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We present, within the Su-Schrieffer-Heeger model, analytical and numerical calculations of the
effects of two types of model impurities, namely bond and site, on the statics and dynamics of the
lattice structure, and adiabatically associated one-electron spectrum, of trans-polyacetylene. For
both types of impurities two or more localized electronic levels are produced, which may be in the
intragap region or beyond the m-band edges (ultraband). Linear-response calculations of the induced
lattice defects are in good agreement with the numerical calculations. A numerical study of kink-
impurity dynamics shows that a kink may be reflected, transmitted, or trapped by the impurity de-
pending on both the impurity strength and the topology of the impurity-induced lattice defect. A
kink trapped by a site impurity of sufficient strength is found to have no midgap level but is sup-
ported by a level beyond the edge of the m band. We also find that the trapping of a kink by a site
impurity may result in the production of a potentially long-lived polaron. Such strong electron-
phonon renormalization effects on the electronic structure in the presence of disorder are also found
for bond impurities, where ultraband levels may form at the expense of more localized intragap lev-
els. Photoexcitation experiments in the defected system produce the full range of nonlinear excita-
tions: kinks, breathers, polarons, excitons, and trapped kinks. We calculate the optical absorption
spectra in typical experiments and identify extrinsic intragap absorption.

I. INTRODUCTION

It has become widely advocated' that intrinsic non-
linear excitations (sometimes termed "solitons") play a
central role in understanding the structural, thermo-
dynamic, and transport properties of polyacetylene and re-
lated polymers. This view has been supported by experi-
mental studies and by analytic calculations on model
Hamiltonians —especially the Su-Schrieffer-Heeger (SSH)
Hamiltonian

HssH ———,
' M g u „+—,K g(u„—u„+ t)

—g[tp+cx(u —tt„+ t )](c„c„+t+c„+~c„)

(1)
and its continuum limits. In Eq. (1) the first term is the
lattice kinetic energy; the second term is the lattice strain
energy (this arises, in an approximate way, from the effect
of cr-orbital electrons); the third term is the tr-orbital elec-
tronic energy. M is the mass of a (CH) unit, K is the lat-
tice force constant, to is the intrinsic transfer matrix ele-
ment, and a is the electron-phonon coupling constant. u„
is the displacement of the nth carbon atom from its lattice
site and c„(c„)creates (annihilates) a tr electron at site n
Throughout this study we use the "rescaled parameters:"
to ——2.5 eV, %=17.3 eVA and a=4. 8 eVA '. These
correspond to a dimerization amplitude uo ——0. 1 A, band

gap 2AO ——8auo ——3.84 eV, an electron-phonon coupling
constant X=2cz /ntoK=0. 34, and a soliton coherence
length (=2tp/Ap ——2.6. (Throughout this paper we as-
sume positive b,o and uo without loss of generality —these
quantities are related by b.p =4au p. ) The parameter
values are chosen largely for computational convenience,
but also for comparison with earlier numerical studies.

Evidence for the importance of nonlinear excitations
comes from a number of numerical studies of the classi-
cal, zero temperature, adiabatic dynamics. In particu-
lar, it has been shown ' that a photoexcited electron-hole
pair rapidly decays to form a kink-antikink (KK) pair
which, in the absence of confining mechanisms, breaks up
to separating K and K in (0.1 psec. (For these parame-
ters the 2kF optical phonon period is numerically found
to be =0.04 psec; our numerical time step is 0.001 psec. )

We have shown in previous studies ' that a neutral non-
linear excitation —a "breather" —is also produced in such
an event, and we have argued that this is one mechanism
for producing near-band-edge photoinduced photoabsorp-
tion as observed in trans-polyacetylene.

Although it is well known that "pristine" samples of
polyacetylene contain a non-negligible density of defects
(from, e.g. , cross-linking, complex morphological effects,
or extrinsic impurities), most previous work has con-
sidered only defect-free systems. Experimentally the elec-
trical conductivity can be varied on doping, undoping, and
compensation, systematically and reversibly over approxi-
mately 13 orders of magnitude. This indicates that the
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dopant impurities are typically nonsubstitutional and
chemically nonreactive with the o. bands of the polymer
backbone. (There are exceptions, e.g. , Br or F substitu-
tion. '

) We will not consider here any direct effects on the
ionic mass or elastic terms in Eq. (1). Clearly any quasi-
realistic model must include the effects of impurities for a
full understanding of the transport phenomena of the real
system. Furthermore, for the soliton model to be relevant
in real materials it is not sufficient to merely show that
nonlinear excitations are robust in the defected system,
but it is also essential that physically reasonable produc-
tion mechanisms be identified.

In this paper the adiabatic nonlinear dynamics are stud-
ied in the presence of two model impurities. The "site im-
purity" is modeled by a term, added to the SSH Hamil-
tonian, which couples to a single lattice site. " This can be
viewed as simulating the bonding of an orbital of a dopant
impurity to the ~ bond of a single carbon atom, to com-
plex morphological effects such as the presence of cross
linking between chains and hybridization, or to the short-
range Coulomb potential of a charged impurity. ' The
"bond impurity" is represented' by a local variation of
the transfer matrix element in Eq. (1). This may model
intrinsic defects of the system, such as cis-like segments
within a trans-polyacetylene chain, the presence of amor-
phous regions within the crystalline structure, or chain
bends and breaks.

The ground state of the Hamiltonian (1) with one elec-
tron per site (i.e., in the half-filled band) is dimerized,
u„=(—1)"uo, and exhibits a gap 2bo=8rzuo separating
the extended states of the filled valence band from those
of the empty conduction band. As discussed in Secs. II A
and IIB, adding an impurity of either type can produce
localized electronic states in the gap ("intragap states"), as
well as below the valence band and above the conduction
band ("ultraband states"). A site impurity always pro-
duces both a single intragap and a single ultraband state.
For a bond impurity the localized states always occur in
pairs, symmetrically located with respect to midgap. A
pair of ultraband states is produced if the impurity
strengthens a bond, whereas a pair of intragap states
occurs if the impurity either strengthens a weak bond or
weakens a strong bond.

Due to the electron-phonon coupling the impurity-
induced change in electronic structure is accompanied by
a distortion of the lattice around the impurity. This lat-
tice relaxation in turn tends to localize still further the
electronic impurity states. For sufficiently strong impuri-
ties, we also observe "catastrophic" renormalization in
which localized intragap levels become unstable in favor
of ultraband levels.

A complicated interplay between intrinsic nonlinearity
and extrinsic impurity potential takes place in the pres-
ence of nonlinear excitations. ' The kink, being a topolog-
ical excitation, must be stable in the presence of impurities
but nevertheless can be strongly deformed locally. Indeed,
for a sufficiently strong site impurity (

~
Vo

~

) b,o), we
find a new type of kink —a "trapped kink" —which has no
midgap electronic state; rather, it is accompanied by an
ultraband state which derives its parentage from the im-
purity. In kink-impurity interactions a kink can be

transmitted or reflected and, in the case of the site impuri-
ty, trapped.

