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We discuss the many-body aspects of the optical spectra of doped semiconductors, for both bulk
and low-dimensional systems. At low doping concentrations the spectra are dominated by excitonic
effects, consistent with the single-particle band structure of these systems. With increasing doping
atomic excitons lose their identity and eventually unbind, while the spectral weight moves continu-
ously to the Fermi level. Depending on the electron-mass to hole-mass ratio, the spectra display a
broadened singularity as well as Auger-like indirect transitions. We calculate the onset of absorp-
tion in this regime to second order in the effective interaction. We stress that a calculation of the
spectra near the Fermi level is outside the scope of conventional perturbation theory and we com-
ment on the validity of various previously proposed calculational schemes. We conclude by discuss-
ing the problem in terms of Fadeev-like equations, which describe up to three-particle correlations

exactly.

I. INTRODUCTION

In recent years, there has been renewed interest in the
properties of one-component Coulomb systems in doped
semiconductors. The main motivation for this interest is
the increased ability of modern crystal-growth techniques
to fabricate artificial structures, which (i) are of great
technological importance, and (ii) provide controlled envi-
ronments for studying conceptual aspects of quantum
mechanics and many-body physics. Our work was
motivated by luminescence experiments on optically
pumped modulation-doped GaAs-Al,Ga;_,As quantum
wells (QW).! In these structures the carriers are spatially
separated from the dopants, so that impurity scattering is
minimized and the systems provide clean realizations of a
(quasi-) two-dimensional Fermi gas, in which many-body
effects can be more easily identified than in the bulk.

In a previous publication we gave a unified picture of
optical processes in doped QW with particular attention
paid to polarization anomalies observed in luminescence
excitation spectra.! The main thesis of that work was that
in doped semiconductors, and especially in doped QW, the
collective behavior associated with the response of the
Fermi sea in the course of excitation and emission pro-
cesses is all important in determining the main features of
the optical spectra. Similar conclusions have been drawn
from recent luminescence experiments performed on QW
waveguides.? (Observations of related effects have also
been discussed in the context of highly excited semicon-
ductors.?)

In the present article, we repeat in an extended form
part of the discussion of Ref. 1 and we carry out the de-
tailed calculation of Auger-like indirect optical transi-
tions. As in Ref. 1, we stress that away from the indirect
threshold, conventional perturbation theory fails and one
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must appeal to new techniques. We argue that a calcula-
tion of the full spectra requires at least the solution of the
three-particle problem as described by the Fadeev equa-
tions.* Our discussion is, unless specified, independent of
the dimensionality.

II. THE “RIGID” FERMI-SEA PICTURE

In the limit of small (or no) doping, the optical spectra
of semiconductors close to the band gap display the usual
atomic excitons—bound states of electrons and holes in
the gap which form as a result of the attractive Coulomb
interaction. The symmetry of these states is determined
by the single-particle band structure of the system. With
increasing doping concentration many-particle interac-
tions lead to various effects on the spectra, which can be
separated into static and dynamic ones.

We begin by considering the conventional “rigid”
Fermi-sea picture in which the Fermi sea is not allowed to
respond dynamically to the appearance or disappearance
of the hole in the course of an optical transition. (For
simplicity, throughout this paper we limit ourselves to n-
type semiconductors, unless otherwise specified.) In this
limit the many-body effects show up (i) as a static renor-
malization of the single-particle states and of the
electron-hole interaction (static screening), and (ii) as a
blocking of the available phase space as a result of the
Pauli principle. Exchange and (static) correlation effects
lead to a red shift of the band gap and, due to the partial
cancellation of self-energy and vertex corrections, to a
much weaker change in the absolute position of the exci-
ton, resulting in a lowering of the exciton binding energy.
Physically, this cancellation is a result of the charge neu-
trality of atomic excitons. When the doping concentra-
tion exceeds a critical value (the Mott density), the renor-
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malized band gap falls below the exciton level so that
atomic bound states are no longer stable.

