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Binding energies of excitons associated with several transitions between different subbands in un-

doped quantum wells are calculated for different well widths using a novel perturbational approach.
The degeneracy of the valence band, the nonparabolicity of the conduction band, and the matching
of the wave function at the interfaces are taken into account. The zeroth-order wave function is

taken to be the product of the envelope functions in the z direction (perpendicular to the layers) for
the electron and the hole and a purely two-dimensional (2D) exciton wave function. The difference
between the 2D and 3D interaction between the electron and the hole is included in a variational-

perturbational approach. The effect of the valence-band degeneracy on the properties of the holes is

described with the use of the 4&(4 Luttinger Hamiltonian. We include the off-diagonal elements of
this matrix in perturbation theory up to second order. This involves summations over the bound ex-

citon states and integrals over the continuum states, which are found to be important. These off-

diagonal elements in some cases modify the results considerably and improve the agreement with re-

cent experimental results.

I. INTRODUCTION

GaAs-Al„Ga& „As quantum wells have been extensive-
ly investigated by optical experiments during the last
years. In this system both the electrons and the holes are
largely confined to the GaAs layer. The optical spectra
are often dominated by excitonic transitions from hole
subbands below the bulk valence-band edge to electron
subbands above the conduction-band edge. For an accu-
rate interpretation of these experiments a good knowledge
of the exciton binding energies is essential.

Many calculations of exciton binding energies in quan-
tum wells have been performed in the last years. '

Most of these calculations' have treated the hole as a
particle with either the heavy-hole or the light-hole mass.
However, an accurate description of the exciton should
take the degeneracy of the valence band in the bulk into
account. While this only gives a small correction for bulk
excitons, ' it has been shown' ' that this has a large ef-
fect on the hole subband dispersion parallel to the layers.
These subbands are strongly nonparabolic and some sub-
bands even have maxima at k&0, i.e., they have electron-
like masses near k=0. The density of states is far from
the steplike function, which results from parabolic sub-
bands, and the k&0 maxima correspond to sharp peaks in
the density of states in the valence band and also in the
joint density of states. '

It should not be surprising that these strong anomalies
also can influence the exciton properties substantially.
The fourfold degeneracy (including spin) of the top of the
valence band is accurately described by a 4)&4 matrix,
usually called the Luttinger Hamiltonian. ' ' The main
purpose of this paper is to investigate the effect of the

off-diagonal elements of this matrix which couple the
heavy-hole and light-hole subbands. The split-off band is
in GaAs 0.34 eV below the valence-band edge' and is
therefore neglected.

Some variational calculations which include the cou-
pling between the hole subbands have recently been per-
formed. ' We have instead chosen a novel perturba-
tional approach, which directly displays the effect of the
off-diagonal elements in the Luttinger Hamiltonian. We
choose our zeroth-order wave function to be a product of
the envelope functions for the electron and the hole in the
z direction (perpendicular to the layers) and a purely two-
dimensional (2D) exciton. The difference between the
three-dimensional (3D) and 2D interaction between the
electron and the hole is treated using a variational-
perturbational approach. Finally the off-diagonal ele-
ments of the Luttinger Hamiltonian are included in per-
turbation theory up to second order. The effect of the
conduction-band nonparabolicity is also considered. Ex-
plicit expressions for the matrix elements are presented
and the numerical work is reduced to evaluating sums and
integrals and solving transcendental equations to find the
sublevels.

We describe the theory in Sec. II and present the results
in Sec. III. A comparison with experimental and other
theoretical results and a discussion follow in Sec. IV, the
conclusions are given in Sec. V, and some mathematical
details are given in the Appendix.

II. THEORY

We treat the exciton in the effective-mass approxima-
tion' ' and write the Hamiltonian
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Here 2b is the width of the well while b,E, (dF.„) is the
conduction- (valence-) band discontinuity at the GaAs-
Al Ga& „As interface for electrons and holes, respective-
ly. The last term in Eq. (1) describes the Coulomb in-
teraction between the electron and the hole with e being
the static dielectric constant. The exciton binding ener-
gies are given by the difference of the eigenvalues of the
Hamiltonian with and without this term.

Th(k) is the Luttinger matrix' which describes the
dispersion of the valence band. One convenient represen-
tation is

Here the first term is the kinetic energy of an electron
with effective mass m, while the second term, which will
be explained below, gives the kinetic energy of the hole.
The next two terms describe the confinement potentials
for the electron and the hole, respectively. We take them
to be finite square-well potentials:

off-diagonal elements also give important corrections to
the exciton binding energies.