The polaron' and breather are not topologically ele-
mentary excitations, but we find that they are copiously
produced in photoexcitation of defected systems. We also
find that an "exciton, " unstable in the SSH model, can be
produced. Furthermore, due to the presence of intragap
states the threshold for photogeneration of kink-antikink
pairs is reduced as compared to the threshold energy 26o
of the undefected system, thus providing an additional
mechanism to the traditional Urbach fluctuation-induced
intragap absorption. '

In Sec. II we use a simple continued fraction scheme to
find the location of the localized energy levels induced by
the defects. In Sec. III we use a Green's-function resol-
vent technique to calculate the linear approximation to
the induced lattice relaxation. In Sec. IV the above results
are confirmed numerically for the case of a site impurity.
In Sec. V we show that a site impurity may reflect,
transmit, or trap a propagating kink. Section VI deals
with polarons and bipolarons in the site-defected system
and it is shown that the bipolaron decays to a free kink
and a trapped antikink. In Sec. VII we perform represen-
tative photoexcitation experiments in the presence of site
impurities; we also calculate numerically the optical-
absorption spectra. Section VIII looks at the lattice relax-
ation in the presence of a single bond impurity. Sections
IX and X treat kink-bond impurity and polaron-bond im-
purity interactions and Sec. XI examines photoexcitation
in the presence of a bond impurity. Section XII contains
a discussion and our conclusions including their possible
experimental relevance. The Appendixes A and B contain
more details of the analytical calculations and Appendix
C of our numerical procedure. Some preliminary results
have already been published. '

II. IMPURITY STATES

H2 ———Wo(c c +&+c +ic ) . (3)

The SSH Hamiltonian, Eq. (1), has electron-hole sym-
metry. Indeed, the electronic part of HssH changes sign
under the canonical transformation c„~(—1)"c„which
implies that all electronic levels with nonzero energy
occur in pairs at +E . A bond impurity does not affect
this symmetry and any bound states induced by H2 like-
wise occur in pairs. On the other hand, a site impurity
represented by H~ destroys the electron-hole symmetry.
Therefore the two types of impurities are expected to have
markedly different effects both on the electronic states
and on the lattice. In this section we restrict ourselves to
discussing the modifications of the electronic structure:
We assume the lattice to be perfectly dimerized and
neglect any lattice relaxation.

We consider two types of impurities, a site impurity
represented by a local potential at site m:

H& ——Voc c (2)

and a bond impurity acting on the bond between sites m
and m +1:
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A. Site impurity

The case of a single site impurity has been studied in
Ref. 11 by summing the expansion of the resolvent opera-
tor G(z)—:(z H) —' in powers of the impurity potential
to all orders. The impurity levels can also be derived by
using a continued-fraction approach, as shown in Appen-
dix A. For a homogeneously dimerized structure with al-
ternating bonds 3 and B, we find impurity states at

E+ ——+sgn(Vp)
~
(t~+ —, Vp)'~ +(t~+ —,

' Vp)' ~, (4)

where tz and tz are the two transfer matrix elements
to+ —,Ao. These solutions are depicted in Fig. 1 as func-
tions of Vp. For a donor impurity ( Vp &0) a state drops
from the bottom of the conduction band into the gap
while a state also detaches from the bottom of the valence
band. As

~
Vp

~

increases the energy of the intragap state
tends asymptotically towards midgap (E =0), while the
energy of the ultraband state decreases without bound.
For an acceptor impurity ( Vp & 0) a state moves from the
top of the valence band into the gap while another state
emerges from the top of the conduction band. In this pa-
per we consider donors: all results remain the same for ac-
ceptors with electrons and holes interchanged.

It is straightforward to extend this analysis to the case
of two impurities at different sites. " For large separation
two nearly degenerate levels appear in the gap. As the
two sites approach each other, one level becomes deeper
and the other shallower. For very small separations the
deep level asymptotically approaches a value which corre-
sponds to the impurity state of a single potential with
strength 2 Vo, whereas the shallow level merges with the
conduction band. This is in agreement with numerical re-
sults for an isotropically screened Coulomb potential'
which produces several levels in the gap, all but one being
very shallow. For an anisotropically screened Coulomb
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FIG. 1 Location of site impurity-induced localized electronic
levels as a function of impurity strength, Vo. Dashed line is the
analytic calculation of Sec. II. Solid line is the consistent nu-
rnerical calculation of Sec. IV. For Vo (0 (a donor impurity)
there is a single "intragap state" above midgap and a single "ul-
traband state" below the edge of the valence band.

potential (which amounts to a reduced screening at long
distance) several impurity states spread throughout the
gap

B. Bond impurity

We assume the impurity to attack an A bond, thus re-
placing a single transfer element tz by tz ——tz+ 8'q. As
shown in Appendix A there are pairs of intragap states at

E =+ [t~+t' [(t—E t'—)'+«5 t~l'"] ~(2t~),
provided that the impurity either strengthens a weak bond
(t„&

~
tF ~, t„&tz) or weakens a strong bond

( t„&
~
tz ~, tz & t~ ). This is plausible since in both cases

the bond impurity locally decreases the dimerization-
indeed the limit tz ——ta corresponds topologically to a KE
pair with two localized midgap states. Similarly ultra-
band states at

E =+ [g+ t„+[(tg —tg ) +4tF ttt ]' ] l(2t~ ) (6)

appear only if the impurity strengthens the bond
( tq &

~
tE

~

). Again this is reasonable since the band
width is locally increased. The effects of a bond impurity
on the electronic structure are illustrated in Fig. 2.

III. IMPURITY-INDUCED LATTICE RELAXATION—LINEAR RESPONSE

The changes in the electronic structure and, in particu-
lar, the appearance of localized electronic states produce
local lattice distortions due to the electron-phonon cou-
pling. In this section we study the linear response of the
lattice. It is convenient to discuss this problem in terms
of variables b „=2a( —1)"(u„—u„+ ] ) which are propor-
tional to changes in bond lengths. Varying the expecta-
tion value of Eq. (1) with respect to h„we obtain the fol-
lowing relation for the ground-state configuration

5+ =2'tttpA( —1 ) ( c& c+ + ] +cn + ]cn ) (7)
where a factor of 2 has been included for the spin summa-
tion. Equation (7) is generally valid even upon adding the
impurity potentials H],H2 to the Hamiltonian. The
right-hand side (rhs) of Eq. (7) is evaluated using the rela-
tion (valid at zero temperature)

dE(c c +] ) = G„+]„(iE),
00

where

G „(z)=(m
~

(z H„) '
~

n)— (9)

is the electronic Careen's function, H, &
representing the

electronic part of the Hamiltonian, and
~
n) a Wannier

state at site n. Evaluating it for the pure system with
homogeneous dimerization (b,„=hp) and inserting it into
Eq. (7) yields the usual gap equation. The additional dis-
tortions introduced by the impurities are obtained from
the equation

&„—i]]p ——2tpA, ( —1)"f dE[G„+, „(iE) G„+, „(iE)], —

(10)

where G and G are the Green's functions for the defect-
ed and pure system, respectively. [For the cases con-
sidered in the following, the Careen's functions are sym-
metric, G „(z)=G„(z).] The linear response of the lat-
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tice is obtained by calculating both G and G for homo-
geneous dimerization. This is carried out in Appendix B.
Before stating the results, we notice that the Hamiltonian
(including impurity potentials) is invariant with respect to
a translation u„~u„+v. As shown in the Appendixes
both impurity types induce rigid displacements u+ and
u far to the right and far to the left of the impurity,
respectively. Using the freedom to fix an arbitrary con-
stant displacement we choose u++u =0. Then the re-
sults can be generally written as

u, +( —I)"uo(1+y„), n )m

—u, +( —I)"uo(1+y„), n (m,
where u, describes the overall (acoustic) lattice expansion
(or contraction) and y„ the localized lattice distor-
tions around the impurity which decrease as

[(g —I)/(g+ I)] " . For small impurity potentials the
lattice relaxation increases linearly with the potential
strength for a bond impurity but quadratically in the case
of a site impurity. Equation (11) corresponds to a chain
with free ends. For the boundary conditions used in the
numerical studies (periodic or fixed boundary conditions),
the acoustic deformations are strongly suppressed. In or-
der to compare the analytical results for the linear lattice
relaxation with the numerical results for the full lattice re-
laxation we show in Figs. 3 and 4 the order parameter 6„
rather than the displacements u„. The lattice relaxation
in the vicinity of a site impurity is illustrated in Fig. 3.
The behavior is smooth except close to the impurity where
a strong kink- or antikink-like step is produced depending
on o = ( —1) . Figure 4 shows the "polaronlike" lattice
distortion around a bond impurity. The order parameter
is locally enhanced either if the impurity strengthens a
strong bond (W'o &0, m even) or if it weakens a weak
bond (W'o ~0, m odd). In the other two cases the order
parameter is locally reduced. In addition to the local
structure we find an overall expansion 2u, &0 if W'p) 0
and an overall contraction 2u, ~ 0 if 8 p & 0.