It is worth mentioning that in one and two dimensions
the main mechanism for the unbinding of atomic excitons
(to be distinguished from the so-called ‘“Mahan
excitons”’—see below) is different from that in three. In
three dimensions the existence of a bound state requires a
finite attractive interaction and the unbinding can be ex-
plained in terms of screening only, resulting in the well-
known Mott criterion kay~1, where « is the inverse
screening length and a( is the exciton Bohr radius. In
contrast, in one and two dimensions such a criterion is
rather meaningless since bound states occur for infini-
tesimal attractive interactions, and, moreover, the fluctua-
tion effects invalidate the concept of random-phase-
approximation (RPA) -type screening [in two dimensions
(2D) this has been discussed in Ref. 5]. The unbinding of
the exciton is, in this case, mainly a consequence of the
blocking of the states available for binding, leading to the
low-temperature criterion kpag~ 1, where kr is the Fermi
wave number. Note that this picture already explains
some of the phenomena observed in QW. We are refer-
ring to the fact that at temperatures T < ey (e is the Fer-
mi energy), in n-type samples the n =1 hh (heavy hole)
and /h (light hole) atomic excitons disappear at approxi-
mately the same density, while in the p-type case the
n =1 hh exciton unbinds first. Similar conclusions can
be drawn from the behavior of the n =2 hh exciton.®

Even though atomic bound states are no longer stable,
within the “rigid Fermi-sea” picture a bound state with
respect to the Fermi level still exists. This state was first
discussed by Mahan’ and we shall refer to it as the
“Mahan exciton.” Formally, it is equivalently to loosely
bound Cooper pairs in superconductors. As already noted
by Mahan, such a bound state in the continuum must
eventually shift and broaden as a result of interactions
with particle-hole excitations of the Fermi sea. However,
to accomplish this “unbinding of the Mahan exciton” one
must allow for the dynamical response of the Fermi sur-
face to the appearance (or disappearance) of the hole in
the course of optical transitions.

III. INFINITE HOLE MASS CASE—
THE X-RAY PROBLEM

Including the full dynamical response of the Fermi sea
in a detailed calculation of optical spectra represents a
highly nontrivial task, outside the scope of conventional
perturbation theory, as discussed qualitatively by Gavoret
et al® The easiest way to understand the origin of the
difficulty is to consider the optical process in the idealized
limit of an infinite hole mass, in analogy with the discus-
sion of the soft x-ray spectra of metals.

There are two effects one must consider: The first was
discussed in the pioneering work of Mahan,’ who showed
that by considering all processes which involve repeated
scattering of an electron and a hole, including the vertex
corrections ignored within the static Fermi-sea picture
(backward scattering), the sharp bound state at the Fermi
level changes into a power-law singularity. The second ef-
fect is related to the “orthogonality catastrophy” dis-
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cussed by Anderson!® and Hopfield.!"! Anderson proved

that the overlap between the electron ground-state wave
function in the absence of the hole and that with the hole
present vanishes in the limit of a large system. As a result
of this effect alone, the absorption spectrum would be
nonvanishing only away from the Fermi level, since in
that case, due to the creation of particle-hole pairs, the fi-
nal state would be an excited state, not affected by
Anderson’s theorem. (Formally, the orthogonality
theorem is contained in the hole self-energy.) The singu-
larity due to the “final-state interactions” discussed by
Mahan usually dominates, and thus the absorption spec-
trum (in the absence of atomic excitons) displays a
power-law singularity at the Fermi level.