We follow the effective-mass-theory prescription' ' '

and use this matrix to represent the kinetic energy of the
hole with the replacement k~ —i V. In the calculation of
bulk excitons the electron and hole coordinates are re-
placed by their relative coordinates and suitable coordi-
nates which describe the motion of the whole exciton. In
the present case the confinement potentials apply to the z
coordinate of the electron and the hole separately, not
their relative coordinate. Therefore it turns out to be con-
venient to keep the z coordinates z, and z& and introduce
their relative coordinates x and y [or p=(x +y )' and
/=tan '(y/x)] in the plane parallel to the interfaces.
We take K~~, which describes the motion of the whole ex-
citon in this plane, to be zero.

While the heavy-hole and light-hole bands are degen-
erate at k=0 in the bulk, this degeneracy is lifted in a
quantum well, where a set of heavy-hole levels and a set
of light-hole levels are formed. This lifting of the degen-
eracy is a strong effect, which hardly can be treated as a
perturbation. We have therefore included the confine-
ment of the electron and the hole in the zeroth-order
Hamiltonian. To make the perturbation treatment tract-
able we also include the Hamiltonian of a purely 2D exci-
ton in the zeroth-order Hamiltonian. The total Hamil-
tonian is rewritten

Tp, (k) =
C

0

—B (4)
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The valence-band structure is thus described by three
material parameters r], r2, and r3, which are related to
inverse effective masses. The heavy-hole mass in the k,
direction is given by mh ——(y, —2y2) ' (in units of the
free-electron mass, mp, which we henceforth set equal to
one) while the light-hole mass is m~=(y~+2y2) '. In
some earlier calculations of excitons in quantum
wells' ' ' the coefficients along the diagonal in Eq. (4) in
front of k„+ky have been interpreted as "transverse
masses. " This implies that the "light-hole" mass,
(y~ —y2) ', becomes heavier than the "heavy-hole" mass,
(y~+y2) '. Ignoring the off-diagonal elements of the
matrix (4) in this way simplifies the exciton calculation
considerably, but it is dubious. The coupling between the
hole subbands influences the subband dispersion in a 2D
system strongly' ' and it will be shown below that these

and
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In Eqs. (10) and (11) the upper (lower) sign corresponds
to heavy-hole (light-hole) excitons. The first three terms
in Eq. (8) are included in the zeroth-order Hamiltonian.
The zeroth-order wave function is separable and can be
written

40=to(z )0o(zh 4'o (p 4') (16)

We have added and subtracted the term A, e /ep, which
corresponds to the component of the electron-hole interac-
tion in the x-y plane. This idea was introduced by Lee,
Mei, and Liu' and subsequently used by Jiang in solving
the exciton problem. If we treated the term HI exactly,
the total energy should not depend on the choice of the
parameter A, , which only determines how the energy is di-
vided between Ho and HI. We can therefore choose A. to
minimize the expectation value of HI. We make the ap-
proximation to treat HI in first-order perturbation theory
only. We can always choose (HI ) to be zero. Physically
this means that the effective potential

I'(V) = —f J d&.d&~ [0o(&.)]'[Po«i )]'
2

X
[ 2+ ( )2] 1 /2 (17)

used by various authors ' ' ' is replaced by a 2D poten-
tial, which is scaled down so that the expectation values
of the two potentials are equal.

In this way the matrix elements of H2, the off-diagonal
elements of the Luttinger Hamiltonian, can be performed
analytically. It is seen from parity considerations that the
first-order contribution from H2 vanishes. We must
therefore resort to second-order perturbation theory and
evaluate the matrix elements between the state we want to
calculate and all other eigenstates of Ho. The reason why
H2 is treated as a perturbation is that it contains y2 and

p3 which are one order of magnitude smaller than the
coefficients of the diagonal terms, which contain
m +y] —22.

The envelope wave functions $0 and Po are easily ob-
tained. They can be divided into two groups with even
and odd parity, respectively. We apply the usual
boundary conditions that the envelope function and its
derivative divided by the effective mass should be con-
tinuous across the interfaces. This leads to simple tran-
scendental equations from which the energies are obtained
numerically. Ho"'(p) is equivalent to the Hamiltonian for
a 2D hydrogen atom. The 2D exciton problem has been
treated by Ralph ' and by Shinada and Sugano and the
analytic solutions for both bound states and continuum
states have been given in Ref. 22.

The first term of the matrix element of HI is easily
evaluated. For the second term the p integral can be per-
formed analytically. The result can be expressed in terms
of Struve and Neumann functions. We have, however,
evaluated the whole triple integral numerically.