I

&A

tEigo
O

C.+ O5-

FICx. 2. Location of bond impurity-induced localized elec-

tronic levels as a function of the defected bond strength

t~ ——t&+ Wo.- (a) Defect on a weak bond (t& &t&): dashed line

is the analytic calculation of Sec. II; there is both a pair of intra-

gap and a pair of ultraband levels if the weak bond is

strengthened (
~

tE
~

& t„) but no localized levels if the bond is
weakened; solid line is the consistent numerical calculation of
Sec. VIII. (b) Defect on a strong bond (t» tz): dashed line is
the analytic calculation of Sec. II; if the bond is weakened
(

~
ts

~
& tq ) there is a pair of intragap states; if the bond is

strengthened (
~

tE
~

&tq) there is a pair of ultraband states;
solid line is the consistent numerical solution of Sec. VIII.

0

FI&. 3. Lattice relaxation around a site impurity at m =0
for an impurity strength Vo ——2.550. Dashed line is analytic re-

sults of Sec. III; solid line is the consistent numerical calculation
of Sec. IV.
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FIG. 4. Lattice relaxation around a bond impurity for m =0
(i.e., at a strong bond) for an impurity strength So= —60.
Dashed line is analytic results of Sec. III; solid line is the con-

sistent numerical calculation of Sec. VIII.

IV. FULL LATTICE RELAXATION
AROUND A SITE IMPURITY

There are two general classes of boundary conditions
for a system of length N, which are conveniently dis-
cussed in terms of staggered displacements u„
=(—1)"u„/uo. On a "ring" the first and Nth sites are
coupled directly via both electronic and lattice terms in
the Hamiltonian. For an even length ring, strictly
periodic-boundary conditions in the dimerization ampli-
tude may be applied, u

&

——u~. For an odd length ring on
which there is a single kink, antiperiodic boundary condi-
tions must be applied, u

&
———u&, breaking the electron-

hole symmetry to order 1/N. For a chain, on the other
hand, the n =1 site is coupled only to the n =2 site and
the n =N site is coupled only to the n =N —1 site, there
being no direct coupling between the sites 1 and N.

We have used three types of chain boundary conditions
in our studies: (i) "free boundary conditions:" the two end
sites are coupled only to their single nearest neighbors,
with no external constraints applied to them; (ii) "pressure
boundary conditions:" to conserve the total length of the
system the term (4a/m. )(u& —u &) is added to the Hamil-
tonian; (iii) "fixed boundary conditions:" the two end sites
are slaved to their neighbors, u

&
——uz, u~ ——u~ ~. For the

chains with free boundary conditions [cf. Eq. (11)], there
is a strong tendency to produce acoustic phonons at the
chain ends which propagate into the interior and may per-
mit topological changes of conformation within the sys-
tem. For example, an odd length chain with a single kink
at its center and weak bonds at its ends induces a pair of
antikinks at the ends. Driven by the phonon field these
may propagate along the chain, leading to a EK annihila-
tion and leaving a single antikink and strong bonds at the
chain ends. Fixed and pressure boundary conditions do
not produce acoustic phonons and do not induce such
conformation changes. The long-range acoustic relaxa-
tion accompanying free boundary conditions is expected
to significantly renormalize the energy of conformational
(e.g. , defect) distortions, as is well known in the context of
semiconductors.

In the studies involving a single kink we use chains

with fixed boundary conditions. All other studies are per-
formed on even length rings with periodic boundary con-
ditions.

The analytic calculations of Sec. III do not treat the
electron-phonon coupling in a fully self-consistent
manner; this can, in general, only be done numerically.
Here we integrate the equations of motion derived from
the SSH Hamiltonian on a large ring (98 sites) and remove
energy (by setting the velocity to zero at each time step;
for details of this procedure see Appendix C) until the to-
tal energy reaches a minimum. We assume that this is the
fully self-consistent solution to the defect-modified SSH
Hamiltonian. At time t =0 we have the same level of
consistency as in the analytic calculation and find quanti-
tative agreement between the analytically and numerically
calculated locations of the impurity states. We find that
the equilibrium, relaxed lattice configuration, and elec-
tronic band structure is typically achieved within 0.1—0.2
psec. The location of the impurity states is qualitatively
similar to those calculated analytically; the fully self-
consistent electronic levels being deeper, i.e., more local-
ized, than those calculated in the linear approximation (cf.
Fig. 1).

In agreement with the linear-response calculation of
Sec. III, we find that the localized state is accompanied by
a localized lattice distortion, consisting of a sharp step on
the weak bond neighboring the impurity and a tail (-g)
at the other side of the impurity. This means that of an
impurity on an even numbered site there is an antikink-
like step and a kink-like tail. Assignment of the
impurity-induced lattice defect as a bound state of two ex-
citations may seem surprising, but is justified by the nu-
merical observation that the wave function of the ultra-
band state is localized around the step while that for the
intragap state is localized around the tail. This being so,
under suitable conditions, it might be possible to separate
the step from its tail, producing a topological kink-
antikink pair with one of the kinks supported not by a
midgap state, but by the ultraband state. Indeed, in the
next section we shall find that this possibility is realized
and that it has important consequences for the dynamics
of the site-defected system.

U. INTERACTION BETWEEN A KINK
AND A SITE IMPURITY

A. Statics

In this subsection we start from an impurity and a kink
on nearby sites and allow the system to relax by removing
kinetic energy until an energy minimum is reached.
Analytical work in the continuum limit" and numerical
calculations for a discrete chain' indicate that a site im-
purity has a weak effect on a kink but a strong effect on
an antikink or vice versa. If we limit ourselves to the case
of a kink this means that the interaction with a site im-
purity depends on whether the impurity is on an even or
odd site. Our discrete lattice simulations show that these
two cases are indeed qualitatively distinct and these are
described separately below.

(1) Impurity on an odd site The kink mi.dgap state has
vanishing wave-function amplitudes on odd numbered
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FIG. 5. Schematic of the electronic spectrum during a kink

impurity interaction when the kink and impurity are in the same

topological sector: (i) At t =0 the kink intragap level (K) is

above rnidgap and the impurity intragap state (I) remains at the
lower edge of the conduction band. There is an impurity-

induced ultraband state { U) below the edge of the valence band.

(ii) The ultraband impurity state ( U) deepens, supporting the

trapped kink and the kink ultragap state (K) drops to the

valence-band edge.

sites and thus we expect that it is barely affected by the
impurity potential. We indeed find that the midgap state
and the intragap impurity state interfere only very weakly.

(2) Impurity on an even site. In this case one expects
that the two intragap states interfere, since the midgap
state has a nonvanishing amplitude on the impurity site.
Our initial configuration of kink and impurity has an
electronic spectrum in which the kink intragap level is
shifted from midgap, and the impurity has an ultraband
but no intragap level [(i) in Fig. 5]. On relaxing the sys-
tem, for a weak impurity

~
Vp

~

&b,p, there is simply a
quantitative renormalization of these levels: the kink in-
tragap state moves closer to midgap and the impurity ul-
traband level deepens. There is still, however, no intragap
impurity state. The lattice distortions of the kink and im-
purity do appear to interact only weakly and the relaxed
lattice is a linear superposition of the distortions of the
kink and impurity.

Relaxation in the presence of a strong impurity,
~

Vp
~

) hp, is qualitatively different. The kink becomes
trapped around the impurity with a width of only one or
two lattice sites. This trapped kink is supported by the
impurity ultraband state. The kink intragap level is now
redundant and may, if doubly occupied, drop back into
the valence band [(ii) in Fig. 5]. If the kink level is only
singly occupied, the kink and impurity intragap levels
form a polaron in addition to the trapped kink. One
might suppose, however, that the configuration with a
free antikink at the center and a pair of kinks at the chain
ends will be favored energetically. We find that this con-
figuration, although energetically less favorable than kink
trapping, is in fact metastable. We have made no estimate

of the energy barrier between them and both may occur in
the real system.

