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Numerical experiments have been performed with use of a fairly realistic model for polyethylene
which has enabled the effects of anharmonicity, temperature, and positional disorder on the thermal
conductivity to be investigated. It has been shown that the classical conductivity may be substantial-

ly increased by both increasing the strength of the anharmonic forces and by decreasing the chain
temperature. Although the conductivity of individual chains is found to be high, realistic values for
the conductivity of a bulk material may be understood provided that due account is taken of the po-
lymer conformation and interchain coupling.

I. INTRODUCTION

The thermal conductivity, ~, of amorphous and partial-
ly crystalline polymers at room temperature may be con-
siderably enhanced by drawing or stretching. ' In addi-
tion there is evidence that the conductivity is dependent
on the molecular weight or chain length. '

Measurements on highly drawn polyethylene (PE) re-
veal a considerable increase in ~ in the draw direction.
The mechanism by which this happens is not yet clear.
The increase could be entirely due to the orientation and
modification of the crystalline fraction within the amor-
phous matrix, but may also be due to the stretching and
alignment of the amorphous material. ' The conductivity
of amorphous rubber (parallel to the axis of orientation)
shows enhancement as the rubber is stretched, so at first
sight it may seem that the properties of the amorphous
fraction may be considerably modified by drawing. How-
ever, this conclusion is complicated by the tendency of
some rubbers to crystallize on extension.

For undrawn amorphous polymers, ~ is usually of the
same order of magnitude as other electrically insulating
amorphous materials and indeed the vibrational com-
ponent of ~ in amorphous metals. It does not follow,
however, that the mechanisms of conduction are the same.
The spectrum and nature of the vibrational states is com-
pletely different in a material with only short-range order,
as opposed to a polymeric material containing many
thousands of molecular units. The observation that for
molten polymers, ~ increases as the square root of the
molecular weight M (in the low-molecular-weight re-

gime and saturating for higher molecular weights) also
points to a conduction mechanism which is different than
that in other amorphous materials.

There have been a number of interpretations of the
enhancement with drawing and the molecular-weight
dependence (summarized in Refs. 1—3). In addition it has
been suggested that vibrations, essentially confined to a
polymer chain, can travel long distances along the chain
without being attenuated. This was postulated as a mech-
anism for explaining the (M )'~ behavior, on the grounds
that the effective mean free path would be the rms end-
to-end distance of a polymer molecule. This would be-

come independent of the molecular weight, if the mean
free path were much less than the chain length. Similarly,
extension of a polymer molecule in the direction of draw
would enhance the effective mean free path for conduc-
tion in the draw direction. The fact that ordinary glassy
materials have conductivities comparable with amorphous
polymers was explained on the basis that only a relatively
small fraction of the vibrational modes have long mean
free paths.

There are two difficulties with this idea.
(a) It is well known that the mean free path resulting

from anharmonic scattering in crystals at room tempera-
ture is typically —100 A. If this was the case in a poly-
mer chain, the mean free path would be limited to much
less than the chain length. This point was considered by
use of an extremely simple model of the anharmonic pro-
cesses in a linear chain. It was found that there was a
"window" in the scattering as a function of frequency so
that vibrations in the middle of the frequency range could
have long mean free paths. In a real structure, however,
the selection rules for scattering become very complex and
it is difficult to come to a general conclusion.

(b) Polymer chains are not isolated and vibrational wave
packets initiated on a particular chain will "leak" away
onto other chains. In an amorphous material this will not
happen in a singular and coherent way as it would in a
crystal. The rate will depend in quite a complicated way
on the coupling between chains and the masses of atoms
coupled together.

Another interesting possible explanation for the
(M )'~ dependence of the conductivity is in terms of sol-
iton conduction. Solitons have been suggested as the ori-
gin of the enhanced conduction observed in computer ex-
periments on disordered anharmonic lattices. ' In this
work we consider the simulation of heat conduction in an
isolated extended chain of PE, using molecular dynamics.
We show that for classical heat conduction, anharmonici-
ty also enhances the conductivity indicating the possibility
of soliton conduction. However, at the present time it is
not known how to "count" the number of solitons at high
(classical) temperatures or to what extent they may be re-
garded as independent entities.