To evaluate the second-order correction we are to sum
over bound states and integrate over continuum states. It
can be seen from Eq. (13) that the heavy-hole states al-
ways couple to light-hole states and not to other heavy-
hole states. From parity considerations it is clear that the
sum over matrix elements of the term B [Eq. (14)] is over

III. RESULTS

If the GaAs layers are not very thin, there are several
electron subbands above the bulk conduction-band edge,
which we label En, n =1,2, 3, . . . . Similarly we have
heavy-hole subbands H n and light-hole subbands Ln
below the bulk valence-band edge. The strongest peaks in
the optical spectra usually follow the selection rule An =0.
However, transitions with b,n&0 have also been ob-
served and theoretically explained in terms of mixing of
heavy-hole and light-hole character of the hole subbands
for finite values of the wave vector parallel to the layers.
For each transition between a hole subband and an elec-
tron subband the exciton binding energy Ez is in general
different.

The input parameters are given in Table I. For
Al„Gai As we use linear interpolation between the pa-
rameters for GaAs and A1As. The valence-band discon-
tinuity is taken to be 35% of the band-gap difference be-
tween GaAs and Al Ga] As, for which we use the ex-
pression 1.247x eV (Ref. 27).

In Fig. 1 we show the Is (ground-state) exciton binding
energies as a function of GaAs well width for the transi-
tions H1~E1 and L1~E1, which are usually the most
prominent features in the optical spectra. The barriers are
here taken to consist of Alo 4Gao 6As. It is seen that Ez is
enhanced by a factor of 2—3 over the bulk value 4.4 meV

TABLE I. Parameters used in the calculations. From Ref.
26.

Electron mass m,
Valence-band parameters: y l

y2

Dielectric constant

GaAs

0.0665
6.85
2.1

2.9
12.56

A1As

0.15
3.45
0.68
1.29

(not used}

quantum-well states of the opposite parity while for the
C-term we have to sum over states with the same parity.
The matrix elements can be separated into integrals over
z„z~, and p. The p integrals can be performed analyti-
cally both for bound states and continuum states although
the evaluation is quite laborious. The mathematical de-
tails are found in the Appendix. In some cases we have to
integrate over energies of continuum states which coincide
with the state whose energy we want to compute. In order
to simulate the lifetime broadening of these exciton states
we have added a small imaginary part to the energy
denominator in the second-order perturbation expression.
The effect of these Fano resonances will be investigated
in more detail later.

The z integrals are also evaluated analytically. In addi-
tion to summing over the bound quantum-well states we
should integrate over the continuum states. For normali-
zation purposes we apply the boundary conditions that the
continuum wave functions vanish at +L, where L is
chosen to be much larger than the well width (cf. Ref. 24).
This implies that we actually sum over a large number of
densely spaced states. If L is large enough it turns out
that the results are quite insensitive to L.
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expression for the electron mass was derived by Kol-
bas. ' It is actually an optical mass derived from a
three-band Kane model ' ' evaluated at 77 K. An accu-
rate expression for the bulk conduction-band dispersion at
T=O was recently derived by Braun and Rossler using a
five-band (14-band if the degeneracies at k=0 are includ-
ed) k.p theory:

E(k)= k~+aok4+po(k„k»+k»k, +k, k„)
2m

+y, [k '(k„'k,'+ k,'k,'+ k,'k„') —9k„'k,'k,']'",
(18)

where m =0.0665m o, eo ———1.969 & 10 eV cm,
po ———2.306&& 10 eV cm and yo ———2. 8)& 10
eV cm for GaAs. The last term represents the spin split-
ting and vanishes in the [001] and [111)directions. The
expression for the dispersion in the [001] direction can be
rewritten

WkE(k) =
2m

,

haik

1 —a'
2m

(19)

50 100

Well width (A}

150 200
where a'=0.60 eV '. lf we invert Eq. (19) we find to
lowest order

FICx. 1. Exciton binding energy versus width of the GaAs
well for transitions from heavy-hole level 1 (Hl) and light-hole
level 1 (L1) to electron level 1 (E1). The dashed lines are the re-
sult without Hz [the off-diagonal elements in the matrix (4)]
while the dashed-dotted lines are with Hz included in second-
order perturbation theory. The solid lines show the effect when
the conduction-band nonparabolicity according to Eq. (20) is in-

cluded in addition to Hz, while the dotted lines show the effect
when Eq. (21) is used to define the effective mass for motion
parallel to the layers. The barriers consist of Alo 4Csa06As.