B. Dynamics

The above study of the interaction of static kink and
impurity is clearly not the whole story: we can expect
that the dynamics of a single kink and impurity may well
show new effects. To investigate these we boost a single
kink towards an impurity such that before collision the
kink has reached terminal velocity and the impurity-
induced lattice defect has substantially relaxed.

(I) Impurity on an odd site Fo. r small
~

Vp
~

( &b,p) the
impurity-induced lattice distortion is sufficiently small
that the kink can "ride over" it. For large

~
Vp

~
( & b,p)

we have seen that for different velocities the kink can be
either reflected or transmitted. Although we have not
carried out systematic studies of kink-impurity dynamics,
we expect that the outcome of a collision may not be a
simple function of velocity. Other parameters, e.g., reso-
nances of the kink-impurity system or the presence (or ab-
sence) of phonons may also be important to the outcome
of the collision. (In P dynamics' it has been shown, for
KK collisions, that there are windows of reflection within
the region of transmission. Even more complex dynamics
is observed for kink-breather collisions. )

(2) Impurity on an euen site For low .
~

Vp
~

( & b,p) we
again find that the impurity-induced defect can "ride
over" the kink [Fig. 6(a) shows the case Vp —0.255p].
Here, however, as the kink approaches the impurity the
kink "midgap" state drops below midgap. After the kink
has passed through the impurity this state returns to
midgap and the kink and impurity evolve independently.
However, for large

~

Vp
~

( &b,p), we find that the kink
initially accelerates to a high propagation velocity (greater
than the maximum uniform propagation velocity V in
the defect-free system). However the propagation is
smooth with no evidence of a kink tail structure as ob-
served in the propagation of a single free kink. On ap-
proaching the impurity (at a separation of about five lat-
tice constants) the kink is rapidly accelerated to a very
high velocity ()250V ) and trapped by the impurity
[Fig. 6(b) shows the case of Vp 2.56p]. The kink ap-
pears to remain trapped for all times. The trapped kink is
now supported by the ultraband state of the impurity and
the midgap state of the free kink is redundant. For a neu-
tral kink this midgap state is singly occupied and thus
does not fall back into the valence band but, together with
the intragap impurity state, forms a hole polaron. Thus
in this case we have the novel situation of a donor impuri-
ty inducing a hole excitation.

The trapping of a kink results in the loss of midgap ab-
sorption, indeed the direct detection of such a trapped
kink will be extremely difficult —transitions from the ul-
traband impurity state to the condition band have energies
well above the band edge and numerically are seen to be
weak. It must also be remembered that such a deep-lying
ultraband state may hybridize with the ~-band electrons
or form intraband resonances, the effects of which are not
easy to calculate without more detailed band-structure in-
put. These ultraband impurity levels have been theoreti-
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VII. PHOTOEXCITATION IN THE PRESENCE
OF A SINGLE SITE IMPURITY

A. Adiabatic dynamics

80

00

FICx. 6. D. Dynamics of a collision of a moving kink with a stat-
ic site impurity: (a) Weak impurity, VO-0. 25ho, the kink rides
over the impurity; (b) strong impurity, V0-2. 56O, the kink is
trapped by the impurity.

cally described and experimentally observed in doped
semiconductors with a distinct gap below the valence

1

band. As discussed in Ref. 20 the accompanying intraga
evel has the character of an antibonding "host state"

~ P

(dangling bond).

In an earlier work we have shown that breathers
(coherent nonlinear phonon packets) are produced in the
photoexcitation of pristine trans-(CH)x. This results in a
sub-band edge contribution to the photoinduced photoab-
sorption. In this section we consider photoexcitation of a
single electron in the presence of a single site impurity.
As representative examples we consider four simple cases
of a single impurity of strength

~
Vo

~

-2.56o on a 98 site
ring. (We find for a weak impurity,

~
Vo

~
(60, that the

evolution during photoexcitation is qualitatively similar to
that of the undefected system. This regime will not be
described further here. ) In each case the initial condition
is the fully-self-consistent ("relaxed", cf. Appendix C) lat-
tice distortion and band structure. At t =0 the system+ is
"photoexcited" by manually removing an electron from
the highest occupied level and placing it in the appropri-
ate unoccupied level. This level occupancy then remains
fixed throughout the adiabatic dynamics. Figure 8 shows
a schematic of the evolution of the energy levels and bond
order for each of the four examples considered below.
(Note that we have not attempted to incorporate selection
rules for charged versus neutral soliton branches in this
work. )

& ) mpty in. tragap impurity state: Promotion into the&l~ E
intragap state Here w.e find that the impurity traps a
negatively charged kink supported by the ultraband state.
The intragap impurity state drops to midgap forming a
free neutral antikink which is expelled by the trapped
kink. The singly occupied state at the top of the valence
band and the empty state at the bottom of the conduction
band immediately move into the gap forming a hole pola-
ron on the opposite side of the ring from the impuritpuH. y

VI. POLARONS AND BIPOLARONS

In the case of the undoped system, addition of an extra
electron forms a polaron. In the presence of a site impuri-
ty an added electron in the intragap impurity state (a neg-
atively charged site impurity) self-traps by increasing the
localization of the impurity-induced lattice distortion.

l lar
However, unlike the polaron, there may be for suffi i t-u icien-
y arge

~
Vo ~, only a single state in the gap, which

derives its parentage from the intragap impurity state (see
Fig. 7)—the ultraband state is also further localized.

The ae addition of two electrons to the pure system creates
an unstable bipolaron which rapidly decays to a separated
kink-antikink pair. In the presence of a site impurity, we
again find that a kink-antikink pair is produced, seeded
around the impurity lattice defect. Here, however, for

~
Vo

~

) b,o the step evolves to a trapped antikink support-
ed by the ultraband state while the tail evolves to a free
kink, supported by the intragap impurity state which
drops to midgap. This free kink is expelled at the max-
imum free kink velocity ' by the antikink trapped at the
impurity.

5fXXXXVXV,VVXVXVXXV,XXXMX9%99XXV~

/
-II

-4
Vp/Ap

FIG. 7. Numerically calculated locations of site impurity-
induced levels for a negatively charged donor impurity as a
function of the impurity strength, Vo. Dashed line: "unrelaxed
t =0 calculation; solid line: numerically consistent calculation
of Sec. VI.
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(Fig. 9). (This apparent action at a distance should likely
be attributed to adiabatic dynamics and boundary condi-
tions employed in these calculations, and is probably not
physical. )

b
mpty intragap impurity state: Promotion int th

ottom of the conduction band. In this case a negatively
charged trapped kink and positively charged free antikink
are formed in -0.1 psec. The singly occupied states at
the top of the valence band and the bottom of the conduc-
tion band move into the gap creating an excitonlike struc-
ture far from the impurity. The exciton is dressed by a
breather, which has the electronic signature of states oscil-
lating from the band edges deeply into the gap: the state
arising from the valence band is doubly occupied, that
coming from the conduction band is empty.

(3) Singly occupied intragap impurity state: Promotion
into impurity state. Here a negatively charged free an-
tikink is expelled by the negatively charged trapped kink.
A hole polaron is formed at the impurity and is expelled
from it as a dynamic polaron" —we find no evidence for
an internal oscillatory mode being excited in the polaron
(Fig. 10).

(4) Singly occupied impurity state: Promotion to the bot
tom of the conduction band Anegat. ively charged trapped
kink and a neutral free antikink form within 0.1 psec. A
dynamic exciton is expelled by the impurity and a breath-
er forms a long way from the impurity.

