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Harmonic and direct ac mixing properties of the Fukuyama-Lee-Rice model and the incom-

mensurate chain are determined and compared with experimental data.

Field and frequency

dependences of both the amplitudes and phases of both of these responses are examined. Agree-
ment with experiment is generally good. For example, classical models can yield low harmonic-
mixing quadrature components simultaneously with substantial frequency dependence in both

components of the linear response.

An interesting series of experiments, involving the non-
linear mixing of ac signals in charge-density-wave
(CDW) conductors, was initiated by Seeger, Mayer, and
Philipp! and thoroughly extended by Miller and co-
workers.?™> These experiments merit theoretical study in
their own right as probes of the unique properties of CDW
conductors.

Further, the suggestion has been made that the results
“may prove difficult to reconcile with any classical
theory.”* It is thus important to determine the ac mixing
properties of classical models of sliding CDW’s to see
whether there is indeed a failure of the classical picture of
bulk CDW motion, and whether these experiments give us
evidence for Bardeen’s fascinating proposal® that CDW
conductors are exhibiting macroscopic quantum tunnel-
ing.

The principal experiments®™> are direct mixing (or
rectification) and harmonic mixing. The sample is driven
by a voltage of the form

E(t)=Eo+E cos(wt+¢)+E,cos(wyt) , 1)

where £, and E, are generally small compared to the
threshold voltage Er. The two measurements consist of
detecting the component of the current with frequency wo,
where wp=w), — w; for direct mixing, and wo=2w; — >
for harmonic mixing. The frequencies are chosen so that
o is much smaller than w; and w,.

The properties of two different models are reported
here: the Fukuyama-Lee-Rice (FLR) model’ of random
pinning and the incommensurate chain.® Perturbation®
theory was used to obtain analytic information for the
FLR model at large bias fields Ey. The incommensurate
chain was simulated numerically to obtain solutions in the
strong-coupling region closer to the sliding threshold field
Er. The equation of motion for the incommensurate

chain with infinite-range interactions'®!! is
du.
——dtitj—=<uj)—uj+Psin(Hj+uj)+E(t) , )

where u; is the displacement of the jth particle, (u;) is the
center-of-mass displacement, P is the pinning strength,
and H/(2x) is chosen to be (+/5—1)/2.

By simulating Eq. (2) in systems up to 377 particles in
size we were able to restrict finite-size effects to the region
very close to threshold and ensure that the results ob-
tained at all other fields reliably reflected the thermo-
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dynamic limit. The applied frequencies were chosen to
have a rational ratio so that the response (in the thermo-
dynamic limit) is periodic. Transients were allowed to de-
cay for a time 7o=T sufficiently long that ro=T and
to=2T give results that are indistinguishable within nu-
merical error. The sampling rate of the time series was
chosen high enough that increasing it further produced no
noticeable changes.

We now compare the theoretical results with those of
experiments, examining each feature of the data in turn.

I. HARMONIC-MIXING PHASE SHIFT

The experimental result which has been most em-
phasized>*3 is the failure of some experiments to observe
an “internal” phase shift in the small difference-frequency
harmonic-mixing response. Classical models were conjec-
tured? to yield nonzero phase shifts at high applied fre-
quencies @;. Wonneberger!? then showed that the classi-
cal single-particle model exhibits a zero phase shift for all
w; at large dc bias fields. He proved this result to leading
order in perturbation theory and argued in an appendix
that the result is valid everywhere above threshold.
Nonetheless, it was claimed that the nonobservation of a
phase shift above threshold, where in addition both com-
ponents of the /inear ac response have substantial frequen-
cy dependence, may be difficult to reconcile with any clas-
sical theory.* It was further claimed that this experimen-
tal observation provided particularly significant evidence
for CDW tunneling.?

We determined the harmonic-mixing properties of the
FLR model using perturbation theory at large dc bias
fields. The principal result is'® that the response com-
ponent at frequency wy is proportional to cos(wot +2¢) in
the limit of small g for large dc bias fields E¢ and all ;.
The sine component vanishes linearly with wo. Thus the
classical FLR model also exhibits a zero internal phase
shift at large bias fields.

In that region, however, the linear ac response has no
strong frequency dependence. It is therefore necessary to
probe the region of lower dc bias closer to threshold. For
this purpose, we turn to the results for the incommensu-
rate chain.

Figure 1 shows some typical field and wo dependences
of both components of the harmonic-mixing signal. It is
seen that the out-of-phase component is considerably

7745 © 1987 The American Physical Society



RAPID COMMUNICATIONS

7746

smaller than the in-phase component, but appears to be
approaching a nonzero limit as @ approaches zero. As wg
decreases through 0.05, 0.025, and 0.0125 the out-of-
phase component shows practically no change on the scale
of the plot.

This limit is generally small. For the data shown in Fig.
1, wo/w; is about 0.01, it corresponds to a phase shift of
about 10°, which is the reported resolution of the experi-
ments.*> Experimentally wo/w; was chosen to be about
0.001. We found that this phase shift decreases as £| and
E, are increased with the other parameter fixed. The
value of w; in Fig. 1 was chosen approximately to maxim-
ize the phase shift.

Earlier work'! has established substantial frequency
dependence in both components of the linear ac response
in this region. One may thus conclude that classical
theories can indeed account for the absence of strong
quadrature in the harmonic mixing and simultaneous
presence of strong frequency dependence in the linear
response. '

The above classical results do appear to show a nonzero
quadrature, however, and if a classical picture were ap-
propriate, one would expect to see a phase shift under
some experimental conditions. A harmonic-mixing phase
shift has, in fact, been reported.!® The ratios E;/E7 and
E,/E7 were smaller than in the experiments®? that saw
no phase shift. This is consistent with our observation
above that the phase shift decreases as £, and E; in-
crease.