(Ref. 13) and that it increases with decreasing well width
down to about 60 A. In the limit b —+0 it should decrease
again towards the value for bulk Alo 4Gao 6As. However,
for very thin layers the use of the effective-mass approxi-
mation is dubious and we have therefore not included any
results for well widths smaller than 60 A.

We have separately shown the result with and without
the off-diagonal elements in the Luttinger Hamiltonian
[Hq in Eq. (13)] included. We see that these elements
have a clear effect and enhance the H1~E1 and L1~E1
binding energies by about 1 and 2 meV, respectively. This
enhancement increases somewhat with decreasing well
width. The fact that Ez for the L1~E1 transition is par-
ticularly strongly enhanced is thought to be related to the
anomalous dispersion of the L1 subband. ' In fact, all
the binding energies of excitons related to L1 and H3,
which also has anomalous dispersion, are strongly
enhanced.

For relatively thin wells the subbands are fairly far
from the bulk band edge and the use of a parabolic disper-
sion becomes inaccurate. A convenient way to include the
effect of band nonparabolicity is to express it in terms of
an energy-dependent effective mass. A commonly used

fi k =2Em (1+a'E), (20)

where m*=m (1+a'E) can be taken as an energy-
dependent effective mass. It is not difficult to insert
this expression into the transcendental equations (A5),
which give the subband energies E;. The simplest approx-
imation is to use the corresponding effective masses m;*
also for the effective Bohr radius of the 2D exciton in Eq.
(A14b). These results are given by the solid line in Fig. 1.
A better approximation is to neglect the spin-splitting,
take the solution of Eqs. (A5) with Eq. (20) (for k~~

——0) as
the zeroth-order wave function and treat the mixed term
in Eq. (18) (2ap+Po)k (k +k») in first-order Perturba-
tion theory. Nonparabolicity effects in Al„Ga~ „As are
ignored. Then the coefficient in front of the (k„+k») be-
comes

k b+ ,' tk sin(2kb)—
2' +(2ao+Po)

t sin(2kb) 1+t cos(2kb)
2k 2s

(21)

where s =[2m&(V —E)]' /R, t =+1 (t = —1) for states
with even (odd) parity and k is given by Eq. (20). ( V is
here the conduction-band discontinuity and mz is the ef-
fective mass in Al„Ga~ „As.) This expression can be
used to define an energy-dependent effective mass for the
motion parallel to the layers. If this mass is used in Eq.
(A14b) for the 2D exciton, the nonparabolicity effects are
much stronger, as is shown by the dotted line in Fig. 1.

Recent experiments indeed indicate that the nonpara-
bolicity can be quite different for motion perpendicular to
and parallel to the quantum well and that it can be much
stronger than the bulk value in the latter case. The bulk
heavy-hole band is parabolic to a good approximation.
But the nonparabolicity of the light-hole subband should
also be considered in a more accurate treatment. An
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TABLE II. Exciton binding energies in meV for several transitions from heavy-hole (Hn) and light-
hole (Ln) levels to electron levels (En). The result without inclusion of H2 is given in parentheses. The
well width is 150 A and the barriers consist of Alo4Ga06As. The levels E4, H6, H7, and L4 are also
bound but the results are not included here for reasons discussed in the text.

Hole levels

H1
H2
H3
H4
H5

E1

7.5 (6.8)
9.4 (6.0)
8.6 (6.0)
8.4 (5.9)
8.0 (5.9)

Electron levels
E2

6.4 (5.8)
9.2 (5.8)
8.2 (5.6)
7.9 (5.6)
7.6 (5.6)

E3

6.3 (5.8)
8.9 (5.5)
8.1 (5.6)
7.8 (5.5)
7.5 (5.5)

L1
L2
L3

9.1 (7.4)
3.9 (6.3)
3.9 (6.1)

7.8 (6.4)
3.9 (6.3)
3.7 (5.9)

7.7 (6.3)
3.7 (6.0)
3.7 (5.9)

energy-dependent effective light-hole mass can for
example be derived from the work of Schuurmans and
't Hooft.

In Table II we give the exciton binding energies for dif-
ferent transitions and fixed well size. For transitions
from a given hole level Ez becomes somewhat smaller for
excited electron levels than for the ground state. This ef-
fect is not difficult to explain qualitatively: the higher
electron states correspond to wave functions which
penetrate more into the barriers. The electrons are there-
fore less confined to the GaAs well and the overlap with
the hole wave function is smaller. The differences in Ez
are small between the different excited electron states and
the trends seen in Table II are sometimes changed when
the effect of conduction-band nonparabolicity is included.

