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Band nonparabolicity effects in semiconductor quantum wells
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We propose an empirical two-band model for heterostructures which provides a consistent
energy-dependent effective-mass characterization of nonparabolicity in quantum wells. We show

that it predicts several surprising results. Nonparabolicity has a very small effect on the lowest
subband edge regardless of the well width and hence the energy of the state. Nonparabolicity
causes a raising of the lowest subband edge rather than the expected lowering. Nonparabolicity
causes a lowering of subband edge energies of higher subbands and the effect becomes substantial
for the highest subband edges. We show that a large nonparabolicity lowering of a subband edge
requires the state to have both a high-energy and a high occupancy probability in the well, i.e.,
not in the barriers.

Nonparabolicity in the neighborhood of energy-band
extrema in bulk semiconductors can be described by the
dispersion relation

where E, k, and m are the energy, wave number, and
eA'ective mass of the charge carrier and y is the nonpar-
abolicity parameter. When a square quantum well
is formed, for example, by a Al„Ga ~

—„As/GaAs/
Al„Ga~ -„As (x =0.37) layered structure with a very nar-
row GaAs layer having a thickness of, say, 5 A, the first
(and only) electron subband edge calculated for a para-
bolic band has an energy of 265 meV and a wave number
in the well of 6.8X10 m '. Thus, from Eq. (1) the non-
parabolicity term would be expected to cause a lowering
of the edge by a fractional amount of order yk -0.23 us-
ing y =4.9x 10 ' m . This illustrates the importance of
accounting correctly for nonparabolicity in analyzing phe-
nomena in narrow quantum wells' or in higher lying sub-
band edges in wider wells.

Recently, Hiroshima and Lang argued that nonpara-
bolicity in quantum wells is properly characterized by Eq.
(1) along with both the interface boundary conditions and
the barrier material dispersion relation lacking any depen-
dence on nonparabolicity. In so doing they reject an alter-
native model in which the eA'ective mass is energy depen-
dent.

We believe the contrary to be true. We believe the best
and most basic handling of nonparabolicity in quantum-
well structures is contained in the Bastard derivation of
the envelope function approximation leading to a two-
band (Kane) model. Further, we find that the equations
resulting from this model can be recast into an energy-
dependent effective-mass form in which the interface
boundary conditions are obtained in a manner consistent
with the nonparabolicity of the well and barrier material,
and in which the correct eR'ective masses can be entered as
empirical parameters.

We also wish to show by numerical calculations that the
empirical two-band model reveals several surprises: (1)

6 kE=
2m„*(E)

the dispersion relation in the barrier

6 kE=V-
2mb*(E)

and the boundary condition

(2)

(3)

k„mb*(E)
I bm.*(E)

kbm„*(E)
tank l=2 .

k„mb*(E),
(4)

Here the subscripts w and b denote well and barrier, the
wave numbers k and kb are both real numbers corre-
sponding to trigonometric wave functions in the well and
exponentially decaying wave functions in the barriers, l is
the well width, V is the energy barrier height at the inter-
faces, and the energy-dependent eA'ective masses are given

there is almost no nonparabolicity eAect on the lowest
subband edge in quantum wells for all well widths; (2) the
small nonparabolicity eAect on the lowest subband edge
causes an increase in its energy rather than the expected
decrease (at least for parameters characteristic of the
Al„Ga&-„As-GaAs system); and (3) in wider wells the
nonparabolicity eA'ect reverses sign for higher subband
edges, causing a lowering of the subband edge energy, and
for the highest subband edges becomes substantial in size.

The Bastard treatment considers the interaction of
the conduction band and light-hole valence band in both
the well and barrier materials at once throughout the het-
erostructure. The heavy-hole valence band does not in-
teract with these bands and possesses only a small nonpar-
abolicity from interaction with other bands. The inter-
band interaction produces the same eAective mass m*
characterizing the parabolic response of each band and
the same y parameter characterizing the nonparabolicity
of each band. When cast into an energy-dependent
eA'ective-mass form, this model applied to just one of the
bands for a single quantum square well consists of the
dispersion relation in the well
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by
m„*(E)—:m„*(1+E /E ),
mb (E) =mb ll (V E)/Eb]

(5)

(6)

m„*/mb* =E„/Eb,

y„/yb =(mb*/m„*)' .

(8)

(9)

While the Bastard two-band model does represent a
unified treatment of band properties in superlattice ma-
terials, it is unsuitable in its original form for application
to real heterostructures since the effective masses and the
nonparabolicity parameters are equal in this model for
electrons and light holes in a particular material (well or
barrier). However, it is well known, for example, that the
efective masses of electrons and light holes in GaAs
difer. Furthermore, it is not possible in this model to as-
sign the experimental effective masses for both sides of the
heterointerface. These diferences along with a difference
in the nonparabolicity parameters of electrons and light
holes is caused by interactions with other, more distant (in
energy) bands not included in the Bastard two-band mod-
el. In other words, inclusion of only two bands unduly re-
stricts the parameter values of the model when interpreted
literally.

For this reason we wish to modify the interpretation of
the Bastard model. We regard the energy gap in Eqs.
(5)-(8), when considering electrons, for example, as be-
ing an effective gap representing the appropriately weight-
ed energy position of the combination of all bands in-
teracting with the lowest (zone center) conduction band.
Similarly, when considering light holes, we regard the en-

ergy gap as being an efective gap representing the ap-
propriately weighted energy position of the combination
of all bands interacting with the highest (zone center)
light-hole valence band. Thus, we allow diff'erent gaps,
different masses, and different nonparabolicities to be
used for light holes and for electrons. We set the eff'ective
mass of either of the carriers to its experimental value for
the well and determine by Eq. (7) the effective gap of the
well for that carrier by using either an experimental value
of y for the well (if available) or the best available calcu-
lated value. We set the efective mass of the carrier to its
experimental value for the barrier also and then determine
the effective gap in the barrier from Eq. (8) and the non-
parabolicity in the barrier from Eq. (9). Thus, in the
empirical two-band model rn„, mb, and y are adjustable
parameters.