B. Optical absorption
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With these particularly complicated dynamics it is not
easy to predict what the detailed effects on the photoin-
duced optical absorption are. Using the techniques
described elsewhere, we have numerically calculated the8

optical absorption of the system after it has evolved for a
substantial period ( —0.3 psec) for the cases (1) and (3) in
Sec. VII A. (Care must be taken in calculating the optical
spectrum as [H&,HssH]=0 and thus Hi contributes to
neither the current operator nor to the effective electronic
Hamiltonian used in the sum rule. ) As preliminary input
we first calculate the optical absorption of the dimerized
lattice with single neutral and charged impurities
( Vp —2.5 Ap ) . The presence of the intragap impurity
level allows sub-band-edge photoabsorption arising from

I
EO

——-K0
EO

KT

Zo

0 0

j
I

1 T
~ T

j
I

j

j T

~ i

f

0
Z

200

FI~~. 8. Schematic of the evolution of energy levels and order
parameters for four examples of photoexcitation in the presence
of a site impurity. (i) Initial configuration, (ii) t =0 photoexcit-
ed configuration, (iii) fully evolved configuration. [(a)—(d) cor-
respond to the four cases described in Sec. VII.]

FIG. 9. Evolution of the lattice following photoexcitation of
one electron from the top of the valence band into the empty in-
tragap level of a neutral donor site impurity.
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FIG. 10. Evolution of the lattice following photoexcitation of
one electron from the top of the valence band into the singly oc-
cupied intragap level of a charged donor site impurity.

FIG. 11. Difference, 4a(co), between absorption of site-
defected lattice ( Vo ———2.560) and purely dimerized lattice.
Solid line is neutral impurity; dashed line is charged impurity.

transitions into the impurity level from the valence band
and, for the charged impurity, out of the impurity level
into the conduction band. In Fig. 11 we show the differ-
ence, ba(co), between the absorption of a ring with an im-

purity and that of the same length ring without an impur-
ity. For the neutral impurity we see a single sub-band-
edge enhancement, arising from transitions from the
valence band into the impurity level. This is compensated
by above-band-edge bleaching in the range —(2—3)bo.
For the charged impurity the situation is similar: the
sub-band-edge enhancement now comprises a strong sin-
gle peak, arising from transitions into the impurity state;
it also has a low-energy shoulder, arising from transitions
from the singly occupied impurity intragap level into the
conduction band. We see that once again there is above-
band-edge bleaching, but it is more uniform in energy.
This high-energy bleaching is due to the very sharp lattice
distortion, the description of which requires high wave-
vector, and hence high-energy, Fourier modes. In both
cases the bleaching at the full bandwidth is due to the
loss, on adding an impurity, of the square-root singularity
in the density of states at the band edge.

In Fig. 12 we show the difference between the optical
absorption of the photoexcited system and the dimerized
system with the appropriate impurity. Below the band
edge the two cases are qualitatively similar: there is a
strong midgap transition involving the free kink midgap
level; the peak at -Ap/2 is due to transitions into the po-
laronic level. ' The sub-band-edge dip (actually a bleach-
ing for the neutral impurity) arises from the loss of ab-
sorption into the impurity state, which has now evolved to
midgap. The sharp bleaching above the band edge results
from the loss of the low wave-vector states needed to pro-
duce the broad polaron. For the neutral impurity there is
a further bleaching over a wide energy range, arising from
the large range of wave-vector states needed to describe
the trapped kink. (This bleaching is largely absent in the
case of the charged impurity since the step produced in
the relaxation of the ground-state system is topologically
similar to the trapped kink. ) It is also important to note
that the ultraband level only couples weakly to the contin-
uum state of the conduction band.

C. Photoexcitation in the presence
of more than one site impurity

In each of the above experiments the intragap impurity
state evolves to a midgap state. However, in a more gen-
eral photoexcitation experiment this need not happen. In
particular for a system with a high impurity density, but
optically pumped at low power, insufficient electrons are
photoexcited to allow all the impurity states to form
kinks, with their associated midgap states: thus the "im-
purity band" is largely unaffected. As a model of such an
experiment we consider single electron photoexcitation in
a system with 3 or 5 impurities of strength Vp 2.56p
placed randomly on a 98 length ring.

On relaxing to a self-consistent ground state we find
that if the impurities are widely spread ( )g) the electron-
ic levels evolve independently and are almost degenerate.
For closely spaced impurities ( (g) the impurity wave
functions overlap, lifting the electronic degeneracy and
creating an "impurity band. "
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FIG. 12. Change in absorption, ba(co), of the defected sys-
tem following photoexcitation of an electron into the intragap
level for neutral impurity, solid line, and charge impurity,
dashed line.
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(1) Empty intragap states: Promotion into the bottom of
the conduction ba nd. We find that the singly occupied
states at the top of the valence band and the bottom of the
conduction band are prevented from forming a KK pair
(with their associated midgap states) by the presence of
the intragap impurity states. Instead the system evolves
to a broadened impurity band and an exciton, accom-
panied by a high-energy breather. It is interesting to note
that all of the important dynamics occurs between two
widely spaced impurities, the rest of the system acting as
a "spectator. " Here again the effective chain length for
dynamics is essentially limited not by the physical size of
the system, but rather by the impurity spacing.

(2) Empty intragap states: Promotion into the lowest in
tragap state. Here the singly occupied intragap impurity
state drops below midgap and, with a second impurity
state, forms (between two widely spaced impurities) a po-
laronic excitation. This qualitative change from impurity
to polaronic electronic states is allowed by the collapse of
the antikink and kink tails of a pair of closely spaced im-
purities, which form a pair of trapped kinks. As in case
(1) of this subsection, there are a large number of intragap
states —two associated with the polaronic excitation, three
associated with inert impurities, and up to six other states
associated with breathers.

0
0

00

VIII. FULL LATTICE RELAXATION
AROUND A BOND IMPURITY

As in the case of the site impurity, the analytic calcula-
tions of Secs. II and III do not treat the electron-phonon
coupling consistently. Numerical minimization of the en-
ergy of the bond-defected system may result in a qualita-
tive alteration of the electronic spectrum of the system.
As Fig. 2(b) shows, the electron-phonon coupling may re-
sult in a delocalization of the intragap states. This is par-
tially compensated by an increase in the localization of the
ultraband states. (A similar "catastrophic" Franck-
Condon renormalization has been previously discussed by
Anderson in the context of disordered semiconductors. )

Since the bond impurity induces localized levels symme-
trically about midgap and since for many values of the
impurity strength there are no intragap levels, one expects
the dynamics of the system to be similar to those of the
undefected model. Since the impurity is on a single bond,
the induced lattice defect is symmetric and about the band
center and topologically trivial (Fig. 4).

IX. KINK —BOND-IMPURITY INTERACTIONS

The outcome of kink —bond-impurity interactions is
severely restricted by the electron-hole symmetry of the
band structure. This keeps the kink intragap level at
midgap and ensures that kink-impurity interactions main-
ly occur via the lattice degrees of freedom. Nevertheless,
this still enables the impurity to affect the kink dynamics.
Figures 13(a) and 13(b) show the dynamics of a kink
launched with the same velocity at a strong bond impurity
of strengths 8'p ——Ap/2 and 8'p ——Ap, respectively.
The smaller impurity defect allows the kink to ride over
it, while the stronger impurity reflects the kink.

A case of particular interest is that of tF =0, i.e., the

FIG. 13. Dynamics of a moving kink with a strong bond im-

purity of strength: (a) Wp- —hp/2 and (b) Wp- —hp.

bond defect is such that there is no electronic coupling be-
tween the m and (m +1) sites (there is still of course cou-
pling through the phonon field). This could approximate
the effects of a short break in the chain or the presence of
a local amorphous region. Here we find that for a wide
range of kink kinetic energies and for an impurity on ei-
ther a weak bond or a strong bond the kink is reflected by
the defect. This suggests that in the real material kinks
may be confined over short segments of the system.