We see a similar trend for transitions from different
hole levels to a given electron level if H2 in Eq. (13) is
neglected. But the effect of H2 is quite different for dif-
ferent transitions and overshadows this trend. For most
transitions the exciton binding energy is enhanced by an
amount which depends on the position of the other hole
subbands with which the hole subband of interest is cou-
pled. For transitions from some hole levels (e.g. , L2 and
L3 in Table II) H2 gives a negative correction because of
the interaction with more strongly bound heavy-hole
states. It should be noted that the levels L1 and H2 are
very close to each other for the parameters we have used.
The results for excitons involving these levels could be
significantly different if, e.g. , other valence-band parame-
ters were used.

Concerning the contribution of the different types of
second-order terms to Eii the matrix elements of 8 [Eq.
(14)] are generally much larger than those of C [Eq. (15)].
Thus heavy-hole states are more strongly coupled to the
light-hole states of the opposite parity than to those of the
same parity. There is, e.g., strong coupling between L1
and H2. This is of importance of the oscillator strengths
of normally "forbidden" transitions. The H2 p state
[m=1 in Eq. (A13)] can, e.g. , gain oscillator strength
from the L1 s state. ' A double peak for the H2~E1 ex-
citonic transition has recently been observed in experi-
ments with an electric field perpendicular to the layers.
These peaks can possibly be due to 1s and 2p excitons.

It is interesting that the continuum exciton states usual-

ly give a larger contribution than the bound states. The
continuum states of the quantum well give a negligible
contribution to Ez for the lowest hole states. But the
contribution is more than a meV for transitions from
some excited hole states, e.g., H4 and H5 for a well width
of 150 A (Table II).

IV. DISCUSSION

The results of this calculation are thought to be most
reliable for intermediate layer thicknesses. As was men-
tioned above the effective-mass approximation becomes
inaccurate for very thin layers. Then the energy levels are
also fairly far from the bulk band edges and the nonpara-
bolicity is stronger. It is then also dubious to use GaAs
parameters for the purely 2D exciton since they ought to
be influenced by the Al„Ga& As parameters for states
with wave functions penetrating substantially into the bar-
riers. On the other hand, the zeroth-order Hamiltonian
contains a pure 2D electron-hole interaction. Although
the correct 3D interaction is included as a perturbation,
the matrix elements of Hz are evaluated with this 2D po-
tential and the results can be expected to be less accurate
when the GaAs layer becomes thick and the 3D limit is
approached. An analogy with the two variational func-
tions used in Ref. 2 suggests that our results should be re-
liable up to a well width of about 200 A.

The calculations would have been simplified if the bar-
riers were taken to be infinite. We have also done such
calculations and found that Ez is then much more
enhanced by H2. This is especially true for transitions
from the levels L1 and H3.

An alternative approach would be to include the terms
+y2(k„+k~) along the diagonal in Eq. (4) in first- and
second-order perturbation theory instead of including
them in the zeroth-order Hamiltonian. This approach
would be more similar to that for bulk excitons by Bal-
dereschi and Lipari. ' We have found that this gives Ez
values which usually only differ from the results present-
ed here by a few tenths of a meV.

It is not trivial to measure Ez experimentally with high
accuracy. Comparing the exciton peaks with the calculat-
ed subband energies is an uncertain method since the po-
sition of a subband is quite sensitive to the layer width 2b.
(For an infinite well E a:b 2. ) Some early experiments'
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TABLE III. Comparison with experimental results.

Well width

(A) Hole level Reference
E

(meV)
Our result'

(meV)

75

92

112
75

110

0.4

0.35

0.29

0.3
0.35

0.35

H1
L1
H1
Ll
H1
L1
H1
H1

L1
H1

39

40

41
42

10.5—11.5
11.3—12.3
9.5—10.5

11.2—12.2b

13
10
12
12'
10

9.5'
8
9d

94
11.4
8.8

10.9
8.5

10.2
8.2
9.3
9.3

11.0
8.4
8.4
9.9

'Without conduction-band nonparabolicity.
The limits correspond to an estimate 1—2 meV for the binding energy of the 2s exciton, which here is

added to the experimentally determined difference between the 1s and 2s exciton.
'High-field extrapolation (see text).
Low-field extrapolation.

assigned a weak shoulder to a 2s exciton state, but this
can also be interpreted as the onset of the continuum
states. The estimated 1s binding energy is higher than in
our calculation if we use the former interpretation but
lower if we use the latter. Dawson et al. have recently
observed a clearly resolved peak, which is interpreted as a
2s exciton. It is straightforward to calculate Ett for 2s
excitons with the present method, but we have not done
this yet. It can be estimated to be 1—2 rneV. As is shown
in Table III adding this to the experimentally determined
E~( ls) Ez(2s) tend—s to give higher values than obtained
in this calculation. For the H1~E1 transition the mea-
sured E~( ls) E~(2s) actu—ally rather agrees with the cal-
culated Ett( ls).