In summary, we believe that the Bastard two-band
treatment contains the correct basic physics of nonpara-
bolicity, that it thus produces the essential functional
dependences on this property in the dispersion relations

where E„and Eb are the energy gaps between the conduc-
tion and light-hole valence bands in the well and barrier
materials. The nonparabolicity parameter is related to
the energy gap and the efective mass by

Q 2y;=, , (i=w, b) . (7)
2m;*E;

The model also relates these properties on the two sides of
the interface by

and the boundary condition, and that our modified inter-
pretation of Eqs. (5), (6), and (7) should bring it into
closer conformity with experiment.

These views are supported by a comparison of Bastard's
three-band model of superlattices to his two-band model.
In the three-band model the split-of valence band is add-
ed to the two-band model. In the three-band model the
electron and light-hole masses become diff'erent, being re-
lated by m~h =( —,

' )m,*(E;+29„/3)/(E;+A;), (i =w, b),
where 6; is the energy splitting between the light-hole and
split-of valence bands. We find that the three-band mod-
el can also be recast into the energy-dependent efective-
mass formulation, Eqs. (2)—(4), and that for the
Al Ga~ As-GaAs system the masses can be approxi-
mated to an accuracy of better than 1:300over the range
of interest by

m„*(E)=m„*[1+E/(E„+5„/3) ]

mb*(E) =mb* [1 —(V—E)/(Eb+&b/3)],

(10)

which can be seen to be identical with Eqs. (5) and (6) ex-
cept for the energy gap replacement E; E; +6;/3
(i =w, b) Also, i.t can be shown at this level of accuracy
that Eqs. (7) and (8) continue to hold but with the same
energy gap replacements, and that Eq. (9) retains its same
form. Since we are treating the energy gap as an adjust-
able parameter in our interpretation of the Bastard model,
the gap replacements just mentioned make no essential
change in the energy-dependent efective-mass formula-
tion of nonparabolicity.

It is worth noting that the empirical two-band model of
nonparabolicity can be applied to any band minimum or
maximum such as the heavy-hole or split-of valence
bands. The small value of the nonparabolicity of the
heavy hole would be refiected in large effective gaps E„
and Eb.

We calculated the subband edges for electrons in sin-
gle square quantum wells of Al„Ga~ -„As/GaAs/
Al„Ga~, As (x =0.37) of various widths by Eqs. (2)- (9)
and compared the results with those obtained when Eqs.
(5) and (6) are replaced by constant masses, that is, re-
sults having no nonparabolicity.

We consider a conduction band with the interface ener-

gy barrier V=f8 G, where hG is the difference of energy
gaps between barrier and well material taken as
AG =1.425x —0.9x + l. lx (Ref. 6) and f=0 6(Ref. .
7). We take the electron effective mass in the GaAs well
material as 0.0665mo. In the absence of an experimental
value of the electron mass in the alloy material of the bar-
rier, we interpolate its value between those of GaAs and
A1As (0.15mo) using the spirit of Eq. (8), that is, that
masses are proportional to energy gaps: m, (x)/ma
=0.0665+0.0835AG/1. 625. We use y =4.9 && 10 '9 m
calculated with a five-band bulk-crystal model for elec-
trons in GaAs. Equation (9) then determines the y value
in the alloy material barrier.

Since the nonparabolicity might be expected to cause
the largest effect, a lowering, on the subband edges when
at a large energy in the well, we first calculate for a very
narrow well of 5-4 width where the first and only subband
edge is near the top of the well. We find its energy to be
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measured from a parabolic dispersion solution, and the
probability of occupancy 0 in the well (as distinct from
the barriers) for the eigenstate.

These data for quantum wells illustrate the unexpected
dependence on nonparabolicity. First, we see that the
lowest subband edge has a very small shift due to nonpar-
abolicity regardless of well width and hence of how high in

energy it is above the conduction band edge in the well.
Second, the efI'ect of nonparabolicity on the lowest sub-
band edge causes a raising of the subband edge, rather
than the expected lowering for the well width. Third, the
nonparabolicity shift becomes the expected lowering for
higher subband edges when they exist in wider wells.
Fourth, the nonparabolicity shift becomes substantial for
the highest subband edge for well widths ) 100 A..

The clearest dependence of the energy shift from non-
parabolicity is on the quantum number of the subband
edge: a small (large) quantum number causing a small
(large) nonparabolicity effect. This can be understood by
a consideration of the energy of the state and the wave
number and occupancy probability values in the well and

in the barriers. Consider the one state in the 5-A well. It
has a high energy and thus a high wave number in the well
which imp1ies a large nonparabolicity effect in the well.
However, the electron spends only 7.5% of the time in
well. The other 92.5% of the time is spent in the barriers
where, as seen from Fig. 1(b), the wave number and hence
the nonparabolicity eA'ect are small. Consider for contrast
the highest state in the 200-A well. There the energy and
the wave number in the well are high with a consequent
large nonparabolicity eA'ect. In contrast to the 5-A well
the occupancy probability in the well is 82.5% for the
200-A well, thus allowing the full expression of the non-
parabolicity. We conclude that high quantum-number
states have large nonparabolicity eff'ects because they
have both large energies and large well occupancy proba-
bilities. We can also conclude that the barrier regions
never make a large contribution to the nonparabolicity of
a quantum-well state because, when the wave number in
the barrier is high (low) leading to high (low) nonpara-
bolicity in the barriers, the occupancy in the barriers is
low (high).
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