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Spin-orbit coupling in superlattices
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We derive the spin-orbit coupling Hamiltonian of standard superlattices in the crystal momentum
representation and discuss the effect of zone folding on spin-orbit interactions. We show that the
dominant part of the spin-orbit coupling comes from the electronic motion across superlattice inter-

faces.

In a recent paper,' the author developed a band theory
of superlattices, based on the crystal momentum represen-
tation. This theory did not take into account the spin-
orbit interaction. In the present paper we derive the spin-
orbit coupling Hamiltonian of standard superlattices in
the crystal momentum representation and discuss the ef-
fect of the folding of the homogeneous crystal Brillouin
zone into the superlattice Brillouin zone on spin-orbit in-
teractions. We show that the dominant part of the spin-
orbit coupling in superlattices comes from the electronic
motion across interfaces.

Consider the geometry illustrated in Fig. 1, in which
layers of crystals 4 and B alternate. Assume that the lat-
tices of A and B match. As in Ref. 1, we begin with a fi-
nite number .4~ of quantum wells in a sample of length
£ ,; then, at a later stage in the calculation, we let
A" — o0 and £ ,— oo, while keeping constant the density
of the wells per unit length, p=4"/.%,.

The crystal potential in a superlattice is modulated
along the superlattice axis by a shape function [for odd
4", Fig. 1(a)]
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FIG. 1. Origin of the coordinates for (a) odd and (b) even .4".

(+'=1)/2
S(z)= [6(z—nL +L,/2)
n=—(4-1)/2

—O(z—nL—-L,/2)], (1)

where O is the step function and L =L 4+ Ly is the su-
perlattice period. Since the spin-orbit coupling involves a
derivative of the crystal potential, S(z) leads to singular
terms in the configuration space. Such singular terms are
entirely appropriate under the assumption of conservation
of electron current, which is equivalent to taking the elec-
tronic velocity v and momentum p (p=mv) as continu-
ous quantities.

One can obtain the quantum-mechanical spin-orbit
Hamiltonian from the classical spin-orbit coupling Hamil-
tonian

Hgo= —efio-B/(2mc) , (2)

where #o /2 is spin and B is the magnetic field seen by
the moving electron in its rest frame. B transforms into
an electric field E in the crystal frame:

B=—EX(v/c)=—EXp/(mc) . (3)
The Thomas precession contributes a factor 3; therefore,

Hgo=—#a(eEXp)/(4m?c?) . (4)
Here the superlattice electric field is determined by

eE=—V[Vp+(V,—Vp)S]. (5)

V4 p are the homogeneous crystal potentials. Thus, the
total superlattice Hamiltonian, including the spin-orbit
coupling, is given by

H=Hpg+H,w+Hgs,+Hs,, (6a)
where
2
Hy=P vps P (VVyxp), (6b)
2m 4m?c?
HAW=(VA—VB)S, (6¢)
Hsi=—t (Vi —V5)o-(VSXp) , (6d)
4m“c
and
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HsF%Sm[V(VA—VB)xm- 6e) =(2m*?""'8(k—K'). For discrete k's, 8(k,k’) is the
4m“c kronecker delta.

H ,y is discussed in Ref. 1. Hg, arises from the pulse of
the magnetic field that an electron senses as it crosses an
interface. Hg, is the difference between the spin-orbit
coupling Hamiltonians of the homogeneous crystals,
modulated by the shape function. The magnetic field
which it corresponds to has essentially the same periodici-
ty as the homogeneous crystals.

To find the matrix elements of H in the crystal momen-
tum representation determined by one of the homogene-
ous crystals, say B, we write the ordinary Bloch functions
in terms of the momentum Bloch functions:

wnm(x)zﬁgd)w(k_G)e“k—G**. @)

Here n is the band index; p is the spinor index (u=1,2); k
is the electronic momentum confined to the homogeneous
crystal Brillouin zone; G is the reciprocal lattice vector;
@, is the momentum Bloch function spinor component;
and 7" is the crystal volume. ¢,,’s obey the normaliza-
tion and completeness relations?