Several attempts to determine E& have been made using
magneto-optical experiments. In Refs. 40 and 41 ex-
trapolations to B=O from high magnetic fields were done.
This usually resulted in much higher exciton binding ener-
gies than obtained in this calculation. Recent results
also include extrapolations from lower magnetic fields.
These results are expected to be more reliable and also
give clearly lower Ez values. As is seen in Table III the
agreement between these results and our calculation is
quite good, seldom in disagreement by more than 1 meV.
Actually, a more recent fit of the high-field results with
nonparabolicity effects taken more carefully into account
gives quite good agreement with the low-field results.
More experiments are desirable to determine the accuracy
of the different calculations.

Many calculations ignoring H2 but taking the depth of
the wells to be finite have been performed. ' The re-
sults of these calculations usually differ from each other
by a few tenths of a meV. Brum and Bastard have also
calculated E~ for transitions between higher subbands.
Our results without Hz agree fairly well with theirs for all
transitions and are typically some tenths of a meV small-
er.

If we compare our results with the variational calcula-
tions where the coupling between heavy and light holes

has been included, ' we find a good agreement with the
calculations by Chan' and by Bauer and Ando' while
Sanders and Chang and Broido and Sham" find exciton
binding energies more strongly enhanced. The reason for
the disagreement with Ref. 11 is possibly that the
Coulomb interaction is evaluated for an infinite quantum
well of a somewhat larger width than the actual width. In
the parabolic approximation this gives higher Ez values
than in comparable variational calculations. The reason
for the discrepancy between our calculation and Ref. 9 is
not quite clear. Since the perturbation in some cases is
quite substantial it is conceivable that our perturbation
approach in these cases is insufficient and that higher-
order terms may be important.

V. CONCLUSIONS

We have calculated exciton binding energies for transi-
tions between several hole and electron subbands in GaAs
quantum wells between Al Ga& As layers. The main
purpose of the calculation has been to evaluate the effect
of the off-diagonal elements of the hole Hamiltonian, '

which are related to the degeneracy of the bulk valence
band. We have found that they give important correc-
tions, which are different for transitions involving dif-
ferent hole subbands and seem to be related to the disper-
sion parallel to the interfaces for these hole subbands.
The exciton binding energies for the transitions H1~E1
and L1~E1 are enhanced by about 1 and 2 rneV, respec-
tively, by the off-diagonal elements for typical well sizes.
Our results agree quite well with some of the recent exper-
irnents ' and theories. ' '

Note added in proof Our results agr. ee well with some
recent experiments by A. Petrou, G. Waytena, X. Liu, J.
Ralston, and Ci. Wicks [Phys. Rev. B 34, 7436 (1986)].
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APPENDIX. EVALUATION OF SECOND-ORDER
MATRIX ELEMENTS

The eigenfunctions of the zeroth-order Hamiltonian can
be written

Iij ln, m)= Ii) I j) Il) In, m), (A 1)

where
I
i ) are the column vectors (5~;,5q;, 53;,54;), Ij )

are the eigenfunctions of Ho,
I

l ) are the eigenfunctions
of Ho, and

I
n, m ) are the eigenfunctions of Ho"'. For

continuum states n is replaced by the continuous variable
k. If we first consider the second-order perturbation
correction for the ground state of the heavy-hole exciton
we find for the exciton associated with the transition from
heavy-hole level J to electron level L

I
(i,j,l, n, m

I
Hz

I
1,J,L,O, O)

I

~

bE(JL)=
i =1 j,n, l, m 1JL 00 ij lnm j, l, m

I (ij, l, k, m
I
H2

I
1,J,L, O, O)

Idk
E]JL00 Eij lkm

(A2)

It is easily verified from Eq. (13) that the sum over i gives coupling with light-hole states (i=2,3). The sum over 1

gives a factor 6lL since the electron wave functions in the z direction are orthonormal. We thus find

b E(J)=
J,n, m

I (j,n, m
I

B*
I
J,o,o) I I (j,n, m

I

C*
I
J,O, O)

I+
EJ00—Ejnm EJ00 Ejnm

+ + 1&j l, m
I

C*IJ,o,o) I'
EJOO —Ejkm EJOQ —Ejkm

j,n, m

I
Itj'

