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Pressure-induced structural instability of cesium halides
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The structural stability of the cubic phase of CsI versus tetragonal distortions is studied from first
principles using state-of-the-art local-density techniques, namely, norm-conserving pseudopotentials
and large plane-wave basis sets. The effects of the polarization of the cation are explicitly accounted
for using a pseudopotential that sustains the Cs Ss and 5p bands. We find that, in agreement with

recent x-ray diffraction experiments and with previous theoretical work, the tetragonal phase is

more stable at volumes smaller than 0.54 of the zero-pressure value. The mechanism of transition is

revealed in terms of the balance between the Madelung and repulsive interionic interactions. We
find that at volumes smaller than the transition volume the cubic phase is metastable, thus indicat-

ing that the transition is first order. The electron-charge-density rearrangements following compres-
sion and distortion are also examined. No evidence of a further transition to an even lower-

symmetry structure has been found in a preliminary search.

I. INTRODUCTION

In recent years, the diamond-anvil-cell technology has
opened a major breakthrough in the physics of materials
at very high pressures. Among the unsuspected features
of the high-pressure behavior of solids, one of the most
spectacular is the spontaneous lowering of the symmetry
of some cubic compounds. '

As a specific example, we consider in this paper the
case of CsI which undergoes a transition from the cubic
to the tetragonal structure at a pressure of -400 kbar. '

At this transition, which is isovolumic within the experi-
mental uncertainties, the volume of the unit cell is re-
duced to 0.54 of the zero-pressure value.

Some theoretical investigations of the high-pressure
structural properties of CsI already exist: The mechanism
of transition was first explained in terms of the competi-
tion between the electrostatic and repulsive interionic in-
teractions in a simple Born-Mayer model; this model, al-
though correctly displaying the mechanism of transition,
suffers the disadvantage of being semiempirical: in fact
the parameters of the model which reproduce the high-
pressure behavior of CsI are such that the zero-pressure
structure of this compound is incorrectly predicted to be
rocksalt. An ab initio description of the high-pressure
phases of CsI was then given in the framework of the
atomic-spheres-approximation linear-muffin-tin-orbitals
(ASA-LMTO) method. In this work, however, the devia-
tions of the crystal charge density from the superposition
of spherical muffin-tin ionic distributions were treated in
an approximate way.

In this paper the high-pressure structural properties of
CsI are studied from first principles without any simplify-
ing assumption on the shape of the electron charge distri-

bution. To this aim, the electronic structure of the crystal
is worked out using norm-conservin g pseudopotentials
and large plane-wave basis sets.

The practical equivalence of first-pri:mciples calculations
based on either pseudopotential or all- lectron techniques
has been recently demonstrated for covalently bonded rna-
terials at volumes close to their zero-pressure values.
Our results show that the above equivalence still holds in
such an extreme situation of ionic corn pounds squeezed at

of their zero-pressure volume.

II. METHOD

Total energies of CsI at various volumes and for dif-
ferent crystal structures have been calculated self-
consistently within the local-density approximation
(LDA) using nonlocal norm-conservinp pseudopotentials
and large plane-wave basis sets. The electron-gas
exchange-correlation energy and poteritial used here are
those determined by Ceperley and Alcler as interpolated
by Perdew and Zunger. We have assumed the following
form for the nonlocal ionic pseudopotentials:

where the PI's are projectors over the I angular momen-
tum states, and the UI's have been det;ermined using the
Kerker's procedure. ' Angular momemta up to l=3 have
been included and the f potential has been considered as
the local reference one.

Electrons up to and including Cs 4d and I 4d have been
considered as core electrons. The inclusion of the Cs 5s
and 5p states into the valence shell is needed in order to
obtain sensible results. In fact we foe.nd that pseudopo-
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tentials which sustain only the Cs 6s electron as a valence
electron (both those generated by the Kerker's scheme and
those tabulated in Ref. 11) yield a monotonic lowering of
the energy at decreasing volume, with no stability at all.
The stability of alkali halides is due to the
orthogonalization-induced repulsion between neighboring
anionic and cationic orbitals. In most applications of the
pseudopotential technique to semiconducting and metallic
materials, the repulsion exerted by the ionic pseudopoten-
tial mainly acts on orbitals centered around the ion itself
which are therefore atomic-like. It is not surprising that
the simulation of the orthogonality effects between off-
center orbitals by a simple atomic potential is a much
more difficult task. Rather than looking for a cure of the
above pathology, we have preferred to include the Cs 5s
and 5p orbitals into the core for the following reasons.
First of all, the orthogonality between relevant neighbor-
ing orbitals is accounted for exactly in this way. Second-
ly, the effects due to the relaxation of the cationic core are
taken into account as well: These are not negligible in
such a large-core atom as Cs. Last but not least, the in-
clusion of Cs 5s and 5p orbitals in the valence shell does
not affect significantly the numerical labor of the compu-
tation since the spatial extension of these orbitals is com-
parable to that of the iodine 5s and 5p orbitals. The
plane-wave basis set necessary to describe the latter is thus
also adequate for the former.

