the adsor-

TABLE V. Binding energy and atomic charges for chemisorption of H™ on a neutral metal chain as a function of the number of
metal atoms in the local space. The binding energy is measured with respect to a neutral hydrogen atom and a charged metal surface.
Otherwise all symbols, units, and parameter values are as defined in Table I.

NM AEb— Ny ni n; nj Ny Rs (X3 ny Angc
1 2.306 1.294 0.948 : _ 1546 _ 1.000 1.088 1.000 1.036 1.000 —0.758
2 2.690 1.246 0.924 1.299 .+ _ 1.188 - 1.130 1.010 1.054 1.002 —0.532
3 2.816 1.234 0.908 1.240 1.009 ,_ 1.302 _ 1.018 1.084 1.004 —0.609
4 2.896 1.226 0.902 1.198 0.991 1078 “1_ 1134 _  1.09 1.020 —0.505
5 2.935 1.221 0.898 1.178 0.979 1.154 1018 1_ 1.208_ _  1.022 —0.550
6 2.969 1.218 0.895 1.160 0.975 1.132 1.005 1.131 v_L104_ .  —0484
7 2.991 1.215 0.893 1.148 0.971 1.120 0.995 1.116 1.020 —0.520
8 3.010 1.213 0.892 1.138 0.969 1.109 0.991 1.101 1.010 —0.472
o ? 3.129 1.201 0.881 —0.433

?Limiting values were obtained by extrapolation using Eq. (17) as described in the text and taking the average of the even and odd
series. For AE, the two extrapolations differ by 0.002 eV; for ny they differ by 0.002¢; for n; by less than 0.001e; for Angc by
0.016e. In order to leave a margin for safety one should multiply these differences by 1.5 to establish the error bounds.
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bate and the metal chain gives rise to a localized surface
complex can be put on a quantitative basis if one diago-
nalizes Ry. Each eigenvector represents a localized orbi-
tal of the surface complex and the corresponding eigen-
value (between O and 1) gives the occupancy of that orbi-
tal. We have noted before'® that one of the eigenvalues
will always be unity. This is a consequence of the trap-
ping of the occupied state originally associated with the
hydrogen atom and it is due to the special form of the AN
Hamiltonian. By the same token there will also be a
trapped state of opposite spin which has zero occupancy.
In addition, for every local space the occupancy of some
of the orbitals will differ substantially from zero or unity.
The freedom to have orbitals of the surface complex par-
tially occupied is a major factor in the success of the LSA.

Besides the trapped state there may be others character-
ized by an eigenvalue essentially equal to unity** thereby
identifying a candidate for a localized surface state. Such
a state must, subsequently, prove to be an eigenfunction of
the Hamiltonian as well. We find that as the dimension
of the local space increases a second completely occupied
orbital occurs, for the first time, at Ny, =3. Its spin is op-
posite to that of the trapped state. When N, is increased
further more of these states appear. They are most often
localized in the metal but they may also be adsorbate in-
duced as indicated by a substantial contribution from the
hydrogen atomic orbital.

Surface spectroscopy techniques are able to determine
the existence and location of adsorbate-induced surface
states. For instance, Plummer’s® ultraviolet photoemis-
sion spectroscopy (UPS) measurement of saturated hydro-
gen chemisorption on tungsten (100) reveal two difference
peaks due to the adsorbate at 1.6 and 4.7 eV below €x. On
the other hand, angle-resolved photoemission studies®
show three bands centered at 2, 6, and 12 eV below the
Fermi level. Although the interpretation of these experi-
ments may be difficult it is evident that the information
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of interest is present.