I

'
I
L

+
EJOO —Ejnm EJOO —Ej nm

+y Jdk
EJOO Ejkm EJOO Ejkm

(A3)

where we have defined

J„=M3y, n, m 3-t' 0,0),QQ. a . a
ax ay

and

(A4a)

(A4b)

Ul ]S
tan( qb) =

m2q

for even-parity states and

m&s
cot(qb) =—

1712q

for odd-parity states, where

A'q =+2m, E

(A5a)

(Asb)

(A6a)

a' a' a'
Ln = n, m y'2

2
—

z +2i /3 a
0,0

2 ax ax ay fis =+2m2(V E) . — (A6b)

(A4d)

(We have here set mo ——4= 1. ) The bound quantum-
well eigenfunctions of Ho (and Ho) can be divided into
even-parity solutions and odd-parity solutions. We use
the common boundary conditions with continuity of the
envelope function P(z) and (I/m)dg/dz. This leads to
the transcendental equation

V is the height of the potential barrier, m I is the effec-
tive mass in GaAs for the electron (m, ), for the heavy
hole [mt, = ( y &

—2y2) '], or for the light hole
[mt=(y, +2y2) '], and mz is the corresponding quanti-
ty in Al Ga] As. The energy solutions Ej are obtained
by solving the Eqs. (A5) numerically and insertion into
Eqs. (A6) gives the corresponding q~ and s~. . We find

tqJsi n[(qJ —qj )b]

qJ —qj

qJsin[qj +qt )b] sJ [ sin[ (qJ +qj )b] —t sin[ (qJ —qj )b] I

q. +qj SJ+Sj
(A7)

sin[(qJ —qt)b] t sin[(qJ+qj )b] cos[(qJ —qi)b]+t cos.[(qJ+q )b]
EJ =AJAj + +

qJ+qj SJ +Sj
(A8)
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where the 3 ' are normalization constants in the
quantum-well region given by

—1/2
t sin(2qb) 1+t cos(2qb)b+

r

Here t = +1 should be chosen if the state J has even
parity, and t = —1 if it has odd parity. Note that expres-
sion (A8) is different from 5JJ because qJ belongs to the
heavy-hole function while the qj belong to light-hole
functions. It is clear from parity considerations that
Ij 0 if j and J have the same parity while Ej ——0 if they
have opposite parities.

For the continuum quantum-well states (E & V) we use
the additional boundary conditions $~0 as z =+L,
where L »b. In a similar way we find that the energies
are obtained from

for the even-parity states and

m&p
cot(qb) = — cot[p(L —b)]

m2q
(A lob)

for the odd-parity states. Here

A'p =[2m'(E —V)]' (Al 1)

SJ+Sj

sI —p~.cot [p~.(L —b ) ]
2 2sJ +pj

(A12a)

and q is given by (A6a). The matrix elements between a
bound state characterized by qJ and SJ and a continuum
state by qj and pj are the satne as (A7) and (A8) if we
only make the replacement

m)p
tan(qb) = cot[p (L —b)]

m2q
(A10a) and use the normalization constant

t sin(2qb) 1+t cos(2qb)b+ L —b

sin [p(L —b)]

—1/2
cot[p (L —b) ] (A12b)

for the continuum state. In the matrix elements between
bound and continuum states we have omitted a term pro-
portional to exp[ —sJ(L —b)], which is negligible for the
cases we consider. The boundary conditions at +L imply
that we sum over a quasicontinuum of densely spaced
states instead of integrating over true continuum states.
The number of states up to a cutoff energy E,„ increases
with L, but, as is seen in Eq. (A12b), the normalization
constant decreases with L. The contribution to the exci-
ton binding energy turns out to be insensitive to L if we
choose the width of the outer well 2L of the order 1000
A.

We next consider the bound states of Hp . The eigen-
functions were given by Shinada and Sugano and can in
our case been written

eter introduced in Eqs. (11) and (12). The energies are
given by

pA. e
n =0, 1,2, . . . .

2A' e (n+ —,
'

)

(A15)

The absolute value of the quantum number m is (n.
States with

~

m
~

=0, 1,2, . . . can be denoted s, p, and d
states, etc. ' When the operator 8/Bx +i 0/By operates
on the ground-state wave function it gives a factor
exp(ip) The lI} in. tegral gives 2vr5

&
and thus the only

nonzero term in the sum over m [Eq. (A3)] comes from
m =1. The integral over p gives the result

J„t = —y3 [3(2n + 1)(n + 1)n] '~pp 163

2 1

a(n+ —') (2lm
~

)!
r

X
(n+ ~m ~)!