X. POLARON-BOND IMPURITY INTERACTIONS

In the undefected system the polaron has a pair of in-
tragap levels symmetrically around the Fermi level. We
have also seen that the purely dimerized lattice in the
presence of a bond defect may (if the defect either
strengthens a weak bond or weakens a strong bond) have a
pair of intragap states. It is, therefore, not surprising that
the polaron and bond impurity may both be supported by
a single pair of intragap levels which are more localized
than either the polaron or defect levels separately. The re-
sulting defect is strongly localized on the bond defect. (If
the bond impurity induces ultraband states the impurity
and polaron evolve independently asymptotically. )

XI. PHOTOEXCITATION IN THE PRESENCE
OF A SINGLE BOND IMPURITY

In the following typical photoexcitation experiments
the impurity is of strength 8 p = —6p and weakens a
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FIG. 17. Difference, An(co), between the absorption of a
strong bond-defected system and the purely dimerized lattice.

enhancement at -60/4 arising from transitions between
the impurity levels; there is also a smaller, less sharp
enhancement at -350/2 arising from transitions from
the lower impurity level into the conduction band. This is
compensated by a shallow broad bleaching above the band
edge. Figure 18 shows the difference, b,a(co), between the
absorption after and before photoexcitation. We see a
sharp bleaching at —Ao/4 due to the loss of the transition
between the impurity levels. A strong midgap enhance-
ment arises from transitions between the kink midgap lev-
els and the bands; it has a high-energy shoulder arising
from transition within a breather. The above-band-edge
bleaching compensates for the breather absorption.

XII. SUMMARY AND DISCUSSION

V)
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FIG. 18. Change in absorption, b,a(co), following photoexci-
tation of a strong bond-defected system.

In this paper we have investigated the effects of isolated
impurities on the static and dynamic properties of a
trans-polyacetylene chain described in terms of the SSH
model. The impurities have been assumed to couple to
the electrons and modeled either as a potential acting on
the electron density at a single site ("site impurity' ) or as
a defective hopping matrix element of a particular bond
("bond impurity"). Influences on the lattice dynamics
occur only through the electron-phonon coupling.

80

The equilibrium configurations of the defected system
have been analyzed both analytically and numerically.
The impurity potentials produce localized electronic
states, with levels both in the gap and in the ultraband re-
gion, together with lattice distortions in the vicinity of the
impurities. Weak potentials ( &Ap) induce shallow im-
purity levels and small distortions. In this case, the sys-
tern is well described by the analytic expressions for the
linear lattice response. The fully self-consistent lattice re-
laxation, as calculated numerically, simply further
enhances localization. Strong impurity potentials ( & b.p)
give rise to deep levels initially, but the subsequent lattice
relaxation can now qualitatively change the level struc-
ture. In fact, we have observed that for sufficiently weak-
ened strong bonds the intragap levels can become less lo-
calized. We believe that this strong effect of the lattice
distortions corresponds to the situation envisaged in disor-
dered semiconductors some time ago by Anderson: the
more localized the electronic states are (due to disorder)
the more important is the subsequent self-energy correc-
tion due to the electron-phonon interaction. It can even
lead to a complete expulsion of levels from the gap. A
particularly striking phenomenon is the complete absence
of localized gap states for a kink trapped on a sufficiently
strong (

~
Vp

~

) kp) site impurity. These are examples of
"hyperdeep" traps where the bonding state ( —dangling
bond) is completely healed by the kink. An important
general question which this raises, and which merits fur-
ther investigation, is the relationship between linear quan-
tum relaxation mechanisms (i.e., phonon emission and/or
absorption) and relaxation via adiabatic but nonlinear
dynamics. Similar questions arise when considering
mechanisms limiting kink velocities in the SSH model:
Cerenkov-like linear phonon emission descriptions may be
better approached by quantizing nonlinear multiphonon
bound states, which constitute the classical relaxation
path in these highly nonlinear, low-dimensional systems.

Our studies of collisions between nonlinear excitations
(kinks, polarons) and impurities have shown that reflec-
tion, transmission, and trapping are all possible, depend-
ing on the type of the impurity, its strength, and the velo-
city of collision. Interestingly, while kinks may be
trapped by site defects, polarons may be trapped by bond
defects.

Contrary to naive expectations, the presence of strong
lattice defects can enhance the production of nonlinear ex-
citations, including some not available to the undefected
system. Thus the interaction of a kink with a site impuri-
ty can produce a polaron (Sec. V). Again, bond defects
act as natural nucleation sites for kink-antikink-breather
production in photogeneration experiments. Quite gen-
erally photoexcitation into intrinsic (e.g., polaron) or ex-
trinsic (site or bond) gap states, or interband transitions in
the presence of such states, provide efficient mechanisms
for generating the full spectrum of nonlinear elementary
excitations: dynamic kinks (and antikinks), excitons and
breathers, as found previously for pure cis- and trans-
polyacetylene models, but also static and dynamic pola-
rons (e.g. , Sec. VII and Fig. 10). It is possible that a
trapped kink-antikink pair generated simultaneously with
a polaron would relax to a metastable state by dissipating
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the polaron energy, and would require quantum tunneling
for recombination.

It is worthwhile bearing in mind plausible values for
impurity strengths in realistic polyacetylene contexts in
view of these novel features. V0 might be as high as -5
eV if due to Coulomb effects in ions, i.e., —(5—10)b,o,
where strong electron-phonon renormalizations are ex-
pected. W0 is small if representative for cis segments
(-0.1 eV-bo/10), but large if simulating chain breaks
( —to ). Several controlled experimental approaches to
producing segmented polyacetylenes and other conducting
polymers are now developing —including cis-trans mix-
tures, block copolymers, finite polyenes, and selective sub-
stitutions. We hope that the present studies will assist in
the interpretation of data from these materials: the possi-
bility of trapped kinks on sp defects in partially deuterat-
ed trans-(CH)„ is already suggested by early data.

The connection between bond or site defects and the
widely used concept of "conjugation length" is also
worthy of further study. We have noticed that a chain
break acts like a barrier from which kinks are reflected
over a wide range of energies and polarons may be
trapped.

It is appropriate to discuss the possible implications of
our results for experiments on pristine or weakly doped
polyacetylene. The most immediate impact of impurity
gap states is to produce photoabsorption and photocon-
duction below the direct gap 260. This has often been at-
tributed to an Urbach tail, i.e., to quantum fluctuations of
the phonon field leading to kink-antikink production for
photon energies below 250. This mechanism is outside of
the scope of the present adiabatic calculations, but the im-
purity states will also result in intragap absorption and
especially influence long-time photoconduction tails. The
photogeneration of polarons close to impurities has in-
teresting consequences for photoconduction since polarons
can contribute both to intra- and interchain transport.
The efficient photogeneration of kinks and polarons in the
presence of defects could bear directly on the controver-
sial question of photoinduced photoabsorption and ESR:
(i) polarons are accompanied by spin, and (ii) kink-
antikink channels are expected to be dominated by
charged (i.e., spinless) species in ideal models. This
second statement relies on electron-hole symmetry, which
is broken by site defects. The spectroscopic detection of
"trapped kinks" which are not accompanied by intragap
levels but supported by inert ultraband levels, is an intri-
guing challenge. (We note that some evidence exists
for differences in optical absorption in polyacetylene de-
pending on the dopant species. ) Clearly, careful (particu-
larly time-resolved) phototransport, ESR, and absorption
experiments will continue to provide key information if
samples are well characterized and impurity level can be
controlled. For example, differences (e.g. , in photogenera-
tion) between compensated and uncompensated samples
would be interesting. We note that recent photostudies of
polythiophenes have revealed some intragap absorption
ascribed to polarons arising from impurity gap states —in
addition to intrinsic photoinduced polarons and bipola-
rons.

We conclude by emphasizing some limitations of our

simple modeling of generic bond and site impurity types.
The long-range nature of Coulomb fields could well be
relevant and modify our results. Also, nonadiabatic ef-
fects have been neglected. These could be especially im-
portant in the strong electron-phonon renormalization re-
gimes we have defined where Franck-Condon effects
should be significant (as discussed in a related context by
Anderson). Again, it is possible that a trapped-kink-
antikink pair (photo)generated simultaneously with a po-
laron would relax to a metastable state by dissipating the
polaron energy, and would require quantum tunneling for
recombination. Finally, electron-electron correlation ef-
fects are now generally believed to be non-negligible. The
interplay of correlations and disorder should be expected
to play intricate roles in conjugate polymers —as that they
do in other restricted geometry electronic materials such
as thin wires or metal-oxide-semiconductor field-effect
transistors (MOSFET's); indeed the strong electron-
phonon role makes the competitions more interesting, just
as in other polaronic contexts.

