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Harmonic and direct ac mixing properties of the Fukuyama-Lee-Rice model and the incom-
mensurate chain are determined and compared with experimental data. Field and frequency
dependences of both the amplitudes and phases of both of these responses are examined. Agree-
ment with experiment is generally good. For example, classical models can yield low harmonic-
mixing quadrature components simultaneously with substantial frequency dependence in both
components of the linear response.

An interesting series of experiments, involving the non-
linear mixing of ac signals in charge-density-wave
(CDW) conductors, was initiated by Seeger, Mayer, and
Philipp ' and thoroughly extended by Miller and co-
workers. These experiments merit theoretical study in
their own right as probes of the unique properties of CDW
conductors.

Further, the suggestion has been made that the results
"may prove difficult to reconcile with any classical
theory. " It is thus important to determine the ac mixing
properties of classical models of sliding CDW's to see
whether there is indeed a failure of the classical picture of
bulk CDW motion, and whether these experiments give us
evidence for Bardeen's fascinating proposal that CDW
conductors are exhibiting macroscopic quantum tunnel-
ing.

The principal experiments are direct mixing (or
rectification) and harmonic mixing. The sample is driven
by a voltage of the form

E(t) =Eo+Ei cos(co~t+ p)+E2cos(co2t ),
where E~ and E2 are generally small compared to the
threshold voltage ET. The two measurements consist of
detecting the component of the current with frequency cop,
where cop=m~ —co2 for direct mixing, and cup=2m~ —co2

for harmonic mixing. The frequencies are chosen so that
cop is much smaller than co~ and co2.

The properties of two different models are reported
here: the Fukuyama-Lee-Rice (FLR) model of random
pinning and the incommensurate chain. Perturbation
theory was used to obtain analytic information for the
FLR model at large bias fields Ep. The incommensurate
chain was simulated numerically to obtain solutions in the
strong-coupling region closer to the sliding threshold field
ET. The equation of motion for the incommensurate
chain with infinite-range interactions' "is

= (u~) —uj +P sin (Hj + uj ) +E (t), (2)

where u~ is the displacement of the jth particle, (u~. ) is the
center-of-mass displacement, P is the pinning strength,
and H/(2tr) is chosen to be (J5 —1)/2.

By simulating Eq. (2) in systems up to 377 particles in
size we were able to restrict finite-size effects to the region
very close to threshold and ensure that the results ob-
tained at all other fields reliably reflected the thermo-

dynamic limit. The applied frequencies were chosen to
have a rational ratio so that the response (in the thermo-
dynamic limit) is periodic. Transients were allowed to de-
cay for a time t p

=T sufficiently long that t p
=T and

l'p =2T give results that are indistinguishable within nu-
merical error. The sampling rate of the time series was
chosen high enough that increasing it further produced no
noticeable changes.

We now compare the theoretical results with those of
experiments, examining each feature of the data in turn.

I. HARMONIC-MIXING PHASE SHIFT

The experimental result which has been most em-
phasized ' ' is the failure of some experiments to observe
an "internal" phase shift in the small difference-frequency
harmonic-mixing response. Classical models were conjec-
tured to yield nonzero phase shifts at high applied fre-
quencies co&. Wonneberger ' then showed that the classi-
cal single-particle model exhibits a zero phase shift for all
m~ at large dc bias fields. He proved this result to leading
order in perturbation theory and argued in an appendix
that the result is valid everywhere above threshold.
Nonetheless, it was claimed that the nonobservation of a
phase shift above threshold, where in addition both com-
ponents of the linear ac response have substantial frequen-
cy dependence, may be difficult to reconcile with any clas-
sical theory. It was further claimed that this experimen-
tal observation provided particularly significant evidence
for CDW tunneling. 5

We determined the harmonic-mixing properties of the
FLR model using perturbation theory at large dc bias
fields. The principal result is' that the response com-
ponent at frequency coo is proportional to cos(coot+2p) in
the limit of small coo for large dc bias fields Eo and all coi.
The sine component vanishes linearly with cop. Thus the
classical FLR model also exhibits a zero internal phase
shift at large bias fields.