The UI's so obtained have then been least-squares fitted
to the following functional form:

Ut(r) =
3 —CXerf(r~a, )+ g (a„i+b„~r )e

T n=1

(2)

Atomic Rydberg units are used throughout. The relevant
parameters are summarized in Table I. The self-
consistent electron density is evaluated using the
(12,12,12) Monkhorst-Pack mesh' for the CsCl and
tetragonally distorted CsCl structures, and the (8,8,8)
mesh for the rocksalt structure. This amounts to 10
points in the irreducible wedge of the Brillouin zone for
the cubic structures, and to 18 in the case of tetragonal
distortions. Plane waves up to a kinetic energy of 21 Ry
were included in the basis set: This corresponds to
—1000 plane waves at equilibrium volume. The size of
the basis set is varied accordingly to the volume of the
unit cell. The crystal total energy is not yet fully con-
verged even with such basis sets. The lack of total-energy
convergence is a common feature in most calculations
based on modern norm-conserving pseudopotentials which
are relatively hard core. This is due to the difficulty to
reproduce the details of the electronic wave functions in-
side the ionic core. These details are of course of little im-

TABLE I. Ionic pseudopotential parameters (a.u. ) [see Eq. (2)].

n=1
Cesium Z„=9.00, a, =0.82

n =2 n =3

L=0

L=1

L=2

L=3

a„
a„
b„

a&

an

b„

a„
b„

an
a„
b„

3.22
4.870 022 085 760 76 X 10

—4.181 401 434 279 21 X 10

2.79
8.383 238 496 285 84 X 10

—9.004 204 575 933 08 X 10

1.06
—1.028 256417 203 60 X 10

3.408 227 742 193 31 X 10

1.62
—1.616061 743 443 15 X 10

1.203 699 710 308 82 X 10

3.48
—1.669 210 385 04069 X 10
—1.545 101 628 782 91 X 10

3.17
3.500 284 280 55749 X 10

—8.412 265 805 919 15 X 10

1.17
—4.824454 833 933 24 X 104

1.844 813 873 698 44 X 10

1.85
6.718 907 397 219 62 X 10
4.516 883 410 784 51 X 10

3.81
—3.200 798 779 97408 X 10
—3.592 271 879 200 27 X 10

3.40
—4.338 598 376 653 02 X 10
—3 ~ 851 879 270042 50 X 10

1.28
1.510725 064 292 27 X 10
6.074 843 265 486 40 X 10'

2.18
9.439448 941 92605 X 10
1.112621 811 757 38 X 10

n=1
Iodine Z„=1.00, a, =0.80

n =2 n =3

L=0

L=1

L=2

a„
b„

a„
b„

a„
b„
an
a„
b„

2.76
7.443 858 220 912 63 X 10

—7.752 440 418 587 25 X 10
2.31
7.761 305 828 162 69 X 10

—5.807 244098 416 03 X 10
1.26
1.020 816 125 477 17X 10

—3.964 264 310 322 43 X 10
1.61

—3.635 845 818 647 86 X 10
l.359 5 16 226 374 84 X 10

3.12
2.421 831 465 482 39X 10

—6.425 533 1 14 864 58 X 10
2.55
2.366 710 855 530 28 X 10

—2.846 18941209050X 10
1.37

—8.341 562 607 537 61 X 10
—1.024 891 73402048 X 10

1.72
2.164 102 772 617 84 X 10
4.303 455 078 853 59 X 10'

3.35
—3.166206 089 821 78 X 10
—2.761 261 744 901 89 X 10

2.79
—1.012 793 106 898 77 X 10
—8.665 138 141 76801 X 10

1.61
—1 ~ 866 352 106 344 40 X 10
—1.494 127 671 12075 X 10

1.89
1.471 727 38102054X 10
8.384 848 857 038 31 X 10"
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portance in determining the structural properties of the
materials, and we have indeed verified that the structural
data we have calculated (lattice constant, bulk modulus,
etc.), are converged to all the figures quoted in our tables.
No use of perturbation theory is made to diagonalize such
large matrices: All the plane waves have been treated ex-
actly using a variant of the Davidson's block-iterative al-
gorithm. '