APPENDIX A: CONTINUED-FRACTION METHOD

In this appendix we use a continued-fraction scheme
to derive the modifications to the band structure due to
the presence of a site or bond impurity for a homogene-
ously dimerized lattice (thus neglecting lattice relaxation
effects due to electron-phonon interactions). The local
density of states is given by

p„(E)= ——lim ImG„„(E+ig),1

~ r]~0
(A 1)

where G„„(z)=(n
~

(z H) '
~
n) is the d—iagonal matrix

element of the resolvent in real-space representation. It
can also be viewed as a propagator starting at site n and
returning to site n.

For the one-dimensional tight-binding Hamiltonian

H =g E„c„c„—g t„„+i(c„c„+i+c„+ic„), (A2)

G„„(z)can be represented as

G„„(z)= [z —E„—XL (z) —X~ (z) ] (A3)

where the self-energies XL and Xz for propagation to the
left and right, respectively, are given by the continued
fractions

XL, (z) =
Z —~n —1

2
n —1,n

2
n —1,n —2

(A4a)

XR(z) =
2

tn, n+1
2

tn+1, n+2
Z —~n+1

(A4b)
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A. Purely dimerized lattice

We consider a dimerized lattice of infinite extent

n+I @+2

Taking into account the appropriate signs in (A7), as de-
rived previously, we obtain the solutions given in Eq. (4).
It is easy to convince oneself that these solutions corre-
spond to a positive density of states.

where tz tp+———,'( —I)"5p and ta tp ————,'( —I)"hp with
constant on-site energy (c.„=0). In this case Eqs. (A3)
and (A4) imply that the self-energies for the propagator
G„„(z)are related to each other as

Xt, ——ta/(z —Xa ),
Xa t„ /(z ———XL, ),

giving

(A5a)

(A5b)

2zXt ——z +tw ta+[(z +—t„ta) —4taz ]—2 2 2 2 2 2 2 2 2 &/2

(A6)

E & (t„+ta ) and E &
I
t~ ta I—

but imaginary for

I
t~ —ta

I
&E'«,'+ta .

(A8)

(A9)

The density of states which vanishes in the former region
and is finite in the latter shows the expected band struc-
ture: namely bands separated by a gap of width 260.
Equation (A7) leads to the characteristic square-root
singularities in the density of states at the band edges.

%'e still have to determine the appropriate sign of the
propagator. Within the region of the bands this is simply
accomplished by requiring the density of states to be posi-
tive. It follows that the positive sign has to be chosen in
Eq. (A7) for E & t~ + ta, whereas the negative sign is ap-
propriate for E &tz+tz. Another criterion has to be
used to determine the appropriate sign for "intragap" and
"ultraband" energies. Alternatively, as shown in Appen-
dix 8, one can calculate G„„(z) using periodic-boundary
conditions and it turns out that the above choice is ap-
propriate for all energies.

B. Site impurity

A site impurity as modeled by Eq. (2) adds energy Vp
to a single site m. Equation (A3) becomes

Equations (A3), (A5), and (A6) yield the following form
for the propagator

G„„(z)=+z/[(z' t„' ta—)' 4t„'ta—]'"—. (A7)
For z =E the denominator in Eq. (A7) is real and nonzero
within the regions

G (z) = (z —XL —Xa )

where

(A12)

Xa =(tE/tz) Xa, (A13)

with XL and Xa still given by Eqs. (A5) and (A6). Again
the positions of the band edges are not changed. Addi-
tional states are found as solutions of the equation

E —Xt (E)—(ta/t„) Xa(E) =0 .

We find pairs of solutions +
I

E
I

with

(A14)

I
E

I

=
I
ta+t„+[(ta —tz) +4tata]'

I

. (A15)
2

I
ta

I

The plus and minus signs in (A15) correspond to pairs of
ultraband and of intragap states, respectively. The ap-
propriate signs in Eq. (A7) (plus for the ultraband, minus
for the intragap region) specify the parameters for which
the solutions (A15) occur. Ultraband states are found if

I
ta

I
& t~ whereas intragap states develop either if

4 &
I
ta

I
and tA & ta or if t~ & I 41 and 4 &ta.

APPENDIX 8: GREEN'S FUNCTIONS FOR SITE
AND BOND IMPURITIES

AND LINEAR LATTICE RELAXATION

The electronic Careen's functions

G „(iE)= (m
I
(iE —H, i) '

I
n ),

where H, ] is the electronic part of the Hamiltonian, deter-
mine the impurity-induced lattice relaxation, as shown in
Sec. III. In the following we will evaluate these functions
for a purely dimerized lattice. This yields the linear
response of the lattice to the impurity-induced changes in
the electronic structure.

A. Pure case (H~ ——Hq ——0)

For later use we determine first the Green's functions
G „(iE) for the pure system which is described by the
Hamiltonian

C. Bond impurity

A bond impurity as modeled by Eq. (3) modifies the
transfer matrix t +]——tz to tz ——ted+8'o. The propa-
gator (A3) becomes

G (z) =(z —Vp —XL —XR) (A10) Hp = g[tp+ 2 ( —1) Ap](c c + i+H. c. ) (82)

with XL and XR as given in Eqs. (A5) and (A6). We find
the same positions for the band edges as in the pure sys-
tem. However, there is a possibility of further contribu-
tions to the density of states at the poles of G (z), i.e. ,
for energies satisfying the equation

where n = 1, . . . , n and c&+ &

=c &. The canonical
transformation

c„=(—i)"N ' g expIi [kn —( —I)"Oj, ] I
k

E —Vp —Xt (E)—Xa(E)=0 . (Al 1) x [(—I )"ttk+ bk], (83)
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where —~/2 &k (~/2 and ak, bk are fermion operators,
diagonalizes Ho if L9k satisfies the relation

Ek =(4tpsin k+6.ocos k)' (86)

2tptan(29k ) =b,pcotk .

Ho assumes the form

0 g gn( k )Ek ((zk(zk bkbk )
k

where

(84)

(85)

It is straightforward to calculate the Green's functions
G„(iE)using Eqs. (83)—(85). We find

6 „(iE)=—iE[(E +4to)(E +&o)]

X( —1)'

if n -m is even and

Gp (
.E) (4t 2 gz) —1/2[( I )(m +n —()/zt) (E2+ gz) —1/2+ ( I )( I

m —n —1 )/22t (E2+4t2 )
—/2] I

m —n
I
/ (87b)

if n -m is odd, where

g = [(E +4t 2
)

1 /2
(E 2 + 2)

2
)

1 /2
]/ [(E 2 +4t 2

)
1 /2 + (E 2 + t) 2

)
1 /2

] (BS)

These functions are symmetric

6 „(iE)=G„(iE) .

B. Site impurity

(89)

easily carried out giving

Gtn (z) =Gt„(z) +Gtm (z) p 6 „(z), (811)
1 —V()6 (z)

where G „ is given by Eqs. (87).

The Green's function for the site impurity has already
been discussed in Ref. 11. For H, ] ——Ho+H' the operator
(z H, ) )

' ca—n be generally written as

(z —H 1) =(z Hp) g [H'—(z —Hp) ) . (810)
j=0

For the particular case H'=H) [Eq. (2)] the summation is

C. Bond impurity

We start again from Eq. (810) with H'=Hz, represent-
ed in first-quantized form

H2 IVO( I

)zz & & )zz + I
I
+

I

m +» & m
I

) .

