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High-frequency conductivity of superlattices with electron-phonon coupling
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The high-frequency and long-wavelength conductivity due to electron —optical-phonon interaction
was derived for superlattices made out of polar or partially polar semiconductors. The treatment for
conductivity rests on Kubo's formula for the conductivity and the temperature-dependent Green's-
function formalism. General expressions for the conductivity and the resistivity have been derived,
and we have performed numerical calculations for a simple model in which the subband structures
of the phonons are ignored and the electronic wave function is approximated by a periodic array of
two-dimensional electron gases.

I. INTRODUCTION

Superlattices are a novel class of material composed of
alternating layers of two different constituents. ' The
development of molecular-beam epitaxy has made it pos-
sible to produce high-quality superlattices made from two
different semiconducting materials (e.g. , InAs-GaSb,
GaAs-AIAs, Ge-GaAs, etc.) with similar lattice structure
and matching lattice parameters. In the direction of su-
perlattice growth (called the superlattice axis, and taken to
be the z direction), a number of atomic monolayers of
semiconductor 3 are deposited in an atomically sharp
way on atomic monolayers of semiconductor 8 to form
new superlattice unit cells. A microscopic sample of such
an 3 -8 superlattice is a new bulk material with properties
intermediate between those of materials 3 and B.

There are two types of superlattices whose properties
have been studied in some detail. These are known as
type-I and type-II superlattices. Type-I superlattices are
typified by the GaAs-Al Ga& As system, in which the
band gap of GaAs is smaller than, and contained within,
that of Al Ga& As, giving rise to band-gap discontinui-
ties in both conduction and valence bands of the resultant
superlattice system. If we dope the Al Ga& As layers
with donor impurities, electrons will be released from the
donors to drop into the GaAs sides of the band-gap
discontinuities. The resulting one-dimensional potential
well quantizes the motion of the electron in the z direc-
tion, and so the conduction band of GaAs will be split up
into a series of subbands (if the electron wave functions in
adjacent potential wells do not overlap) or miniband (if
they do), each of which represents a continuum of free-
electron-like states in the x-y plane. Thus, as far as elec-
tronic properties are concerned, type-I superlattices con-
sist of a periodic array of quasi-two-dimensional electron
gases. Many aspects of type-I superlattices, such as
dielectric response, collective excitations, cyclotron reso-
nance, and Raman scattering, have been studied ' in re-
cent years.

A type-II superlattice is typified by InAs-GaSb. The
band discontinuities at the interfaces are so large that the
conduction-band edge in InAs lies below the upper
valence-band edge of the GaSb. ' In this case, there is a

transfer of electrons from one layer (GaSb) to the other
(InAs), resulting in a spatial separation of electrons and
holes into potential wells, with the formation of electron
and hole subbands. Unlike type-I superlattices where both
electron or hole states are primarily in the GaAs regions,
here electrons mainly exist in the InAs layers while the
holes are in the GaSb layers. '

The spatial separation of the superlattice system has ob-
vious consequences for the optical properties such as ab-
sorption. The mobility of this structure is higher than
that of bulk material because of a reduction in the
electron-impurity or electron-hole scattering. We have
previously reported calculations of the conductivity of
type-I and type-II superlattices' ' where the frequency-
dependent effective mass and scattering time due to the
electron-impurity interaction or the electron-hole interac-
tion were obtained. In this paper we shall calculate the
high-frequency conductivity of superlattice systems due to
the electron —LO-phonon interaction. Many of these
semiconductor superlattices are made of weakly polar
III-V or II-VI compound semiconductor materials (e.g. ,
GaAs-Al„Gat „As and InAs-GaSb). In view of the two-
dimensional electron confinement in these systems, one
expects that the effects of the electron —LO-phonon cou-
pling on the absorption properties will be important. In
fact, a number of theoretical ' ' and experimental
works ' have already been done in various aspects of
the electron-Lo-phonon interaction effects on the polarons
and electronic properties of two-dimensional systems.