6 (k—G)dpu(k—G)=8,, , (8a)
u (7

G,p

S 6ru(k—G)dy, (k—G')=8,,86c - (8b)
Similarly,

D fcrystdxtl;;ku(x)gb,,'k'#(x)=8,,,,:8(k,k’), (9a)

"

Ve (KW (X') =8, 8(x —x') . (9b)
ku ku up
n,k

Our notation is such that, for continuous k’s, 8(k,k’)

J

Let the spinor ¥,(x) be a solution of H with the eigen-
value €:

ZHW'%':E% . (10)
w

Since the set {1,,} is complete, ¥, can be expanded as

U(x)=3 a,(KYh,(x) . (1)
n,k

Substituting (11) into (10), multiplying with 1/;frkr#, in-
tegrating over the crystal volume, and summing over pu,
one finds the stationary Schrédinger equation in the un-
folded crystal momentum representation:

2 an;n'k’an'(k')zz':an(k) ’ (12a)
n' k'
where
*
Hyne=2 fc dxi, (X H B, (x) (12b)
7

ryst

The space integrals in (12b) can be evaluated by expanding
the crystal potentials:

Vap(x)=3 7 &PC . (13)
G

A typical space integral in (12b) is then of the form

S [ dxe O bk KB (14)

The factorization on the right-hand side of (14) is due to
the fact k is confined to the Brillouin zone of the homo-
geneous crystals.

Using (6)—(9), (13), and (14), one finds

(Hp)nicnic =8 S(KK)EL(K) , (15a)
2
(CHoaw e =~ S 8.(k—Gk'—G'+G")W(G") ,’,’:(k—G)¢5,,,(k'—G')
z G,G,G"u
sin[L 4(k, —k;—G,+G,—G,") /2] sin[4'L(k,—k})/2] (15b)
(k,—k,—G,+G,—G)}) sin[L(k,—k})/2]
.ﬁz *
(HsDnione=——35— 8.(k—G,k'—G'+G")W(G" )2 (k—G) {0 [2X (K —G)]} . b5, (k' — G’
sUmone =35 T G,G%MI o +G")W(G" )y, (k—G){o-[2X (K —G)]} b, (K —G)
. ) in[#L(k,—k;)/2
wsin[L , (k, — k! — G, +G.—G)/2]) 0L 1 (15¢)
sin[L(k,—k,)/2]
and
) in[.#'L(k,—k})/2
(Hs)nicn = i w S SL(R—G,k’—G'+G")W(G”)Sm[ ]

2.2
2m“c fz G,G',G",u,u’

sin[L 4(k, —k.—G, +G.—G.) /2]

sin[L (k, —k;)/2]

(k,—k,—G,+G,—G.)

¢ (k—G){o-[(K'—G' )X G"]} 1yt (k'—G) .

(15d)

Here, E; (k) is the band energy of the homogeneous crystal B, 8, restricts only the transverse components, and
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W(G)=r4&—78 . (15e)

In the superlattice limit, one has!

) 1 sin[A4L(k,—k,)/2] 27lZ

1 5,(k—G,k'—G'+G")=p8,(G,G'—G") S 8|k,k’ , 16
S Fw £, sin[Lk,—k) /2] + oL ; L 16
NIL ,—p

where [ varies over integers. According to (16), k and k’ are equal modulo (27/Z/L). This fact leads to the folding of
the Brillouin zone of the homogeneous crystals into the superlattice Brillouin zone. Assume a cubic lattice for the homo-
geneous crystals, with one of the crystal axes along the 2 direction. As in Ref. 1, define