In the next section we describe the fairly realistic model
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FIG. 5. Planar zigzag skeleton of a polyethylene chain show-

ing the definition of the natural displacement coordinates.
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clearly depend on the configuration, but for most of the
simulations the chain is taken to be initially in the zigzag
form and at rest. The equations of motion take the form,
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FIG. 3. Radial potential energy function. Solid line, harmon-
ic model; dashed line, anharmonic model.
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bonds in the "zigzag" configuration shown in Fig. 5. The
form of the potential is such that defects can be formed in
the chain by rotation of the bonds, even if the chain is set

up initially in the form shown with the end repeat units
fixed [i.e., the zeroth and (N+ l)st repeat units are as-
sumed to have infinite mass]. Alternatively, the chain can
be set up in a positionally disordered configuration by
choosing the sign of the equilibrium angle between adja-
cent bonds at random. Moreover, an amorphous polymer
will contain defects quenched in from the molten state
and will have vibrational modes associated with them. '

The thermal conduction properties of the chain will

and

y„=420 Nm

ye ——37Nm ')
with the anharmonic force constants taken to be

where M is the mass of the CH2 monomer unit.
The numerical method for solving the equations of

motion is as follows,
(a) The initial positions of the atoms are chosen as

described above. In this configuration the potential ener-

gy of the system is taken to be zero. The chain is not con-
strained to the plane of the zigzag, but is allowed to move
in three dimensions. Only nearest-neighbor interactions
are considered.

(b) A random set of velocities (in three dimensions) is
chosen to mirror those found at room (or chosen) tem-
perature in a real polymer. This step is carried out with
the aid of a random-number generator. Velocities are
selected from a Boltzmann distribution characterized by a
temperature T~„,I given by

T~„,~ ——MU /k~ .

Initially, T~„,& is taken to be equal to twice the desired
temperature, since at this point all of the energy in the
system is kinetic.

(c) The equations of motion are used to advance the
time t by an increment At. A fourth-order Runge-Kutta
procedure was used throughout. The increment At is
preassigned and is small compared to the minimum vibra-
tion period of the system. This step is repeated until the
system reaches a steady state and the potential and kinetic
energies share the total energy of the system. For a ran-
dom initialization this takes —10 steps.

The parameters and units used in the numerical experi-
ments were chosen to be as close as possible to those
found in PE. The force constants used' were

BOND LENGTH ( Kp ) and

P =0 35@ Pe=0 35ye

FICx. 4. Degree of anharmonicity in the radial potential ener-

gy.

v„=0.069y„, ve ——0.069ye

which are appropriate for the noble-gas solids. The unit
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TABLE I. Details of configurations used in the computer experiments.

Designation

300a

300}1

2Da
300Da

300Dh

3a

T (K)

300

300

300
300

300

Dimension Details

Zigzag model
at 300 K
300a with no
anharmonic
terms
300a in two dimensions
300a in a random
configuration
(see text)
300Da with no
anharmon&c
terms
Zigzag model
at 3 K

Diffusivity
(mm /s)

-20
7

-45

of length was chosen to be the length of the C—C bond
found in PE (1.54 A). The unit of mass was the mass of
the CHz repeat unit (14 a.u. ). The unit of time (after Ref.
9) is the "sec ond"=2 /co =7.44X10 ' s, or 1/~ times
the minimum period of harmonic oscillation on the chain.
With this choice of units the force constant y„becomes
unity. [co is given by

co = (4y„/M )'

which is equal to 2 for a monatomic harmonic chain of
unit masses. ]

The size of the time step used in the integration was re-
duced until the total energy of the system was conserved
to better than l%%uo over 2&(10 steps. The size of this step
was found to be 1/4000th of a "second. "

Experiments were performed using chains set up in a
total of six different conformations. The parameters of
temperature, anharmonicity, and positional disorder, to-
gether with the simulation designations are given in Table
I.

III. THE NUMERICAL EXPERIMENTS

T(x, t) = To+(AT/2) erf —+erfd+X d —X

2&at 2&at

(7)

where for three dimensions in the classical limit, and for a
harmonic system, the thermal diffusivity a is given by

+=K/3R,

where 8 is the gas constant. All other symbols are as in-
dicated in Fig. 6. From the above equation the values for
the diffusivity and conductivity are extracted. We consid-
er times sufficiently short such that the temperature pulse
has not spread out too far so that (7), the result for an in-

600—
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The pioneering work of Payton, Rich, and Visscher in-

volved the simulation of heat conduction in lattices con-
taining isotropic impurities. The method corresponded to
setting up a temperature gradient by means of two heat
reservoirs and computing the heat current. This basic
method has also been used by other authors. ' An alter-
native procedure is to use linear-response theory and
evaluate the current-current correlation function.