The main physical points of the above discussion can be
clarified by considering a simple model in which a spin-
down electron is photoexcited above the Fermi level, leav-
ing behind a localized hole with spin up (m; = + %) and
energy E,, coupled through contact direct (U) and ex-
change (J) interactions to the Fermi sea of N +1 elec-
trons. The Hamiltonian of the final state (f) defined in
the course of the absorption process is

+ U
Hf:Eg +k2 Ee(k)ak,sak,s - W 2 ali—,sak‘,s
,s

J T st
— oo X QsTr Ak s (1)
4N k,k',s,s' o *

where ay g (a,:r,s) are annihilation (creation) operators for
spin my =+ electrons, €,(k) is the conduction electron
(single-particle) energy, and 7, is the diagonal Pauli ma-
trix. The initial state (i) consists solely of the unper-
turbed Fermi sea (of N electrons). [We note that the
behavior discussed in the preceding paragraph is indepen-
dent of the details of the electron-hole interaction (provid-
ed it is short ranged) and thus the simple model implied
by (1) is sufficient for our purposes.] For a constant di-
pole matrix element, M, the absorption rate I (w) can be
obtained from the correlation function

1
Wit)=—3ile
N2

Ho)=ImG |M |/7) [ die’W (1) .

iH;t —iHt + .
“ag, e fak’,l [i),

(2)

The calculation of the absorption rate I (w) close to the
threshold becomes trivial if we adopt the picture intro-
duced by Schotte and Schotte'? in their discussion of the
x-ray problem. By considering s-wave scattering only [as
implied in (1)] Schotte and Schotte replaced the Fermi sea
by a one-dimensional electron gas representing the elec-
tron degrees of freedom in spherical energy shells about
the hole. In the asymptotically weak U and J limit they
model the excitations close to the Fermi level in terms of
“Tomonaga bosons;” in this picture the appearance of the
hole in the course of the absorption process then gives rise
to an infinite number of bosonlike charge and spin-
density-wave excitations of the Fermi sea. This kind of
mapping is limited to systems without bound states and,
strictly speaking, does not apply in one and two dimen-
sions (see below). In terms of the corresponding Tomona-
ga boson operators by (by ) the Hamiltonians H; and
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H; and the fermion operator (1/V'N)S, a;, in (2) can
be written as

k
H;=3 —bj by, +Ci, (3a)
k,s P
k 1 pWs pWs
H,=S" |bf,— brs— C,,
fép‘kv \/mHk v R A
1 1
W%ak,l~exp§?—ﬁ—;(bz‘l—bk,ﬂ . (3C)

Above, W;=U +Jm; /2 and p is the conduction electron
density of states at the Fermi level; C; and C; are con-
stants; the wave vector k = | k | indexes the energy shells.

As already alluded to, the Hamiltonian (3) only treats
explicitly the excitations of the Fermi sea and does not, of
course, describe the binding of electrons and holes into ex-
citons. These can be allowed for by adding an orthogonal
bound state contribution to the scattering state given in
(3c). The extrapolation to strong coupling as well as the
correct electronic energies [denoted by constants in (3)]
can be obtained by trivially extending both the Friedel
sum rule'> and Fumi’s theorem'* to include bound states.
The final results are parametrized in terms of the exact
scattering phase shifts, §,(w).

The absorption spectrum as defined in (2) has the form

Io)~A(0—0,) “"+B0—wv,) 2,

first obtained by Combescot and Nozieres."> The two
threshold energies, w; and w,, follow directly from Eq. (2)
and are given by

o =min(Ef V'~ EN)+(Ef ~EM +E, ,

where E and E fN are the ground-state electronic energies
in the initial and final state, respectively. In the Schotte-
Schotte model the exponents a, , are calculated in terms
of the Born approximation scattering phase shifts at the
Fermi level (in spin channel s), §;(ep)=mpW;. The ener-
gies are obtained from Fumi’s theorem, E }V —EF

== f "dow 8,(w)/m. One finds a primary threshold
at the absolute minimum of (E}V“—E}V): —Ej, the
binding energy of the singlet exciton, and a secondary
threshold at min(Ef *' —Ef’)=¢, corresponding to the
onset of continuum absorption. It is important to note
that in the presence of bound states the results given
above must be suitably reinterpreted in terms of the
scattering phase shifts §; =&, — 7, which enter the Friedel
sum rule. The shift by 7 exactly corresponds to the num-
ber of bound states (one) present in each spin channel.
The exponents a; , are then in agreement with Hopfield’s
rule of thumb!! and can be written in terms of the number
of electrons, ny. ,, required to screen the hole potential in
the m, =+ channels

am:l—z(ns;],z)z . 4)

s

According to these considerations, the primary threshold
in the presence of atomic bound states is situated at