We use the Kubo's formula for conductivity and the
temperature-dependent Green's-function technique. We
restrict ourselves to the approximation that electrons are
confined in sheets of zero thickness. If the energy of the
incident photons is less than the energy difference between
the ground state and the first excited state, and the mean
spreading of wave function is less than the layer thick-
ness, our approximation is realistic and can be used as a
model for theoretical calculation which should be valid in
and can be compared with real systems. Within this
model, we have obtained an exact expression for the con-
ductivity. It is dependent on frequency, plasma parameter
r„spatial separation a, and the electron-LO-phonon cou-
pling. We have evaluated the relaxation time numerically
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II. EVALUATION OF THE CONDUCTIVITY

Let us consider electrons of density n per unit area and
mass m occupying layers positioned at z = la
(I =0, +1,+2, . . . ) where a is the period of the superlat-
tice system along z direction. We use a simplified model
in which electrons can only move in the x-y plane. The
wave function of the electron in Ith layer is

tttt(p, r, z) =e'P'g(z —la ), (2.1)

where p, r are, respectively, the two-dimensional (2D)
momentum and position vector along the x -y plane. gt(z)
is defined in such a way that it gives 6-function-like dis-
tribution:

for a weakly interacting polar system (GaAs-
Ga, „GaA1„As) as well as a strongly interacting polar
system (PbTe-Pb~ „Sn„Te).

The model we use is simple: A purely two-dimensional
confined electron gas interacts via the Frohlich Harnil-
tonian with the bulk LO phonons of the relevant semicon-
ductor material. Here we neglect coupling to all other
kinds of phonons as well as to interface phonon. We have
two reasons for ignoring the effects of the interface pho-
nons. One is experimental —light scattering experiments
seem to indicate that the bulk LO phonons are the only
phonons that couple to the two-dimensional confined elec-
trons. The second one is theoretical —the superlattice sys-
tem that we are considering consist of two lattice-matched
semiconductors (e.g., GaAs and Al„Ga, As) with rather
similar lattice dielectric properties which make the ex-
istence of purely interface phonon modes (with their own
distinct frequencies) rather unlikely. '

phonon is

Ci(q, q, ) =t 277e COLO
2

(q +q, ) 6p

1/2

&( f dz e ' gt(z)gt*(z) . (2.6)

For 5-function distribution, Eq. (2.6) simply becomes
1/2

2&e MLO
2

Ci(q, q, ) =i
(q +q, )

iq la
e (2.7)

where cu is the frequency of electromagnetic wave and we
set A equal to unity for notational convenience. Here

iHt (0) —iHt~ (2.9)

is the current operator in Heisenberg representation and
the average of an operator is defined by

(0)=Tr exp P II+gpN, H0—(2.10)

where coL& is the longitudinal-optical phonon frequency at
zero wave number and E', E'p are, respectively, the high-
frequency and static dielectric constants of the relevant
semiconductors.

To evaluate the conductivity, we start from Kubo's
formula for conductivity which reads

cr„(co)=f e' 'dt f (j&(t —iA, )j (0))dl, , (2.8)

~
gt(z)

~

=5(z —la) . (2.2)
where H is the total Hamiltonian of the system and 0 is
defined by

The Hamiltonian of our electron-phonon system is
given as

e ~ =Tr exp p pit, N, H-
S

(2.1 1)

H =Hp+H),
where

(2.3)

HOQEpap iap i+QcoQbQbQ
p, l Q

(2.4)

—q ~1 —1'~a
q p+ q, 1 p' —q, 1'a p', 1'

q, p, p' 1, 1'

where Q=(q, q, ) is a three-dimensional vector because
our two-dimensional electron gas only interact with the
bulk phonon of the compound, and

cr~~( co ) = crp~( ctt ) +0 p~( ci3 )

where

(2.12)

~ 2

crz„(ctt) = — f dA, (j &( —iA, )j„(0)) =
in p " "

co m

In Eqs. (2.10) and (2.11) tLt, and N, are, respectively, the
chemical potential and number operator of s species in the
system, and P the inverse of the temperature in energy
units. In order to render Eq. (2.8) in a more convenient
form we integrate it by parts and obtain

+g Ci(q, q, )ap q, ap, (bQ+b Q) .
Q, I

(2.5)

and

(2.13)

Here E~ =p /2m is the kinetic energy of an electron hav-
ing momentum p. co~ is the wave-number-dependent
longitudinal-optical frequency and a p tap i(b Q b Q