The method used in this work is one of direct simula-
tion which involves raising the system of —500 CHz re-

peat units to the required temperature and then carrying
out a classical heat-diffusion experiment. This is per-
formed by raising the temperature in one region and
measuring the temperature decay with time. The change
in temperature as a function of time is then compared
with the solution' of the diffusion equation, which, for a
distance x from the position of the pulse is given by
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FIG. 6. Temperature profile of 300-K chain immediately
after the application of a 300-K pulse to repeat units 290
through 300.
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finite system, is valid.
In order to smooth out any local temperature inhomo-

geneity, the pulse width was chosen to be ten chemical re-
peat units and the pulse height summed over the total
number of steps of the experiment. The pulse was added
in such a way that both the potential and kinetic energies
were increased in the same proportion and that the total
increase in energy was equal to one-half of the total ener-

gy of the system. This rather large input is necessary to
distinguish the pulse from temperature fluctuations.
However, this should not be a problem since ~ is a slowly
varying function of T.

A. Progress towards initial thermal equilibrium

5T- T/~X (9)

so that for a collection of 500 particles (as in the present
work) at 300 K, 5T-14 K. After —10 time steps the
oscillations fall within 36T, and the system can be said to
have established equilibrium. It should be mentioned that
with peak-peak fluctuations of 36T, the system will be
stable to within 5T for 90 fo of the time. The sinusoidal
oscillations seen in Fig. 7 appear to be intrinsic to the sys-
tem. Clearly, many modes contribute to the thermal
equilibration leading to a complicated decay pattern. The
observed oscillations can be understood in terms of the
distribution of phases present at the start of the sirnula-
tion. In the Appendix to this paper, the effect of the

The progression towards initial thermal equilibrium for
the six conformations used were similar. An example is
shown in Fig. 7. In all cases the kinetic and potential en-
ergies share the tota1 energy of the system. The intrinsic
fluctuations in the temperature in a model containing X
particles is

initial-phase distribution on the progress towards thermal
equilibrium is considered using a simpler one-dimensional
harmonic chain.

Although the total energy of the system is always con-
served (see Fig. 7), for the three-dimensional models, the
kinetic energy is always greater than the potential energy.
For the two-dimensional model however, (and indeed for
one-dimensional models tested), the kinetic and potential
energies share the total energy almost equally.

B. Thermal diffusivity and conductivity

The result of the first 50 "seconds" of the simulations
described in Sec. III A are displayed in Fig. 8. The period
of 50 "seconds" is chosen since by this time the process of
diffusion is well established, but the simulation is short
enough to ensure that even for the fastest diffusing
models, the pulse applied has not completely diffused
away. Complete diffusion would be indicated by a posi-
tive change in slope so that the data points would run
parallel to the zero diffusivity line. Consistent results
were obtained when the position of the pulse was altered
by up to 20 repeat units towards either end of the chain.
The total height of the initial pulse was necessarily large
due to the great variation in temperature found along the
chain (a typical temperature profile is shown in Fig. 6).

It should first be noted that all of the diffusivities cal-
culated are significantly greater than the experimental
value of 0.23 mm /s found for high-density po-
lyethylene. This result will be discussed in Sec. IV. The
diffusivity of the extended chain is found to be highly sen-
sitive to both the temperature and the degree of anhar-
monicity. Note particularly that the chain linked by
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FIG. 7. Progress of three-dimensional polyethylene model to-
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bonds possessing only "harmonic" terms in the potential
energy has a thermal diffusivity approximately one-third
of that which has anharmonic modulating terms included.
The anharmonic chain with a classical temperature of 3
K, however, has a diffusivity which is of the order of a
factor 6 higher than that which has a temperature of 300
K. Both of the above results are entirely consistent with
previous computer experiments.

Constraining the chain to two dimensions increases the
300-K value of the diffusivity by a factor of nearly 3.
This would correspond to an increase in conductivity by a
factor of over 4, since the specific heat of the system will
be a factor of three-halves lower. It is speculated that
coupling between modes in the three-dimensional chain
may lead to a thermal resistance not experienced by the
two-dimensional model, and of course the two-
dimensional model is not able to form defects.