0 =E;—Eq—3, foFda)[Ss(a))/‘n'——l]

and has an exponent a;=1—_[8(er)/m—1]% This
corresponds to an absorption process in the course of
which both a spin-up and a spin-down electron are bound;
thus, only 8,(ep)/m—1=28;(er)/m electrons are required
to screen the hole in each channel. While the spin-up
electron is always bound and inaccessible in optical transi-
tions, the bound spin-down electron can be thought of as
originating from the absorption process. In the low-
doping limit €r—0,8,(¢rz)—7 and we recover a §-
function absorption line (a;— 1) at the singlet exciton po-
sition. In this same limit, the secondary threshold is si-
tuated at

w0y =E;+ep—3 fOFdw[Ss(w)/ﬂ'—l]
s

and is characterized by an exponent a, =1—[8,(¢gf)/
7—1]>—[8,(ep)/m—2)%. Clearly, the counting is un-
changed for the spin-up electrons; however, the spin-down
electron in the singlet bound state and the spin-down elec-
tron originating from the absorption process are now dis-
tinct and thus only 8,(ex)/m—2 electrons in the Fermi sea
are required for the screening of the hole potential in the |
channel. In the low-doping limit a,—0, and the secon-
dary threshold corresponds to the usual continuum edge
E, including the Sommerfeld enhancement [Fig. 1(a)].
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FIG. 1. Qualitative absorption spectra in the infinite hole
mass case as a function of doping: (a) undoped case; (b) low-
doping concentrations; (c) high doping concentrations
(kpao>>1). We have displaced the spectra so that they all have
the same primary threshold, w;; the density of states is not
meant to mimic a particular single-particle band structure.
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With increasing doping the primary threshold broadens
[Fig. 1(b)]. Even though a complete analytical calculation
of this behavior is not yet available (see, however, below),
we argue on physical grounds that in any dimension the
primary threshold changes continuously from the exciton
dressed with an infinite number of charge and spin-
density wave excitations in the low-doping limit to the
Fermi-level singularity in the weak-coupling, high-doping
limit, 8;(ex)—0 [Fig. 1(c)]. In the latter case the results
of the preceding paragraph can be carried over by replac-
ing 8;(w)=08;(w)—m by 8;(w)=05,(w), the phase shift in
the absence of bound states, which is now correctly given
by the Born approximation, 8 =mpW;, as calculated in
the Schotte-Schotte model.!? (It is worth noting that since
we insist on parametrizing the results in terms of two-
particle scattering phase shifts, we are forced to reinter-
pret the phase shifts discontinuously once atomic excitons
unbind.)

IV. FINITE HOLE-MASS
AND THE INDIRECT THRESHOLD

In the case of a finite hole mass, the recoil of the hole
will smear the Fermi-level singularity over a frequency
range (m,/my)er, the effective “bandwidth” of the hole,
m, and m, being the electron and hole effective masses.
In this case, optical processes can be separated into two
categories, direct and indirect (Auger-like) transitions. In
the high-doping limit, direct transitions (which corre-
spond to the excitation of an electron and a hole with
wave vectors k and — k, respectively) require a minimum
energy wp=Egz+(1+m,/my)er (Fig. 2); while in indirect
transitions electrons are excited above the Fermi level