k=x+ %di s (17a)
where
ky =k, , (17b)
ky, =k , (17¢)
T T
Tk, (17d)
1=0,+1,+2,...,+(;—1), (17€)
lo=L/a . (17)
a is the fundamental lattice constant of the homogeneous crystals along the Z axis. Define also
ay(k)=a, K—I—EI-Z— , (18a)
L
EB()=EP x4 2T2 (18b)
The Schrodinger equation (12a) becomes
> FHonpnr (K, (k) =¢€ay(K) , (19a)
n',l'
where
Hnt 1K) =B 11 En (1) -+ I () + K il 1) + I o (KO (19b)
L 20M% 1, msin[wl(1—=1")/1,]
a0 =L= W|G'—G -
=20 X * S G V3
ngbf: K+27TIZ_G ¢f'# k+27TlZ—G’}, (19¢)
" L L
.32 A
%j,‘;,,,,,(x)=’—ﬁf—2 S W|G'-G+ M2 ](—l)lAMsin[le(l—l')/lo]
2m C G,G''M
2712 ~ , , 2wl'2
x2,¢f,f K+ ZZ—G (o [2X(k—G)]} udl, |[k—G +”TZ , (19d)
Hopt
and
i#pL 2rM% 1, msin[7l (1—=1") /1]
FEa0="TPL 5 wlo_G _1)'
nizn'1(K) 4m2c? G,g',M + a ( ) (I—=1U'"—1,M)
Xzfﬁf,: Xt 2wz G {0'- G_G'— 2TM7Z % K_G,+27rlz ]
Pt L a L e
X bru x—G’+—27le * (19¢)
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In the expressions above, M varies over all integers and /, =L 4 /a. Clearly, the eigenvalues of (19a) can be designated by

€,(k). The corresponding solution can be written as

. (nl) B
1l’m’;L(X)“ Zli anp'y (K)lpn',x+(21rl"i/L ),u(X) :
n

(20)

Thus each superlattice subband is represented by a spinor wave function which generally does not have purely spin-up or

spin-down character.

There are several interesting features of the Hamiltonian given in (19). From (19d) and (19e), one sees that the spin-
orbit self-coupling of a subband occurs only through #52, since

Hoalim1(€)=0, (21a)
and
iﬁzﬂpLA , * 2mwlZ
;fj,%n,,(x)zﬁz— S WG —-G) 3¢5, |+ . —C
¢ 6@ B!
X jo- [(G—G')X K—G'—{—El—z ¢f'#' K-G’—}»ME (21b)
L ' L

252 arises from the zone folding of the difference of the
spin-orbit interactions of the homogeneous crystals 4 and
B. The lowest-order contribution of this zone folding to
the spin-orbit energy shift of a subband is given by

den (k) =901 mi(K) .

For Is£1', the effect of the zone folding on the spin-
orbit coupling of subbands (for both #°! and #5?) de-
pends on the fraction /,/l,. Because of our assumption
that the superlattice interfaces, as well as the crystal
layers, are reproduced perfectly throughout the crystal,
1471y is a fixed ratio of two integers. Let int(x) designate
the integer nearest to x. Two subbands / and I’ are
strongly coupled by the spin-orbit interactions, if

int[20, (11" /Ig]=2r +1,

(21¢)

(22a)

where 7 is an integer. [ and [’ are weakly coupled, or not
coupled at all, if

int[20,(1—1")/1y]=2r . (22b)

)
St = LW Gt 10 /10] S S8 |kt
’ 2m-“c G,u,p’
and
Hoafwr(K)=0 . (23b)

25! can be written in terms of quantities that are relat-
ed to the position and momentum operators of the elec-
tron in the homogeneous crystals. To obtain the spinor
representation of the position operator, one can use

S 85 (K — G (x) =8, 0 %= | (24a)

I

For example, if 2/,=1, (that is, L,=Lg), [ and I’ are
strongly coupled by the spin-orbit interactions for
[—I'=+1,+3,+5,..., while they are not coupled at all
for /—1'=0,%2,%4,.... Intermediate coupling occurs
for / and !’ such that

Iy Iy

I—l'zr*—{—— .