Allowing the chain to become positionally disordered
(i.e., the sign of the angle eo between adjacent bonds is
chosen at random, allowing the chain to become coiled
rather than extended —the chain in fact performs a ran-
dom walk) appears to have little effect on the diffusivity
of the anharmonic chain, but is found to increase the dif-
fusivity of the "harmonic" chain to a value close to that
found for the chain with anharmonic terms included in
the potential energy. This result seems reasonable in view
of the fact that the random nature of the chain is likely to
introduce extra anharmonicity into the system. This
would have the effect of increasing the thermal diffusivity
as shown above. However, Payton, Rich, and Visscher
found that the increase in thermal conductivity due to in-
creasing the anharmonic strength remained constant for
values of p above 0.35, the value used in this work. This
would explain why the diffusivity of the anharmonic
chain remained unaltered.

It must be emphasized that the results mentioned
above, as well as those of Payton, Rich, and Visscher are
totally different to those expected for crystalline materi-
als, ' for which the addition of anharmonic terms into the
potential would be expected to increase instead of decrease
the thermal resistivity.

IV. THE EFFECT OF THE POLYMER
CONFORMATION AND THE TRANSFER

OF ENERGY BETWEEN CHAINS

FIG. 9. Slab of material formed from noninteracting polymer
chains.

The remaining chains performing a random walk from
one surface to the other will have an average length of the
order of L /d, where L is the thickness of the slab, and d
is the length of the monomer unit. The resistance of these
chains in parallel will then be proportional to L rather
than L, so that the resistivity will be length dependent.
This of course is an extreme example, and in reality the
coupling between the chains will give rise to a macroscopic
uniform temperature gradient across the slab. If we
denote by L, the length scale over which the temperature
gradient can be regarded as uniform, we see that the com-
puted thermal conductivities or diffusivities should be di-
vided by a factor of (L, /d). Hence, for the zigzag model
at 300 K corresponding to a random configuration, we re-
quire L, /d to be -30 to obtain the measured value of the
diffusivity. Assuming that the random configuration is

The diffusivities found from the numerical experiments
on a single chain are considerably greater than measured
values for high-density polyethylene. This is not surpris-
ing since we have considered noninteracting chains and it
is clear that the chain conformation and the interactions
between the chains have very important effects. Suppose
we consider a solid formed from noninteracting chains
performing random walks. It would seem that there is no
true length-independent resistivity in this case. In Fig. 9
we show schematically a slab of material with the tem-
perature constrained to be T j and T2 on the surfaces of
the slab. Some chains will start on one surface and return
to the same surface. One-half of the chains will have this
behavior and will not contribute to the thermal resistance.

(A)

(B) ~
~M( ™~M(™~™

Y(

FIG. 10. Model of two interacting polymer chains.
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roughly an unrestricted random walk this implies that we
can only treat the polymer molecules as noninteracting
over a distance of approximately 900 monomer units. It
would seem significant that the conductivity of molten
polythylene as a function of molecular weight shows signs
of saturation for about 10 monomer units. This does
not seem unreasonable, but clearly, such results will de-
pend strongly on the cross-linking and coupling between
the chains. The transfer of energy between chains will be
very complex in general, but the simple model shown in
Fig. 10 is quite revealing. We consider two linear chains

A and B coupled together by a shear-force constant (y2)
via an atom with mass m 2. The masses of the two chains
are denoted by m

&
and they are coupled by springs with

force constant y&. The motion is constrained to be in the
direction of the chains. We now give expressions for the
reflection coefficient of a wave traveling along chain 3
(R), the transmission coefficient along chain A ( Tz ), and
the transmission coefficient to chain B ( Tz ). The
transmission coefficient onto chain B is the same for
waves traveling in both directions away from the coupling
point so that R+ T&+2T~ ——1. We find

and

y [co)m y +(1—co))(y —4m')) ]
[y +16'&(1—co~)][y m co~+(I —co&)(2y —4m'&) ]
(1—co~)[y +4mcu~y (4m'~ —2y)+16'&(1 —co~)(2y —4m'~) ]

[y +16',(1—co~)][y m co&+( I —co&)(2y —4m'&) ]