In that region, however, the linear ac response has no
strong frequency dependence. It is therefore necessary to
probe the region of lower dc bias closer to threshold. For
this purpose, we turn to the results for the incommensu-
rate chain.

Figure l shows some typical field and cop dependences
of both components of the harmonic-mixing signal. It is
seen that the out-of-phase component is considerably
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II. HARMONIC-MIXING MAGNITUDE
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for the incommensurate chain. Figure 2(b) shows the ex-
perimental data, and Fig. 2(c) shows the results
which have been presented based on quantum tunneling
arguments.

(a) The peaks. In Fig. 2(a), the positions (fields) and
the heights of the peaks change in the same sense with fre-
quency as seen experimentally. The present results for the
incommensurate chain change somewhat more rapidly
with frequency than do the experimental data.

(b) The threshold. The incommensurate chain is seen
in Figs. 2(a) and 2(b) to give the experimentally observed
qualitative forms in the vicinity of threshold. The
threshold-lowering eA'ect of an applied ac field is also ap-
parent in the incommensurate chain results, the eAect in-
creasing as the ac frequency decreases, as observed experi-
mentally. '

A comparison with Fig. 2(c) then shows that these
threshold features reveal substantial diff'erences between
the properties of the classical chain and the results of the
quantum tunneling analysis.

(c) The negative dips The ex.perimental data [see Fig.
2(b)] show that for lower frequencies cot the harmonic-
mixing response goes negative above a (frequency-
dependent) field (the phase switches rapidly from a value
at or near zero to one at or near 180'). Thereafter the
response approaches zero from below. Above a certain
frequency, however, this no longer happens and the
harmonic-mixing response is always positive.

This points up another qualitative diA'erence between
the two sets of theoretical results: While the incommensu-
rate chain, like the experimental results, shows an co~

above which the response no longer changes sign, the
quantum tunneling analysis appears to show a sign change
for all co~.

(d) Below threshold The calculated . amplitude of the
harmonic-mixing signal is about two or three orders of
magnitude less than the peak above threshold, which is
consistent with the experimental data [see Fig. 2(b)].

III. DIRECT-MIXING PHASE

Experimentally, the response at cop =co~ —
m2 to the

cosine input signal of Eq. (1) is found to be proportional
to cos(rppi + p) for small rpp. A leading-order perturbative
solution of the FLR model' showed this same feature.
This conclusion can be seen to be true to all orders as fol-
lows. Consider the case p =0. Equation (1) is then sym-
metric with respect to interchanging m~ and co2. The total
response current at frequency plus or minus mp, JpM, then
also has this symmetry. Writing jnM =I, sin (cppt )
+I, s(cote)ppthen requires I, (rp), rp2) = —I, (rpz, rp(), so
that I, 0 as co~ m2. Even if the input fields are
changed to sines by shifting the origin of time, the low-
frequency direct-mixing response is still cosine. '

IV. DIRECT-MIXING MAGNITUDE

Figure 3(a) shows field and frequency dependence of
the magnitude of the direct-mixing response for the in-
commensurate chain. Figure 3(b) shows the correspond-
ing experimental data. The principal features of the ex-
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perimental data are seen to be reasonably well reproduced
by the incommensurate chain.

V. CONCLUSION

The classical incommensurate chain has been seen to
provide a fairly complete account of the field and frequen-
cy dependencies of both amplitude and phase components
of the direct and harmonic-mixing responses of sliding
CDW's.

For example, the challenge to classical theories posed
by some nonobservations of the harmonic-mixing phase
shift has been resolved by the observations that (a) phase
shifts have been seen experimentally, and (b) classical
theories can account for phase shifts as small as the exper-
imental uncertainties. (It may be interesting now to have
both experimental and theoretical phase shifts determined
more precisely to provide more telling comparisons of
theories and experiment. )

The pinning of CDW's is believed to be due to random
impurities, ' and not a periodic incommensurate poten-
tial. To end on a question, then, we note that the issue of
why incommensurate systems reproduce such a variety of
observed CDW properties is still not properly understood.
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