22
1, " al, (22¢)

The most significant feature of the superlattice Hamil-
tonian is the appearance of a spin-orbit coupling due to
the presence of interfaces, namely #'!. When an electron
crosses an interface, it experiences a pulse of magnetic
field in its rest frame. #! describes the coupling of this
magnetic field to the electronic spin. We expect #5! to
be an order of magnitude larger than %52, and thus to
dominate the spin-orbit interactions in a superlattice.
This can be seen from the fact that W(G) obtains its larg-
est value for G=0 and that W(0) is generally an order of
magnitude larger than the nearest W for finite G.* Thus,
if we set M =0 and G=G’ in (19), we find

27lZ . 27l'Z
Tzz {0 [2X(k—G)]} s, K—G+-7TL—Z . (23a)
-
which follows from the completeness relations. For fixed
‘ll,

ei"‘_G)"‘zzrb,"{ﬂ(k—G)w,,k#(x) . (24b)
n
The operation of x on v, can be written as
()= Ve X)X s nkge - (25a)

nok,

The left-hand side is given by
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XY =2, dnu(k—G) [_1% ]ei(k—G)~x
G

- 3

""Gd"ﬂﬁ#

3 .
X)$pu(k—G) [—zg—l:d),,'#(k—G)

(25b)

Thus,

(X nigismiew = _isnn"sﬂﬂ'%&k’k/)+8(k’k, Xppinw(k)

(26a)

where X is the interband component of the position
operator:
Xopsnw (k) =8, z¢,,ﬂ(k G)l

¢,, Wk—G).  (26b)

Note that X given by (26b) is diagonal in the spinor space.
This is in contrast to the discussion of Ref. 4, where it is
assumed that X has nonvanishing matrix elements for
pu+#u'. The representation of the momentum operator is
obtained in a similar fashion:

PYUnka(X) =" 3 Puien R Phmcwmi » 27a)
o
( p)nkp;n’k’,u’ =8!‘#'8( k,k' Vi
(27b)

X3 (k—G),,(k—G)pk,(k—G) .
G

It is also diagonal in the spinor space.
The interband component of the position operator can

ifipW(0)
2m?c?

Koo ()= sin[wl (1-1'"/1] S [245(

:::::

D'ys are related to directly measurable quantities such as
the momentum matrix elements and the energy band gaps
of the homogeneous crystal B. However, o-(ZXII?) is
nonzero only for the matrix elements which are off-
diagonal in the spinor space. This fact prohibits further
simplification of the Hamiltonian into an expression in-
volving only the momentum matrix elements. The f-sum
rule® does not appear to be usable, since it involves sums
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be converted into an equation for the momentum Bloch
functions in the k space. Multiplying X,;ny by ¢up
and using (8b), one finds

24, (k—G)= 3 byl k— G Xpma(k) . (28)
ak o

”'#';”H(
This equation can be used for an approximate integration
of the momentum Bloch functions. If I is sufficiently
large, which is almost always the case in practice, the con-
tinuous operator X, can be replaced by a constant opera-
tor with respect to k, in the slices of the Brillouin zone
corresponding to different I’s. As in Ref. 1, define

[2*!1(k)

]nu;n’u'

\I 2 T]Z
‘ f_[ FiQm/L)X, (k+2mj2/L) (292)
np;n'p’
Then,
27TI [
¢ k—G+— 2 ¢n,u(K G) ['@ )]n'u';ny, .
(29b)

2" is actually diagonal in the spinor indices, because X,
is.
Finally, let us define the operator

| | Py k)—ﬁz (k—G) ¢,,,, (k—G)d,(k—G) . (30a)
Although not identical, II is related to p:
(P ks nicp = O SUGK )y (K (30b)
Utilizing the results above, %! can be written as
]n,u,n y{apy [ZXH,, ‘u;n’ ;4( )]}[gg(x)]n'”y’;n’p' . (31)

over spinor indices, mixing the diagonal and off-diagonal
spinor matrix elements.
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