III. STRUCTURAL PROPERTIES OF CSI

Total energies for different values of the unit-cell
volume have been fitted to the second-order Keane equa-
tion of state, '

P( V)

Bp

B'o

N Vp

Bp—N—1 +ln
Vp N

where Vp is the equilibrium volume, Bp the bulk
modulus, B'p and B"p are the first and second derivatives
of Bp with respect to pressure at V= Vp, and
N =B'p+ BoB"p/B 'p. In Fig. 1 the energy-versus-volume
curve of CsI is compared to the data calculated assuming
a rocksalt crystal structure. This figure shows that con-
trary to the predictions of the semiempirical model of
Ref. 3, first-principles calculations based on the LDA are
indeed able to correctly predict the equilibrium crystal
structure of CsI. In Table II we report the calculated
values of the equilibrium lattice parameter, bulk modulus,
and its derivatives with respect to pressure. The compar-
ison with the corresponding experimental data""" is
quite satisfactory. The (110) projection of the charge-
density map of CsI at zero pressure is displayed in Fig. 2.
The strong ionicity of CsI is revealed by the spherically
piling of the charge at the ionic sites, with virtually no
charge in between. The ionic character of CsI is of course

TABLE II. Lattice parameter ao, bulk modulus Bo, and first
two derivatives of Bo with respect to pressure Bo and Bo', as
calculated in this work for CsI and as given by experiments.

CsI

ap (A)
Bo (kbar)

dB /dP
d'B/dP'

'Reference 1(d).
Reference 15.

Present
work

4.45
110
5.8

—0.07

Asaumi'

4.567
111+8

6.9+0.4

Barsch
and Chang

4.568
119+5

5.93+0.08

not surprising; however, former investigations based on
the empirical pseudopotential scheme seemed to indicate a
non-negligible covalency of the charge distribution of al-
kali halides. ' Only the recent availability of accurate
first-principles calculations for such compounds' finally
clarified that the above covalency is an artifact due to the
inaccuracy of the empirical pseudopotentials.

When CsI is squeezed at a volume of 0.54 of its equili-
brium value, the cubic CsCl phase becomes unstable and a
tetragonal distortion spontaneously lowers the symmetry
of the crystal. ' In Fig. 3 we display the crystal energy per
cell of CsI as a function of c/a (which has to be identified
with the order parameter of the phase transition), for vari-
ous values of the unit-cell volume. The transition volume
is accurately reproduced by our calculation. Also the
transition pressure, which according to Eq. (3) is 460
kbar, compares favorably with experiments. Figure 3
shows that the shear constant c, =(c» —c&z)/2 (which is
the elastic constant responsible for the stability of the cu-
bic structure versus tetragonal distortions) decreases as the
crystal is squeezed. The vanishing of c, would signal a
second-order transition. However at V/Vp -0.54, before
the vanishing of c„a second minimum of E as a function
of c/a appears at c/a —1.15. According to our calcula-
tion, the transition is thus first order. This fact, although
in agreement with other theoretical investigations and
compatible with x-ray diffraction data which indicate an
abrupt variation of c/a, seems to contradict optical ab-

Q6 1.0 1.2
V/V

FICz. 1. Calculated crystal energy per cell of CsI as a func-
tion of the unit-cell volume (a.u. ) referred to the observed zero-
pressure volume Vo . Squares indicate data obtained assuming a
CsI structure, crosses refer to the rocksalt structure. The con-
tinuous line is the result of a least-squares fit of the data to Eq.
(3).

FIG. 2. Electron-charge-density distribution of CsI at equili-
brium volume, projected onto the (110) plane. Units are
3)& 10 electrons per cubic Bohr radii.
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V/V. =0.55
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v/v. =o.54

v/v. =o.53

(b)

V/V, =0.51

I l

0.9 1.0 1.1 1.2 1.3
c/a

FIG. 3. Crystal energy per cell of CsI as a function of c/a
for various volumes of the unit cell, referred to the calculated
zero-pressure volume Vp.