Similarly, we can write

[Hz(z —Ho) ']'Hz=( —IVo)'"[p, (l~&&m I+ l~+»&m+ I+ez(lm&&m+1 I+ l~+ &&I I)]
where the coefficients pj and qj are determined by induction. We find

p, =
z [(g)+go&' —(g) —go)']

V, = z [(g) +go)'+(g) —go)']

(814a)

(814b)

where gp ——6' ' =6' +1 +1 and g, =6' '
+1 ——6' +1 . Combining Eqs. (Bl), (810), (813), and (814), we finally ob-

tain

GI„——GI„— z z I (1+ IVog) )(Gtm 6m+)n+Gt m+16, mn ) —~ogo(6(m Gmn+6(m+16m+)n)] .
,(1+ IVog))' —( IVogo)'

(815)

D. Linear response of the lattice

The knowledge of the electronic Careen's functions both
for the pure and impure systems allows us to calculate the
impurity-induced lattice distortion 6„—60 through Eq.
(10). Introducing the integration variable

x =[(Ez+4toz)/(Ez+bo')])/2

and using Eqs. (87) and (811), we find for a site impurity
at m

(&„—&p)/&o ———2A g( Vo/b o)
2

X J dx f (x)(+o g+x)

)& [(x —1)/(x +1)]I"—m+(1/2)
I

(817)

where

f (x) (gz x 2)1/2/[x 2{gz 1 )2

+(Vp/t)(p) (g —x )(x —1)], (Blga)
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o =( —1) (818b) OO

u„=u+ + ( —1)"up 1+2 g ( —1)"(b,„+k—bp)/bp
k=0

and the upper and lower signs correspond to n &m and
n & m, respectively. Equation (817) implies that both
bonds neighboring the impurity site are weakened. This
leads to an overall expansion of the lattice. To calculate
the displacements u„we use the relation

(820a)

u„=u +( —1)"up 1+2 g ( —1)"(b,„k &

—Qp)/gp
k=0

6,„=2a( —1)"(u„—u„+ ) )

and obtain the two expressions

(819)

(820b)
where u+ and u are the overall shifts for n~+ oo and
n ~—oo, respectively. Using (820a) for n & m and
(820b) for n &rn and performing the (820a) and (820b)
summations, we find

2 2 1/2
'1

u„=u++( —1)"up 1 —2Ag( Vp/bp) f dx(x —1)' f (x)[1+o. g/x][(x —1)/(x + 1)] "

where the upper and lower signs correspond to n )m and n (m, respectively. Identifying the two expressions for n =m
leads to the following result for the overall expansion

u+ —u =4Ag up(Vp/hp) f dx(x —1)' f (x)/x .

(821)

Proceeding in the same way for a bond impurity between sites m and m +1 and using Eqs. (10), (87), (815), and
(816), we find for n&m

(6 —5p)/kp=4ko' wg(g' —o' )((+0' + u)) f dx g) (X)[(x —1 )/(x + 1)] /h (x)

where

(823)

u = Wp/Ap,

g&(x)=x[(g —x )/(x —1)]'r

h(x)=[x(g —1)+w(x —l)(g+cr x)] +w (g x)(x 1—) . —
The local relaxation at the defect bond is obtained as

(824a)

(824b)

(824c)

(6 —Ap)/kp=4ko' wg'(g —o' ) f dx g2(x)/h (x)

where

gp(x) =x [(/+a x)/(g —o. x)]'r (x —1) '~ (x +1) ~ [(g+o. )(g —o x ) w(g+o x—)(x —1)] .

(825)

(826)

The integral (825) is dominated by the contributions around x =1. Therefore, writing the effective transfer integral
m, m+]

'~, ~+~= p+ 2 m p[ + m +( m
— p)/~p], (B27)

we realize that the lattice relaxation tends to increase the effect of the impurity potential. It follows that the localization
of intragap and ultraband states is further enhanced. The displacements u„are calculated in the same way as for the site
impurity. Using Eq. (820a) for n &m and Eq. (820b) for n &m, we find

u„=u++( —1)"up[1+4Ao- wg(g —o- )(g+o + w) f dx(x+1)g, (x)[(x —1)/(x +1)]'" /(xh (x)),
(B28)

where the upper and lower signs correspond to n & m and n (m, respectively. The overall shift u+ —u is calculated
by requiring Eq. (828) to be consistent with Eq. (825). This gives

u+ —u =8Aupwg(g —o )f d[(xg+cr +w)(x —1)g)(x)—xg2(x)]/(xh(x)) .
1

(829)
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Choosing a symmetric overall expansion (or contraction),
u+ ——+u„Eqs. (B21) and (B28) can be represented in the
form of Eq. (11) with 2 u, given by Eqs. (B22) and (B29)
for the site and bond impurities, respectively.

~ „ is now known and Eq. (Cl) is integrated by the stan-
dard Verlet algorithm (leap-frog, second-order central
difference scheme). If we discretize time in steps At, we
have u„(t) =u„(kit) = u„" and for Eq. (1),

APPENDIX C: MOLECULAR DYNAMICS TECHNIQUE k+1 k k —1
(~t) ~ n

2&g +&g (C6)

In this appendix we describe our mean-field adiabatic
molecular dynamics technique in detail. The adiabatic
(Born-Op penh eimer) approximation assumes that the
motion of the ions is described by well-defined trajectories
following Newton's law. This approximation is valid
when the Fermi velocity is much larger than the sound
velocity. For the parameter values used here we have
UF/U, =20. The equation of motion for the ions is then:

mu„=M „, (Cl)

where ~ „ is the time-dependent effective force acting on
the nth ion, arising from occupied electronic states and
harmonic lattice interaction. The force is thus generated
by the potential

V( [u„}) =Ep( I u„})+—g(u„+ t
—u„)2. (C2)

The term Ep( I u„}), the electronic energy for a given ion
configuration Iu„}, can be calculated as the sum of the
occupied one-electron energies:

Ep(Iu„})=pm E (C3)

5V(Iu„})
6u„

(C5)

Here m is the occupation number of state v with spin o.

and the sum is over all occupied states. The problem is
now to find the one-electron energies, given an ion config-
uration [u„},a total chain length X, and the number of
electrons in the system. Since polyacetylene has one rr
electron per CH group, there is exactly one electronic state
per site. The vr orbitals can thus conveniently be chosen
as a truncated basis set. The one-electron energies can
now be found by direct diagonalization of the N&&N
transfer matrix T( I u„}), with matrix elements:

T; i. ——[tp+a(u; —uj. )][5;~ &+5;1+&],

where (ij )=1,2, . . . , 1V Once the pote. ntial V(Iu„}) is
known the force F„ in Eq. (Cl) is found as the functional
derivative

(C7)

The numerical algorithm now consists of the following
steps: (1) Prescribe a given ion configuration [ u„} and the
number of electrons on a chain of length N. The t =0
and t =1 lattice configurations must be prescribed to ini-
tialize the code. (2) Diagonalize T([u„}). (3) Compute
V(Iu„}). (4) For a given n: change u„~u„+5. (5) Di-

agonalize T( I u„+5}). (6) Compute V(I u„+5}). (7)
Compute

-&n =—5V( [u„}) V( [u„+5}) —V( I u„})

6u„ 6

(8) Change n to n +1 and repeat from step (4) for all n in
[1,N]. (9) Time integrate Eq. (1) one time step b, t to find
the new I u„},i.e., [u„(t +Et) }. Repeat from step (2).

In addition to already mentioned parameter values (see
Sec. I), we have used At = 10 ' sec and 5=0.001
throughout this study.

The Verlet scheme is very efficient and quite accurate.
The energy is typically conserved to within 0.5% with no
significant systematic drift. A higher-order predictor-
corrector scheme would no doubt be more accurate but
would also require substantially more computer time and
storage. The Beeman algorithm, which has also been
used to some extent in conventional molecular-dynamics
(MD) calculations, has a slightly different definition of
the velocity, but can be shown to produce the same tra-
jectories as Eq. (C6); it is however more costly to com-
pute.

In some cases it is useful to "relax" the system by re-
moving kinetic energy (see main text). This is done by
resetting the velocity to zero at each time step (i.e.,u„=u„'). In this case Eq. (C6) is changed to
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