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Self-energy of image states
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A Coulombic basis set is used, within a self-energy formalism, to calculate the binding energy and
effective-mass correction of image states at surfaces. Contributions from virtual transitions to
discrete and continuous levels are evaluated separately and compared with previous calculations per-
formed invoking the closure relationship to eliminate the sum over intermediate states.

It is well known that electrons can be trapped at sur-
faces by their own image potentials. Hydrogenic states of
this kind were studied by Sommer, ' Cole and Cohen, and
Shikin. In fact the Coulombic tail of the image potential
allows an infinite Rydberg-type series to exist. In metals,
such states can arise if a gap in the direction normal to
the surface contains the vacuum level. Inverse-
photoemission experiments measuring the binding energy
and width of these states have been reported recently.

Different approximations within the phase-shift-
approach formalism ' ' have been made to treat the
problem of surface states using several models for the ef-
fective potential. '

Recent calculations by Echenique and Echenique and
Pendry have used a many-body effective image potential
within the Hedin-Lundqvist self-energy formalism, with
invocation of the closure relation to sum over intermedi-
ate states in the calculation of the matrix elements appear-
ing in the definition of the many-body effective image po-
tential.

In this paper we use a basis set of eigenfunctions of the
effective potential to calculate the electron Green's func-
tion, which allows us to check the approximations in-
volved in previous work. This is the set of Cou1ombic
wave functions for the excited states (both discrete and

I

continuum) and a hydrogenlike variational wave function
for the ground state. We can expect that the final elec-
tronic wave functions should be adequately described by
such a basis set. The ground-state binding energy is cal-
culated variationally. ' ' The total energy E (P) is
given by
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where P is the variational parameter in the ground-state
wave function

~

0) =2P ze ~', co, is the undispersed
surface-plasmon frequency, Ef Ep i—s the energy differ-
ence between the fth excited state and the ground state as-
sociated with the normal motion, and

~ f ) are the sets of
eigenstates of the effective Hamiltonian associated with
the normal motion, i.e., the Coulombic wave functions.
In fact, Ep is E(/l) so that we have to calculate self-
consistently.

The matrix elements (0
~

e ~'
~ f ) can be calculated us-

ing the properties of the hypergeometric function, for
both the discrete

~

n) and the continuum states
~

E).
Then the sum over intermediate states is easily done and
we can distinguish the contributions of the different terms
in the series expansion of (1). We obtain for such matrix
elements,
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where Cp ——2P ~ and C„=2(1/4n) ~, so that the square
of the matrix elements behaves as n for n —ao. For
the continuum we note a well-known connection between
the Coulombic bound-state and continuum wave func-
tions, namely,

n) E)
+-+ and n~i TiC„CE

where g= 1/4k, k =(2E)'~, and Cz is the normalization
constant of the continuum state,

In Fig. 1 we plot the binding energy as a function of r,
(electron-gas density parameter) and compare it with its
upper and lower bounds. We obtain the upper bound
when we neglect the energy difference in the denomina-
tors of (1) and sum over intermediate states by invoking
the closure relation. On the other hand, we obtain the
lower bound when we take into account only the first
term in the series. Different values of P minimize each
binding-energy functional.

In Fig. 2 we plot the binding energy showing the contri-
butions that arise from the different terms, namely the
first term, the discrete states, and the continuum. See also
Table I.
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FIG. 1. Binding energy (BE) as a function of r, obtained with
the exact calculation (thick solid line), closure relation approxi-
mation (thin solid line), and using the first term in the series ex-
pansion (dashed line). See the text for the details, E~ is the
Coulombic binding energy.
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FIG. 3. Effective mass correction as a function of r, obtained
with the exact calculation {thick solid line), closure relation ap-
proximation (thin solid line), and using the first term (dotted-
dashed line) of the potential energy in the calculations.
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FIG. 2. Binding energy as a function of r, showing the con-
tributions from the different terms in the series.

TABLE I. Relative contributions to the energy shift (%).

First term Discrete Continuum
10

1

2
3
4
5

82.5
84.7
86.4
87.8
89

3
2.8
2.7
2.6
2.5

14.5
12.5
10.9
9.6
8 ' 5

TABLE II. Effective mass corrections. 6m, 6m"", and 6m
are the values obtained from the exact calculation, using closure
and using only the first term in the potential energy, respective-
ly.
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FIG. 4. Effective mass correction as a function of r, obtained
with the exact calculation showing the contributions from the
different terms in the series.

TABLE III. Relative contribution to the effective mass (%).

1

2
3
4
5

1.2 x 10—'
4.7 X 10-'
9.9x10-'
1.7x 10
2.5 x10-'

clos

1.8x 10-'
7.3 x 10—'
1.6x 10-'
2.6x10-'
3.8x 10—'

6m'

4.2x10-
2.5 X 10-'
6.8 x 10-'
1 3x10-2
2.1x 10-'

1

2
3
4
5

First term

53
68
78
83
88

Discrete

6
6
6
5

4

Continuum

41
26
16
12

8
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Figure 1 shows that to sum over intermediate states by
invoking closure yields a better approximation than by
taking only the first term. Figure 2 shows that the
discrete contribution is almost negligible, but the continu-
um contribution is appreciable (10—15%). We have also
calculated the correction to the effective mass
rn ' = ]+5m where 6m is obtained expanding the energy
shift in powers of the parallel momentum. The results ob-
tained are plotted in Figs. 3 and 4. We also give these re-
sults in Tables II and III. These are consistent with ear-
lier predictions.

We can estimate the lifetime of the first image state for
high parallel momentum (kz) from the imaginary part of
the energy shift. ' For k~ =2(a.u. ) we obtain 330 meV for
I"s 2

In conclusion, a Coulombic basis set has been used to
evaluate variationally the binding energy and effective

mass of image states at metal surfaces. Contributions
arising from virtual transitions to discrete and continuum
states have been evaluated. Our calculation quantitatively
confirms the validity of the use of the closure approxima-
tion by previous workers, especially for the binding ener-
gy.
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