» M

\

wr wp

FIG. 2. Direct (with threshold wp) and indirect (with thresh-
old ;) absorption processes for a finite hole mass.
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under the simultaneous excitation of particle-hole pairs or
plasmons, which ensure energy and momentum conserva-
tion. As can be seen from Fig. 2, the indirect threshold
(i.e., the minimum energy required for such a process) is
given by w;=E,; +¢er. When the recoil energy, wp —wy,
is much larger than the Coulomb energy (as measured by
the binding energy of the Mahan exciton) the structure at
the Fermi level disappears completely [Fig. 3(a)]; in the
opposite limit there is a broadened resonance which sur-
vives between the two thresholds and which, in the limit
of infinite hole mass, develops into the x-ray singularity
[Fig. 3(b)]. Above, E; and the effective masses have to be
suitably interpreted in terms of the renormalized energy
gap and mean effective masses (between k =0 and
k =kp), as determined from the single-particle self-
energies. In the low-doping, atomic-exciton limit, the
recoil of the hole plays a minor role and the line shape is
qualitatively the same as that for an infinite hole mass
[Figs. 1(a) and 1(b)].

Unfortunately, and as explained below, very little can
actually be calculated analytically in the case of a finite
hole mass, except for the behavior near the indirect
threshold, which can be obtained from conventional per-
turbation theory. A previous calculation of the indirect
threshold® was based on a quasiparticle picture for the
conduction electrons which, however, breaks down away
from the Fermi level.

Clearly, a fully quantitative treatment does require that,
to a given order in the screened Coulomb interaction, both
electron and hole self-energies and vertex corrections, be
treated on equal footing. All contributions to the indirect
threshold, up to second order in the dynamically screened
Coulomb interactions, are given in Fig. 4; Figs. 4(a) and
4(b) are due to the direct and exchange parts of the con-
duction electron self-energy; Fig. 4(c) is due to the hole
self-energy, and 4(d), 4(e), and 4(f) are due to the corre-
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FIG. 3. Qualitative absorption spectra in the finite hole mass
case at high doping concentrations (kpao>>1) for (a)
@p—;>>Ey [ Ey~(meer/m)exp—(m,/mpU) is the binding
energy of the ‘“Mahan exciton,” where m is the reduced
electron-hole mass]; (b) wp —w; ~ Ey.
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sponding vertex corrections, respectively. These diagrams
represent the photon self-energy, Il(¢ =0, z), the imagi-
nary part of which determines, respectively, the absorp-
tion and emission spectra, I(w)~ —Imll(g =0, w+i0)
and L(w) ~I(w){exp[Blw—pu)—1}"", where u is the
quasichemical potential for electron-hole pairs, and f3 is
the inverse temperature (kpT)~!. The direct evaluation

J

of the diagrams is tedious but straightforward. The re-
sults are, however, intuitive and can also be obtained by a
simple ‘“cutting” procedure which leads to a one-to-one
correspondence between the diagrams and conventional
second-order perturbation theory.

The final expression for I (w) and the low-energy tail of
L (») read

Ho)= 3 MKk o)[2M*(kk',0)—M*(k,k",0)](1 —fo 1)1 —for)for sk —k

Kk’ k"
><8(C‘)_Eh,—k _Ee,k'_Ee,k”+Ee,k”+k’—k) ’ (5a)
L(o)= 3 Mk o) 2M*(k,k' 0)—M*(k,k", )] fex'forx" 1= Ffer sk —x)
kk' k"
Xfn -,k @—Ep _y—E;p—Eoj+Eo pyx k) (5b)
where the effective matrix element M (k,k’',®) is given by
1 1
M (k,k',w)=MU(k —k',0o—E, _—E, ) — . (6)
Bk TR 0By ki —Eex 0—Ep g —E. i ]
r
M is the optical matrix element (here assumed constant), m
E; and f;x, i =e,h, are the (renormalized) single-particle Li(w)=027V3)"! ‘1+ - ’ | M, U, (kg,0) | *p3
energies and distribution functions for electrons and holes, my
and U(q,w) is the retarded, dynamically screened
Coulomb interaction. Equation (5) can be trivially extend- Lo (7a)
ed to allow for electron-hole exchange, in which case the kE/2my,
two denominators in (6) have different coefficients.! We
note that to leading order in the detuning, w—wy, the I . me M U:(kp.0) | 203
two- and three-dimensional absorption spectra, I,(w) and (e)=55 |1+ my, | M3Us (ki 0) 3
I;(w), reduce to 7/2
w—wy
—— , (7b)
kp/2m,,