Turning to the region below threshold, the calculated
out-of-phase component is found to be much larger than
the in-phase one for small wq. This is consistent with ex-
perimental reports* of an internal phase shift of about
7/2.

HARMONIC MIXING
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FIG. 1. dc field (Eo) and difference-frequency (wo) depen-

dencies of both components of the harmonic-mixing response
current (N ™'Y du;/dt) of the incommensurate chain (o)
=1.0, P=3.0, and £, =E,=0.2). All quantities are dimension-
less [see Eq. (2)]. The curves for N =377 indicate the size of
truncation error. Both components have finite wo— 0 limits,
with the out-phase response considerably smaller than the in-
phase response.
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II. HARMONIC-MIXING MAGNITUDE

Since the harmonic-mixing phase shift is generally
small, we focus now on the magnitude. Figure 2(a) shows
the field (Eo) and frequency (w;) dependencies of the
magnitude of the harmonic-mixing response, as calculated
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FIG. 2. dc field (E¢) and frequency (w;) dependencies of the
magnitude of the harmonic-mixing response current (N_'Zj
xdu;/dt): (a) the incommensurate chain, N =233, P=3.0, and
E,=E;=0.30; (b) experiment (Ref. 2); (c) results of a tunnel-
ing analysis (Ref. 2).
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for the incommensurate chain. Figure 2(b) shows the ex-
perimental data,>* and Fig. 2(c) shows the results>*
which have been presented based on quantum tunneling
arguments.

(a) The peaks. In Fig. 2(a), the positions (fields) and
the heights of the peaks change in the same sense with fre-
quency as seen experimentally. The present results for the
incommensurate chain change somewhat more rapidly
with frequency than do the experimental data.

(b) The threshold. The incommensurate chain is seen
in Figs. 2(a) and 2(b) to give the experimentally observed
qualitative forms in the vicinity of threshold. The
threshold-lowering effect of an applied ac field is also ap-
parent in the incommensurate chain results, the effect in-
creasing as the ac frequency decreases, as observed experi-
mentally. ¢

A comparison with Fig. 2(c) then shows that these
threshold features reveal substantial differences between
the properties of the classical chain and the results of the
quantum tunneling analysis.

(c) The negative dips. The experimental data [see Fig.
2(b)] show that for lower frequencies ®; the harmonic-
mixing response goes negative above a (frequency-
dependent) field (the phase switches rapidly from a value
at or near zero to one at or near 180°). Thereafter the
response approaches zero from below. Above a certain
frequency, however, this no longer happens and the
harmonic-mixing response is always positive.

This points up another qualitative difference between
the two sets of theoretical results: While the incommensu-
rate chain, like the experimental results, shows an w,
above which the response no longer changes sign, the
quantum tunneling analysis appears to show a sign change
for all w;.

(d) Below threshold. The calculated amplitude of the
harmonic-mixing signal is about two or three orders of
magnitude less than the peak above threshold, which is
consistent with the experimental data [see Fig. 2(b)].

III. DIRECT-MIXING PHASE

Experimentally,?~4 the response at wy=w, — w, to the
cosine input signal of Eq. (1) is found to be proportional
to cos(wot +¢) for small wy. A leading-order perturbative
solution of the FLR model!3 showed this same feature.
This conclusion can be seen to be true to all orders as fol-
lows. Consider the case ¢ =0. Equation (1) is then sym-
metric with respect to interchanging w; and w;. The total
response current at frequency plus or minus wg,J/pm, then
also has this symmetry. Writing jpm=1,sin(wot)
+1.cos(wgt) then requires I (w,w;) = —I;(wiw), so
that I;— 0 as @;— w>. Even if the input fields are
changed to sines by shifting the origin of time, the low-
frequency direct-mixing response is still cosine. !’

IV. DIRECT-MIXING MAGNITUDE

Figure 3(a) shows field and frequency dependence of
the magnitude of the direct-mixing response for the in-
commensurate chain. Figure 3(b) shows the correspond-
ing experimental data. The principal features of the ex-
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FIG. 3. dc field (Eo) and frequency (w;) dependencies of the
direct-mixing current (N 'Y du;/dt) magnitude: (a) the in-
commensurate chain, N =233, P=3.0, and E,=E,=0.30; (b)
experiment (Ref. 2).

perimental data are seen to be reasonably well reproduced
by the incommensurate chain.

V. CONCLUSION

The classical incommensurate chain has been seen to
provide a fairly complete account of the field and frequen-
cy dependencies of both amplitude and phase components
of the direct and harmonic-mixing responses of sliding
CDW:’s.

For example, the challenge to classical theories posed*
by some nonobservations of the harmonic-mixing phase
shift has been resolved by the observations that (a) phase
shifts have been seen experimentally, and (b) classical
theories can account for phase shifts as small as the exper-
imental uncertainties. (It may be interesting now to have
both experimental and theoretical phase shifts determined
more precisely to provide more telling comparisons of
theories and experiment.)

The pinning of CDW’s is believed to be due to random
impurities,'® and not a periodic incommensurate poten-
tial. To end on a question, then, we note that the issue of
why incommensurate systems reproduce such a variety of
observed CDW properties is still not properly understood.
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