(1—coi )y

[y +16'~(1—coi)][y m ~1+(I—co&)(2y —4m'&) ]
(12)

where in reduced units m =m 2/m &, y =y2/y &, and
co~ ——co/co, „and co,„=2+y~/m~. In Figs. 11—13 we
show some examples of the behavior of R, Tz, and Tz
for various choices of m and y. In Fig. 11 it can be seen
that the transmission coefficient along chain 2 can be
large over a range of frequencies, when the chains are cou-

pled via a light mass, and with y&
——y2. For a heavy mass

(Fig. 12) there is a pronounced resonance structure in the
reflection coefficient. The most important case is in Fig.
13 where for a light mass and weak coupling, the
transmission coefficient along chain 2 is very close to
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FIG. 11. Reflection and transmission coefficients for the case
where y =1 and m = —,z, as a function of reduced frequency co&.

FIG. 12. Reflection and transmission coefficients for the case
where y =1 and m =12, as a function of reduced frequency co&.
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APPENDIX: PERIODIC OSCILLATIONS
IN THE KINETIC ENERGY OF

HARMONIC OSCILLATORS

0.8

0.6

04.—

0.24
I l I I I ) I

I I I I
I

The periodic oscillations observed in the kinetic energy
in Fig. 7 when approaching thermal equilibrium, can be
understood in terms of the distribution of phases, P(k), of
the phonon modes, k, present at the start of the simula-
tion. For a one-dimensional chain consisting of N parti-
cles separated by a distance "a," the displacement of the
nth particle Uk(n, t) due to a mode k acting at time t is
given by (assuming periodic boundary conditions)

0.20

O. I 6

O. i 2

0.08
0.04

0 0.2

I ~

I i I i I

0.4 0.6 0.8 I.O

Uk(n, t) =(1/Nk ) sin(kx„) sin[co(k)t+P(k)],

where

sin( kNa) =0
for

k =n~/(L =Na)

and

(A1)

(A2)

(A3)

FIG. 13. Reflection and transmission coefficients for the case
where y =,p and m = », as a function of reduced frequency

1
1V

Nk = g sin'(kx„) =N/4,

so that

unity. It is difficult to translate this simple model to real-
istic models of polymer interaction but the message is
clear, weak coupling via a light mass such as a H atom
can result in very weak interchain coupling. It would be
very interesting in the future to investigate more realistic
situations by computer simulations.

These remarks are necessarily qualitative, but it is clear
that the notion of heat conduction along polymer chains
is a viable one. Experimental work involving the sys-
tematic cross-linking of polymers in different ways may
well help in verifying this physical picture. The recent
paper by deGennes' on the electrical conductivity of po-
lymers with interchain and intrachain conductance should
prove valuable in this context.

V. SUMMARY

Numerical experiments have been performed with use
of a fairly realistic model for PE which have enabled the
effects of anharmonicity, temperature, and disorder on the
thermal conductivity of polymers to be investigated. It
has been shown that the classical conductivity may be
substantially increased by both increasing the strength of
the anharmonic forces and by decreasing the chain tem-
perature. It has been found that although the conductivi-
ty of individual chains may be high, realistic values of the
conductivity of the bulk material may be understood, pro-
vided that due account is made of the polymer conforma-
tion and the effects of interchain coupling in establishing
a macroscopically uniform temperature gradient.

Uk(n, t) =(2/v'N ) g Ak sin[k(na)]
k

x sin[co(k)t+P(k)], (A5)

600—

500

400—
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C3

LLI 300—
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FICx. 14. Progress of uncoupled one-dimensional chain to-
wards thermal equilibrium. Solid line, initial conditions input at
step zero; dashed line, initial conditions input over first 600 time
steps.
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(A6)

Taking an average over all phases, {t(k), present; that is

(1/2n) f sin (cot+/)dP= —, (A7)

So choosing P(k) randomly should produce a time-
independent kinetic energy, or at least there will not be os-
cillations which are the same regardless of the original set

where Ak is some amplitude. The average kinetic energy
of the system is given by

of phases.
Clearly then, the procedure adopted for the simulations

shown in Fig. 7 does not correspond to initializing the
system with a set of random phases. To test the validity
of this argument, numerical experiments were performed
using a simple one-dimensional harmonic chain. It was
found thai when the kinetic energy was introduced instan-
taneously at the start of the simulation, large oscillations
were observed (solid curve in Fig. 14). However, if the ki-

netic energy was introduced progressively over a period of
some 600 time steps the oscillations were considerably re-

duced (dashed curve in Fig. 14).
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