There have been numerous theoretical treatments of the
effect of chemisorption on the surface density of states
and, hence, on the UPS spectrum. An excellent review
has been given by Muscat and Newns.*’ We also mention
here the work of Anda and Ure*® which explicitly takes
into account adatom-plasmon interactions. Our approach
to the calculation of adsorbate-induced surface states is
straightforward. Let us denote the projector for the com-
pletely occupied local space states by G. Then the eigen-
values of GhG correspond to surface-state energies and
the eigenvectors to surface state orbitals, ¢,, provided the
Hamiltonian is block diagonal so that gH(Q —g)=0
=(Q —g)Hg, where g = |¢,)(dg|. Of the true surface
states, we have identified two as being adsorbate induced
using the criterion that the magnitude of the hydrogen
atomic orbital coefficient remains substantial (in both
cases >0.4) as Ny, increases. For chemisorption of a neu-
tral hydrogen atom one of the two is the trapped state
which describes, essentially, a diatomic molecule
comprised of hydrogen and the first substrate atom. The
other has the opposite spin and is more extended with a
significant component on the second, third, and even the
fourth metal atom.

In Table VI the orbital coefficients and the energy of
the adsorbate-induced surface states are given as a func-
tion of N;. We also present the norm of gH(Q —g)
which must vanish if ¢, is an eigenfunction of the entire
system. From the convergence of the norm with increas-
ing Ny, and the fall-off in the coefficient as one goes
deeper into the substrate we conclude that the orbitals list-
ed represent true surface states. In the case of 3 spin an
obvious discontinuity in the coefficients occurs at Ny, =6
and, to a lesser extent, at N, =8 owing to the introduc-
tion of a second and a third fully occupied state. The en-
ergy behaves more smoothly as do the coefficients for a
spin despite the fact that, in the latter case, new fully oc-

TABLE VI. Adsorbate-induced surface states due to chemisorption of a neutral hydrogen atom as a function of the number of
metal atoms in the local space, Ny. € is the energy level with respect to er; the norm refers to the projected Hamiltonian matrix
gH (Q —g); C; is the coefficient of the ith metal orbital ( Cy is the coefficient of hydrogen orbital) in the expansion of the correspond-
ing state function. The majority spin is «@; the minority spin 8. All parameters are the same as in Table I; € and the norm of
gH(Q —g) arein eV.

Spin Ny € Cy C, C, Cs C, Cs C, Norm
a 1 —7.79 0.906 0.423

2 —7.34 0.855 0.506 0.119 0.434

3 —7.10 0.825 0.537 0.172 0.034 0.305

4 —6.96 0.806 0.553 0.205 0.060 0.010 0.186

5 —6.85 0.780 0.564 0.247 0.103 0.036 0.008 0.054

6 —6.76 0.772 0.570 0.254 0.111 0.044 0.014 0.003 0.037

7 —6.69 0.767 0.573 0.259 0.116 0.049 0.018 0.005 0.013

8 —6.62 0.761 0.577 0.263 0.120 0.055 0.025 0.010 0.010

B 3 —4.62 0.532 0.725 0.415 0.137 0.504

4 —4.76 0.517 0.705 0.442 0.195 0.048 0.448

5 —4.85 0.506 0.688 0.457 0.234 0.084 0.017 0.372

6 —4.99 0.411 0.591 0.505 0.390 0.246 0.113 0.030 0.214

7 —5.01 0.410 0.582 0.495 0.392 0.267 0.144 0.055 0.184

8 —5.04 0.411 0.576 0.488 0.392 0.277 0.161 0.072 0.117
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cupied states appear at Ny, =5 and Ny, =8. Due to the
simplicity of the model used in this work and problems of
interpreting the UPS spectra (which include, for example
the effect of lateral interactions) we make no attempt at
this time to correlate theory with experiment. But we do
call attention to the fact that within the LSA method it is
a simple matter to predict the existence of adsorbate-
induced surface states, to obtain their positions, and to
determine the corresponding state functions.

V. COMPARISON WITH ALTERNATIVE
EMBEDDING TREATMENT

The most important feature of the LSA is that it allows
self-consistent charge and spin-density readjustments over
the entire system after introduction of a localized pertur-
bation. This occurs even in the Anderson-Newns model
because of the idempotency condition on the total density
matrix. It is of interest to compare our results to those of
earlier embedding treatments in which charge and spin
readjustments are allowed only in a more local region.
Consider, for example, a calculation using the same AN
Hamiltonian but with just the hydrogen atom electronic
charge adjusted self-consistently. This is akin to the clus-
ter Bethe lattice treatments of chemisorption on two-
dimensional substrates,®3%% wherein the contribution to
the chemisorption energy arising from atomic orbitals lo-
cated outside the surface complex is neglected. Within
this approximation a single transfer function, T(¢), can be
introduced and one can obtain the Green’s function for
the adsorbate as