(n —
~

m
~

)!(2n+1)

1/2

X
[(2n + 1)/3 —1]"
[(2n +1)P+1]"+

where we have used the relations

f e "t' 'F(b, d, kt)dt =1 (c)s 'F(b, c,d, k/s)

(A16)

(A17)

Xe t' p !F( fm
/

—n2/!m [+1p)
and

F(b,c,c,z) =(1—z) (A18)

where

1
X ~e (A13)

2pP= 'P

a(n+ —, )

(A14a)

eAa= (A14b)
pke

and F(b,c,z) is the confluent hypergeometric function.
For heavy-hole states p ' =m, '+ y ~+ y2 while

p '=m, '+y~ —y2 for light-hole states. k is the param-

[yq(k„—ky)+ 2iy3k„kY]= (y k+ —pk ),3'

where we have introduced

(A19)

Here F(b, c,d, z) is the hypergeometric function and
P=A/a, where a is the effective Bohr radius for the
heavy hole [see Eq. (A14b)] and A is that for the light
hole.

The most laborious part of the calculation is the evalua-
tion of the matrix elements L„.The operator C' is first
rewritten
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(A20a) wherer =(r3+r»/»
V=(r3 r2)/2 (A20b)

and

(A20c)k+ ——k +i' .

When (8/Ox+i 8/By) operates on the ground state we
obtain a factor exp(+2ig) T.hus the only contribution
from the sum over m comes from m = +2 and since the
radial wave function only depends on

I
m

I

we can write

1„=(n, 2
I
k+

I
0,0) = (n, —2

I

k
I
0,0) .

We similarly define

&k ——(k, 2
I
k+

I
0,0) .

Using Eq. (A17) we obtain

16 (n +2)!
3a 2[(2n + 1)p+ 1]3 (n —2)!(2n + 1)

(A22a)

(A22b)

2
v3+ n, —2 — pk QQ

= —'(y'+v')
I
i„

I

'=
8 (y2+r3)

I

3P(2n + 1) 2
(2n +1)p+1 ' ' '

(2n +1)p+1

+F 2 n, 3—, 5,
2''' 2n+1 +1 (A23)

(A21)
The hypergeometric functions are evaluated below. We

first turn to the continuum states, which can be written

exc
4k P 4 —

(2I I),

m
/

2k + [(j——,
' )'+a']

—27TCX

1/2

(2kp) e '"l'F(
I

m
I
+ —,

' +ia, 2
I

m
I
+1,2ikp) e'

277
(A24)

where

a=(kA) (A25a)
8k a

3(2+ika )

2k(a + —,
' )(a + —', )

] + —27TQ

and

2E
( I /m, )+r l

—y2

X . F 5/2+ia 45,6 2ika
2+ ika ' 2+ika

For m=0 the product in Eq. (A24) is replaced by one.
In a way similar to the derivation for the bound states we
find

+ F 5/2+i&x, 3,5,
2ika

' 2+ika
(A27)

In both Eqs. (A23) and (A27) the combination of hyper-
geometric functions is of the form

oo 16kakl= —
y3(4 k2 2)3/2

6k(a + —, )
1/2

—2&(x
G(y, z) =3(1 z/2)F(y, 4, 5,z—)+F(y, 3,5,z) .

Repeated use of the relation

(A28)

and

ka
Xexp —2a tan

2
A26) ( a P)zF (a,P, y—+ l,z)

=yF(a —l,p, y, z) —yF(a, p l, y, z) (A29)—

and Eq. (A18) gives

G (y,z) = —12 2y —5 (y —3)(y —2)(y —1)+
Z3 2

(2y —5)(y —2)(y —1)
2z

We finally obtain

(2y —5)(y —1)+ 2
Z

2y —5

Z3
[(y —4)(y —3)(y —2)(y —1)] . (A30)
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l„= 8 (n —2)!
a2 (n+2)!(2n +1)

1/2
2n +12n+1 —I(2n+1) (p+1)p +(2n +2n —1)[(2n+1) p+1]I

[(Zn +1)p+1]"+'

(A31)

for the bound states while the result for the continuum states becomes

8 2k
k a (a +1/4)(a +9/4)(1+e )

]. /2

p 1 [4p
—3 (k2 2 8)p

—2+(3k2a 2+ 8)p
—1 3k 4 4/4]

ka
exp —2a tan

2

(4+k a )
(A32)

In the sum over n the first few terms clearly dominate and we have found it sufficient to sum over ten states. The in-
tegral over k is performed numerically with the use of a 96-point Gaussian integration routine.

The perturbation of the light-hole states can be obtained from the results above if only the effective Bohr radii a and
A are suitably redefined. This amounts to replacing y2 by —y2 in the final results.
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