FIG. 4. Second-order diagrams contributing to the indirect
threshold. Wiggly, solid, and dashed lines represent the
screened Coulomb interaction, electron and hole propagators,
respectively.

where p is the conduction electron density of states at the
Fermi level (p,=m, /2m,p3=m kp/27%).

There are several comments to be made concerning
these expressions. First notice the partial cancellation be-
tween direct [2M *(k,k',®)] and exchange [ M *(k,k"”,»)]
contributions in (5a) and (5b) for momentum transfer kg,
a consequence of the exchange hole surrounding each elec-
tron. It is also noteworthy that, again due to the large
momentum transfer, self-energy and vertex corrections
add at the indirect threshold, rather than subtract as in
the case of small momentum transfer (where the cancella-
tion reflects charge neutrality). As apparent from (7), the
contributions from the electron-electron interaction,
which were left out in Ref. 8, lead to corrections of order
m, /my and thus cannot be ignored in general. Finally, in
expressions (5) the full dynamically screened Coulomb in-
teraction enters, and thus plasmon emission and absorp-
tion processes are naturally included. Near the indirect
absorption threshold these are irrelevant due to the large
momentum transfer, kg, while in emission they always
contribute.

At the direct threshold expressions (5) diverge, reflect-
ing the breakdown of conventional perturbation theory.



7556

As discussed qualitatively in Ref. 8, the cure of this diver-
gence requires a nontrivial self-consistent renormalization
of both, single-particle self-energies and vertex function,
using the self-consistent “‘parquet” equations derived in
Refs. 16 and 17. This procedure is exact in a sense which
we will clarify in the following section. However, the dis-
cussion given in Ref. 8 is limited solely to those processes
which, for infinite hole mass, lead to the qualitatively
correct threshold behavior. For finite hole mass the ap-
proach in terms of parquet diagrams has not yet been car-
ried out quantitatively nor has it, so far, been sufficiently
motivated from a physical standpoint. Below we suggest
an approach based on the solution of the three-particle
problem, which (i) clarifies the physics underlying the
parquet treatment, and (ii) would allow for a consistent
(numerical) calculation of the spectra for arbitrary
electron-to-hole mass ratio. A simple model calculation
will be presented elsewhere. '8

V. THE THREE-BODY PROBLEM

Any calculation of the optical spectra has to describe
correctly (i) the final state interaction and (ii) the remnant
of the “orthogonality catastrophy” for a finite mass hole.
The latter constitutes the conceptually simple part of the
problem and, qualitatively, can be calculated either within
the Schotte-Schotte model,'® or by using the cluster ex-
pansion for the hole Green’s function.’® Physically, the
relevant processes involve the successive emission of
particle-hole pairs which, in the case of a finite hole mass,
leads to the renormalization of the hole hopping ampli-
tude. The final-state interaction effects can not be under-
stood as simply; the main problem obviously is to “unbind
the Mahan exciton” which occurs in the rigid Fermi-sea
picture as a result of the sharpness of the Fermi surface.
To accomplish this we incorporate the full treatment of
three-particle correlations into the calculation of the spec-
tra. The physical motivation for such an approach is
based on the idea that the correlation between the pho-
toexcited electron and hole with single particle-hole pair
excitations of the Fermi sea leads to the smearing of the
Mahan exciton as a result of the indistinguishability of
the two electrons (photoexcited and virtual).