)
t

represent, respectively, the electron (phonon) creation and
destruction operators with momentum p(Q) in the 1th
layer. The coupling term Vq ——2we /qe is the Fourier
transform of the Coulomb interaction for planar elec-
trons. The coupling between planar electron and bulk LO

cr„' (co)= —f dt e' '([j„(t),j„(0)]). (2.14)

3(u) =—'y pap+„ia
p, 1

(2.15)

In Eq. (2.13) the square brackets denote the commutator.
By this the current operator can be expressed as
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Calculation of the current-current correlations and the
conductivity in the three-dimensional case have been
worked out in much detail and are well documented.
We evaluate the conductivity treating electron-phonon
collision within the Born approximation (high-frequency
conductivity), however, treating the self-consistent field of
the fluctuating electron gas and phonons exactly in the
random-phase approximation. Under these approxima-
tions, we consider the class of diagrams of Figs. 1(a)—1(e).
Our expression includes the full dynamical screening of
the electron-phonon systems. The wavy line in Figs.
1(a)—1(e) is the effective interaction of an electron in lth
layer with an electron l'th layer which is determined by
following integral equation [Fig. 1(f))

ull (q, a )= Vll (q)+g Cl(q, q, )Cl'(q, q, )D&(a )

X

P+Q p+ Q~c" ( +-+.
n m

'c
P

e
P

~g ~o

(b)

g
P

'&c

g
P

Cal

(e)

am

X

(c)

C

P

where

and

am

+ g Cl(q q )Cl, (q q )Dq(a )

q , Il

&& Q (q, a )vl, l (q, a )

+g V(l, Q(q, a )ul l (q,a ),
Il

2 2

( )
7M q[l l' g

qe
'

=0, +l, +2, . . . .

(2.16)

(2.17)

(2.18)

+ ~ ~ ~ ~ ~ ~ ~ + + P+Q
Q a L' l'

Q C 2 Qa
P P+Q

~ ~ ~ ~

where

FIG. l. (a)—(e) The class of diagrams which contribute the
high-frequency conductivity (f). Effective interaction is shown.

In Eq. (2.16), Q, (q, a ) is the density fluctuation of 2D
electron gas which is independent of layer index given by

27M
Nil (q) = e

—q fI —I'fa
~o

(2.24)

Q(qa )=,f dp
4~2 Ep+q —Ep —a (2.19) Now the integral equation (2.23) can be solved by Fourier

transformation (note ull only depend on 1 —l'):
Here f~ is the Fermi distribution function,

exp(/3Ep —Pp ) + 1
(2.20)

ik (I —I')a
u(q, k„a ) =g vll (q, a )e

I'

We obtain

(2.25)

and D~(a ) is the free-phonon propagator,

Q)g

0.'m —CO g
(2.21)

~V(Sq, k, ) +t(tql, k) D( a)
u(q, k„a ) =

1 —Q(q, a )[VqS(q, k, )+P(q, k, )D(a )]

Since the momentum transfer q is of order of the Fermi
momentum which in turn is much smaller than lattice
momentum, we ignore entirely the dispersion of the pho-
nons and replace ~~ by coLo..

Dg(a )=D(a )=
O'm ~I O

(2.22)

Therefore, the summation over q, in Eq. (2.16) can be car-
ried out, and we obtain

vll (q a ) = VII (q) +Oil (q»(a )

+g p„(q)D(a )Q(q a )vl, l (q a
II

where

g(q, k, ) = S(q, k, )cvLo
2&e 1

and

sinh(qa)
cosh(qa) —cos (k,a)

Let us define a dielectric function

e(q, a ) = 1 —V&Q(q, a )S(q, k, )

6p

(2.26)

(2.27)

(2.28)

(2.29)
+g Vll Q(q, a )vl l(q, a ),

il
(2.23)

and the "true" phonon propagator
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D(a )
D(a )=

P(q k, )D(a )Q(q a )1—
e(q, a )

with the electron through a screened phonon-electron in-
teraction P(q, a )le(q, a ). After some algebra, our final
result for conductivity reads

coLo

cvLog(q k, )Q (q, a )
CX —coL()— e(qa )