FIG. 4. Electron-charge-density distribution of CsI, at
V/ Vp =0.5 1, projected onto the ( 1 10) plane. (a) c /a = 1; (b)
c/a = 1.25. Units and scale are the same as in Fig. 2.

sorption measurements according to which the optical gap
is continuous across the transition. In fact we calculated
that, at V/Vo ——0.54, the optical gap is lowered by -0.3
eV as c/a is changed from 1 to its equilibrium value of
1.15. Although the LDA estimates of the optical gap are
known to be unreliable, ' ' the qualitative dependence of
Ez upon c/a is certainly within the predictive power of
the LDA itself. We conclude that the results of optical
experiments do not agree with structural data: The origin
of this contradiction may lie in nonhydrostatic effects in
the pressure distribution within the diamond cell. We
cannot exclude the possibility of some inaccuracy in the
experimental data: We just recall here that the determina-
tion of the metallization pressure of CsI is still a source of
controversy.

In Fig. 4 we show the electron-charge-density distribu-
tion of CsI at V/Vo ——0.51, both in the undistorted and in
the distorted geometries. A superposition of Figs. 2 and
4(a) would bring out the following features: (i) the ionic
charges stay almost unchanged during the compression;
(ii) a slight isotropic compression of the ions is observed
which results in more pronounced maxima in the pseudo-
charges for the compressed geometry; (iii) the above effect
is less pronounced for the cation than for the anion, as ex-
pected from the larger compressibility of the latter; (iv)
the low-density levels at the frontier between the ionic and
the interstitial regions differ considerably in the two fig-
ures, indicating an increasing hybridization between the
anionic and cationic orbitals. This behavior is intimately

related to the proximity of a band-overlap insulator-to-
metal transition.

To clarify the mechanism of the structural transition,
we define the crystal repulsive energy as the difference be-
tween the total-energy and the classical electrostatic
(Madelung) interaction. The nature of this repulsive in-
teraction is well illustrated by a comparison of Figs. 2 and
4, which indicates that the ionic sizes depend only very
slightly on the interionic distance and that the ions behave
therefore as (almost) hard spheres. Although the various
contribution to the repulsive energy so defined have dif-
ferent physical origins (orthogonalization-induced in-
terionic repulsion, short-range deviation from the point-
like Madelung attraction, etc.), this definition allows a
direct comparison with the serniempirical Born-Mayer
model and suggests a pictorial description of the transi-
tion. In Fig. 5 we display, for CsI, both the Madelung
and the negative of the repulsive energy for various
volumes as a function of c/a, referred to their values at
c/a = 1. We notice that, at constant volume, the nearest-
neighbor distance increases as c/a moves from 1. As a
consequence, the attractive Madelung interaction stabi-
lizes the cubic structure, while the repulsive one favors the
tetragonal distortion. At low pressure, the electrostatic
contribution to the total energy is far larger than the
repulsive one, and the cubic phase is thus the most stable.
As the volume decreases, the relative importance of the
repulsive interaction increases, and, near the transition,
the variations in the two contributions to the total energy
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FIG. 5. Madelung energy (crosses} and negative of the repul-
sive energy (squares) as functions of c/a for CsI, for volumes
close to the transition one. Vo indicates the zero-pressure
volume.

A second phase transition at a pressure of -650 kbar
has been reported in Refs. 1(d) and 1(f): On the basis of
the splittings of the Bragg peaks in x-ray diffraction ex-
periments, an isovolumic transition to an orthorombic
structure seems to take place. We have searched for such
a transition varying the value of b/a and keeping the
values of V fixed at V/Vo ——0.50 and c/a=1. 25, but no
transition has been found. As the paucity of experimental
data does not allow a sure and unique determination of
the distorted structure, we have tried a more complicated
monoclinic distortion by allowing the angle between the a
and c axis to vary, keeping the volume constant and
b =a. Again, no evidence of a further transition has been
found. Previous calculations based on the semiempirical
Born-Mayer model were not able to predict such a transi-
tion, and no mention of it has been made in Ref. 5 where
the cubic-to-tetragonal transition was successfully predict-
ed by an ab initio LMTO calculation. Since not all the
experimental investigations agree in the report of this fur-
ther transition, ' we conclude that further experimental
and theoretical work is needed to elucidate its nature.

are of the same order. Just below the transition, the gain
in the repulsive interaction with respect to Madelung en-

ergy favors the tetragonal distortion at c/a & 1, while the
distortion for c/o &1 is still unfavorable. This different
behavior for c/a less than or greater than 1 signals the
presence and the importance of a third-order term in the
expansion of the energy as a function of (c/a —1), con-
sistently with our conclusion that the transition is first or-
der.
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