The process implied above, which determines the exact
electron-hole scattering amplitude, can be written symbcl-
ically as G, =G .G, + UG ;G5 and is represented graph-
ically in Fig. 5; G, and G, are the electron and hole
single-particle Green’s functions, and G; is the three-
particle Green’s function. For the sake of simplicity we
consider only a spin-independent electron-hole interaction
U, and neglect all electron-electron interactions. To clari-
fy the meaning of this diagram we begin by treating a
simple three-particle problem, where two electrons (1 and
3) interact with a (valence band) hole (2) through interac-
tions U;, and U,;. Gj; is then determined by the
three-body Lippmann-Schwinger equation, G;=GY
+GP(U,; + U,;)G;. The kernel of this equation is,
however, not compact, because it contains & functions as-
sociated with the free propagation of one of the electrons,
and becomes tractable only by first solving exactly the
two-particle problems in each channel. Following Fadeev,
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FIG. 5. The connected part of the two-particle Green’s func-
tion, G,, in terms of the three-particle Green’s function, Gs.

we first decompose G3;=GY’ +G,+G,; which leads to
the equations

G12=G(30)U12(G'30)+G12+G23) » (8a)
Gy =G Ux»(GY +G,+Ga3) . (8b)

The exact solution of the corresponding two-particle prob-
lems introduces the disconnected three-particle Green’s
functions

G =G +GULGY (%)
GR =6 +GYU,LGY . (9b)

From (8) and (9) we finally obtain Fadeev’s equations in
the form?!

G;,=GY —GY+GYU,Gys s (10a)
Gy =GN -G +GR UG, . (10b)

Note that substituting the disconnected three-particle
Green’s function (with one of the electrons replaced by a
freely moving virtual hole) into the diagram in Fig. 5 (or
into the equivalent equation for the electron-hole Green’s
function, G,) immediately leads to the Schrodinger equa-
tion for the atomic exciton; and in the high-density limit
to that for the Mahan exciton.

A treatment of the full three-body problem in the pres-
ence of the Fermi sea requires a generalization of the
Fadeev equations to include self-energy and vertex renor-
malization. This can be achieved by closing the hierarchy
of the many-body Green’s function equations at the level
of the three-particle correlations as explained, for exam-
ple, by de Dominicis and Martin.?2 Without a rigorous
derivation we can already note that the Fadeev equations
(8a) and (8b) are precisely the same as the parquet equa-
tions derived in Ref. 16, if U, and U,; are identified
with the exact irreducible interactions in the 23 and 12
channels, respectively. In the infinite hole mass case the
above treatment thus yields the correct final-state interac-
tion contribution to the x-ray edge singularity.!® More-
over, this approach also allows for an appealing physical
interpretation of the parquet analysis, which was original-
ly introduced solely to account for the most divergent
terms in perturbation theory. Ultimately, our aim is to
consider the full many-body equations within the frame-
work of the Fadeev approach and develop a quantitative
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theory of the optical spectra of doped semiconductors for
arbitrary electron-to-hole mass ratio.

VI. CONCLUSIONS

Above, we have described the main aspects of the
many-body physics which determine the optical spectra of
doped semiconductors with particular emphasis on the
breakdown of conventional perturbation theory. We have
demonstrated that the simplest theory must be based on a
consistent treatment of three-particle correlations, as
described by suitably modified Fadeev equations. Such a
theory simultaneously accounts for both indirect and
direct optical transitions and, in the limit of an infinite
hole mass, yields the exact results discussed in the context
of the x-ray problem. This discussion is particularly im-
portant in view of two recent attempts?>2* to calculate the
optical spectra of modulation-doped semiconductor quan-
tum wells. In an oversimplified calculation, Bauer and
Ando?’ find the singularity associated with the Mahan ex-
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citon, which they then remove by hand using inappropri-
ate arguments. On the other hand, even though they
recognize the basic difficulty with the straightforward
perturbative approach, Chang and Sanders** fail to in-
clude the configuration with the hole in the presence of a
relaxed Fermi sea in the initial state, and restrict them-
selves to perturbative intermediate states with a single vir-
tual particle-hole pair, their calculation is thus at best in-
complete.
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