(2.30)
o.(co) =o. (cv)+o'(cv) =cr (cv) 1 — I(—co)

where

(2.32)

Therefore,

V~S(q k, ) g(q k, )D(a )
v(qa )= +

e(q, a ) e(q, a )' (2.31)

Thus we express our effective interaction by two terms.
The first term is the screened Coulomb potential due to
the collective motion of the electrons. The second term
represents the renormalized phonon interaction at a vertex

a dk, g(qk, )
I(cv)= q dq

nmco 2~ V&S(q, k, )

P J dx coth2'

where

F (q, x,cv),

(2.33)

F(q,x,cv)=[D(x) D'x)] — +
E(q, x +co) e (q, x)

D(x +co)— D(x)
e(q, x)

D '(x)
e*(

q,
x')

, [D( ) —D "( )]+D( + )
VqS(q, k, ) e(q, x +cv) e(q, x)

D *(x)
e*(q,x)

2D(x +co) D(x)
e(q, x +co) e(q, x)

D "(x)
e*(q,x)

(2.33')

Here P stands for principal value and

f(x)~f(x+iri) (r)~0) . (2.34)

Equation (2.33) is the exact expression in which we have used the fact that Q depends only on absolute value of q and
that cr„(co)=5&~(cv) for isotropic system. This result is rather complicated, but in principle can be evaluated analytical-
ly or numerically for specific problem. The result is applicable both for classical and quantum plasmas for any tempera-
tures, where the average potential energy of interaction per particle should be less than the average kinetic energy.

III. RELAXATION TIME AND RESISTIVITY

The collision process is described by the real part of the conductivity as written in Eqs. (2.32) and (2.33). We see im-

mediately that the only absorption is from the electron-phonon scattering. The phonon propagator D plays an important
role in our result. The dispersion relation of the coupled plasmon —LO-phonon modes is given by the poles of D. By us-

ing Eqs. (2.27), (2.29), and cvzo ——e leocvLo, we may write D in the following form:

D(cv) = coLoe(q, cv)

2

(cv cubi o+i 5cv ) —(cv cv'ro+i 5—cv) Q (q, cv )S(q, k, )2 2 277e

QE

(3.1)

CO —COLO+ l 5CO

e(q, cv) =e
CO —Cggo+ l 5CO

Q(q, co)S(q, k, ) .

(3.2)

where cozo is the transverse-optical-phonon frequency.
Here 5 is the half width of the free phonon. We find
that the poles of the dressed phonon propagator are iden-
tical to the roots of the dielectric function given by

cr(co) =cr 1

I /cv1+
1 —I /co

(3.3)

The high-frequency limit is given by the condition

In our later numerical work we shall use Eq. (3.1) for
our calculation of F of Eq. (2.33'). Let us rewrite Eq.
(2.30) as
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0
o(co) = I ) (co ) +iI2(co)1+

(3.4)

~

I (cu)
~

&&co, and we thus obtain the approximate expres-
sion for the conductivity

and the relaxation time

'=Ip(co) . (3.7)

Here only linear corrections due to I& and I2 are retained.
However, using Eq. (3.3) we obtain for the general case
the result

o(co) = one

l
m e+—

7

(3.5)

We find the effective mass

Here I& and I2 are, respectively, the real and imaginary
parts of I(co). The relaxation time and effective mass are
related to conductivity by the Drude formula:

and

I2
I)1+

I2
1+

(co+I ( )

(3.8)

(3.9)

I, (co)m*=m 1+ (3.6) Using the analytical properties of Q, D, and the dielectric
function, respectively, we can write

1 3 ~dO Pf q dq f g(q, 6) Jdx c—oth —cothpx p(x +co) F(x, x +co),
conm —~ 2' 2 2 2

(3.10)

where O=ak, and

F(x, x +co)=F, (x, x +co) Fz(x, x +co)—,
with

(3.1 1)

2 1 1F, (x, x+co)= ImD(x)Im + ImD(x +co)Im
VqS q, k, ) e(x + cc) e(x) (3.12)

and

F2(x, x +co)= 20 q kz D(x +co) — D(x) — D(x) D(x +co)Im ImD x +Im ImD x+co —2Im Im
[VqS(q, k, )] e(x +co) e(x) e(x) e(x+~) (3.13)