(e—ep)— Vi T
G oa(e) = ETtMIT M =, (20)
(e—g N(e—ep) =V T]—(Vy)

where

_ e 2 271/2
T(e)= (e—ep)t[(e—gp ) —4(Vy)°] . 21)
2V

Two contributions to the occupancy of the adsorbate
orbital arise from Eq. (20). The first one, associated with
the pole of G,,, comes from the localized atomic state
below the band. The other, related to the tail of the imag-
inary part of G, within the band, is due to delocalized
states. Assuming that the Fermi level is invariant, the
binding energy can be computed by including contribu-
tions from all the atoms which adjust their populations® !’
during the self-consistency process (in this case only the
hydrogen atom).

If the same parameters are used as in the LSA treat-
ment, a second localized state appears and unreasonable
results are obtained particularly for the binding energy.
So we chose instead, after some trial and error, to take the
coupling parameter as V,,=—3.757 eV. In a spin-
polarized calculation this value yields good agreement
with the extrapolated LSA binding energy (3.119 eV
versus 3.107 eV for LSA) and with the charge on hydro-
gen (1.181e versus 1.192e for LSA). However, the net
spin on hydrogen is 0.421e as compared to the LSA result
pup=0.239¢. Thus, after modifying V,,, there remains a
significant discrepancy for the magnetic moment on the
adsorbate. As far as the substrate is concerned the errors
are magnified owing to the constraint of periodicity which

is imposed even after chemisorption. For the first metal
atom one gets an electronic charge of 0.919¢ and a mag-
netic moment equal to —0.215¢ instead of 0.890e and
—0.136e. Of course, this approach could be improved by
self-consistently determining the charges of the metal
atoms within a given cluster surrounding the adsorbate.
However, the larger the cluster the more cumbersome it
becomes to determine the occupancy of each orbital in the
self-consistent loop.® We note that in the LSA method
the occupancies of all orbitals are simultaneously readjust-
ed in each self-consistent cycle.

In spite of the simplicity of the model used in this pa-
per we believe that the potential usefulness of the LSA
method for the treatment of chemisorption has been re-
vealed. In fact, the AN model probab]y“1 overestimates
charge delocalization and, therefore, constitutes a worse
case scenario as far as convergence is concerned. In order
to obtain results of reliable accuracy more realistic calcu-
lations will have to be carried out. It is important to real-
ize in this connection that our method is not limited to
the semiempirical Anderson-Newns Hamiltonian nor,
indeed, to the Hartree-Fock approximation. The treat-
ment has been presented'® in an ab initio framework and
it has been generalized to include electron correlation ac-
cording to the Xa,'° generalized valence bond,* and even
CI or coupled cluster*> methods. As discussed be-
fore,!%131¢ different levels of approximation can be used
to describe the local space than the rest of the system. In
this vein a long-range program to combine Nesbet’s*
linearized atomic cell orbital band-structure method
(which is based on density-functional theory) with any of
the various quantum chemical procedures mentioned
above has been initiated.

It is easy to envision application of the LSA method to
other chemisorption probleme beyond simple atomic ad-
sorption. For example, the method can be used to treat
dissociative adsorption; photoionization spectra of chem-
isorbed molecules; interactions between adsorbed atoms
mediated by the substrate. We have already started ex-
ploratory work along these lines. For the dissociative
chemisorption of H, on nickel surfaces a simple cubium
description of the substrate is being combined initially
with a semiempirical intermediate neglect of differential
overlap (INDO) unrestricted Hartree-Fock treatment of
H, which correctly reproduces the potential energy curve
for the isolated molecule. Using a similar approach we
are also obtaining shifts in the photoionization spectrum
of chemisorbed CO. Once the localized molecular state of
interest is identified, the ionization potential can be deter-
mined either by Koopmans’s theorem or by the AEgqr
method.
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