The leading term at high frequencies is given by F&. F2 will contribute terms to the conductivity or absorption which
are smaller by a factor co with respect to those obtained from F&. We observe that F2 represents simultaneous excita-
tion of two phonon with a large shift in their energy which makes a small contribution to the conductivity at high fre
quencies. Even at frequencies co=coLQ our numerical calculations indicate that the contribution from F2 is still very
small. Therefore, we neglect the contributions from F2. Equation (3.10) with Eq. (3.12) is our general result for the ab-
sorption which includes the effect of finite lifetime of the phonons. It is apparent that instead of having a 6-function
behavior for ImD(x), we have here a Lorentzian-like shape. This amounts to an average of the electron density fluctua-
tion [Im(1/e)] over a range of frequencies of width

~

I
q ~

. For the purpose of the calculation we would like to use the
following dimensionless variables,

2 2 2 2

z =, 0=, X=, 6=, D'=4E~D, Q'= Q, F'=4E~ F,
2k~ 4E~

'
4E~ 4E~P

' qe„' qe„

where EF is the Fermi energy for electrons. By this we get

8' Q)LQ
2

1— f f z dzS(z, 8)—f dX coth
6O

X+A—coth 2e
F'(X, II+X) . (3.14)

For the case kT «E~, we can use the limit ( T~O) and get

87T coLQ
2

1— f f z dzS(z, O) f dXF'(X, II —X) . (3.15)
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(a)

75—

b 5.0
lZ

I6K

2.5

0 00

(b)

I.O

0
fl u)

4E

0 0.3

4E

0.6 0.9

FICs. 4. Plot of (a) Re(o) and (b) ~ ' as a function of normal-
ized frequency 0 for PbTe-Pbl „Sn Te. (a) n, =3.6)& 10' '

cm, &=0.01EF, and a =0.5)& 10 cm. (b) ns =7.6&(10''
cm, 6=0.01EF, and a =1.0&(10 cm. The w coordinate is
co/4EF, where EF is the value calculated by using n, =3.6& 10"
cm

FICz. 5. Plot of (a) Re(o. ) and (b) ~ ' as a function of normal-
ized frequency 0 for PbTe& Sn Te for three different tempera-
tures, where n, =3.6)& 10" cm, 6 =0.01EF, and
a =0.5)& 10 cm.

duced for the dressed phonon in comparison with the bare
phonon, just as has been reported for the bulk case. In
Fig. 3 we present our numerical results for the real part of
conductivity and inverse collision time for PbTe-
Pb& „Sn„Te, which is a strongly interacting electron-
phonon system. In this case, we found a large difference
in the real part of conductivity as well as in the inverse
collision time between the bare phonon scattering and the
dressed phonon scattering. For the case of strong
electron-phonon coupling the peak in real part of conduc-
tivity at low frequencies is due to the scattering from the
low-lying mode in the density fluctuation of the electron-
phonon system. In Fig. 4 the lower curve is obtained by
changing a ~2a, n ~2n (n la is a constant, i.e., the
volume density is fixed). Under this change both the real
part of conductivity and the inverse collision time are
greatly reduced due to the increasing in screening and de-
creasing in coupling between layers. In Fig. 5 we present

our numerical results for the real part of the conductivity
and the inverse collision time for PbTe-Pb& Sn Te with
the same parameters as in Fig. 3. Here, for finite
temperature, ~ ' is finite in the small frequency limit, and
the real part of the conductivity is greatly increased in
this regime. The physical parameters used in our calcula-
tion are the following: eo

I =]333.0, 6 =33.Q, coLQ

coLQ ——36meU, m ' ' =0.07m 0, where m o is the free-
electron mass.

In conclusion, we have calculated the high-frequency
conductivity of superlattice system with electron —LO-
phonon interaction. General result has been derived in
terms of integral and numerical computation has been
done for some typical parameters for type-I superlattices.
We note that our work can be easily generalized to calcu-
late, say, the collision frequency due to phonon of the
electron and the holes, respectively, for type-II superlat-
tices.
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