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Small-oscillation theory of the one-dimensional large optic polaron
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We study the small oscillations of the one-dimensional large polaron within the Holstein
molecular-crystal model. We show that additional stationary solutions are not minimal. We solve

analytically the classical equations of motion for the normal modes of the displacernents about the
minimal polaron solution, both determining the eigenspectrum and constructing the eigenfunctions.

I. INTRODUCTION

Quasi-one-dimensional solids (e.g. , anisotropic molecu-
lar crystals and especially polymeric crystals) are charac-
terized by considerable anisotropy in their electronic
transport properties. Within the framework of tight-
binding theory, J~~/Jj &&1, where J~~ and J~ are, respec-
tively, the intrachain and interchain electron-transfer am-
plitudes. Under these conditions, very general argu-
ments indicate that, with any electron-phonon cou-
pling, an excess electron or hole must occur in the form of
a quasi-one-dimensional polaron, whose intrachain dimen-
sion I. is large compared to the lattice spacing a, while
still being confined to the single chain. The study of the
dynamics of such anisotropic large polarons ' necessitates
the development of a formal theory of the small oscilla-
tion behavior of the one-dimensional large polaron within
a well-defined model. This is the object of this paper.
For this purpose we utilize the well-known Holstein
molecular-crystal model with its one-dimensional large-
polaron solution.

The results of these dynamical studies on one-
dimensional polarons ' have implications for the intra-
chain dynamics of intrinsic electronic defects in quasi-
one-dimensional solids [e.g. , solitons in (CH)„] (Refs. 8

and 9) and for the scattering theory of topological defects
in one-dimensional field theories. ' ' While the intra-
chain bandlike motion is the focus of our studies, ' the
interchain behavior is presumably characterized by
thermally activated hopping. ' ' The matrix elements
associated with such interchain hopping again inherently
rely on the intrachain eigenfunctions such as are
developed for the specific model studied in this paper.

In Sec. II we introduce the molecular-crystal model and
formulate the electron-phonon interaction within the adia-
batic approximation. In Sec. III we review the results of
the minimal-energy adiabatic solution —the Holstein large
polaron. In Sec. IV we discuss additional stationary adi-
abatic solutions' and demonstrate that these solutions are
not minimal but rather are saddle-point solutions. In Sec.
V we develop the theory of the small oscillations of the

large polaron. In Sec. VI we solve for the odd normal
modes, and in Sec. VII we solve for the even normal
modes. In Sec. VIII we give a few concluding remarks.

II. ADIABATIC THEORY OF POLARON-LATTICE
INTERACTIONS FOR

THE MOLECULAR-CRYSTAL MODEL

In this section, we formulate the theory of the adiabatic
polaron-lattice interaction within the framework of the
molecular-crystal model. Our starting Hamiltonian is

2 2

H = g ~ + , Mcopu—„—J g a„(a„+,+a„))2~ Bu„'

—A g u„ata„. (2. 1)

f2 Q2
(2.2)

For the case of a single electron, the adiabatic electron
wave function solves the Schrodinger-type eigenvalue
equation

The first term describes the vibrational motion of a chain
of isolated diatomic molecules (mass M and Einstein fre-
quency cop) as a function of the vibrational displacements,
u„, of the individual diatomic internuclear coordinates
from their common equilibrium value. The second term
describes electron transfer between adjacent sites (as in
conventional tight-binding theory) with overlap matrix
element J; the notations a„and a„denote fermion
creation and annihilation operators, respectively. Finally,
the third term of (2.1) constitutes the electron-lattice in-
teraction; the Holstein molecular-crystal model assumes
this to be site diagonal in the electron coordinate and
purely local in that it depends only on the vibrational
coordinate of the occupied site.

The zeroth-order adiabatic approximation consists of
dropping the vibrational kinetic-energy contribution to
(2.1), namely,
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(2.3)

Here, the one-electron wave function is specified in terms of the amplitudes, a„(.. . ,u, . . . ), for electron occupancy of
the nth diatomic site; as in any adiabatic formulation, these amplitudes are parametric functions of the vibrational dis-
placements, um. The eigenvalue, E(. . . ,u, . . . ), also a parametric function of the displacements u, serves as the ef-
fective potential energy for vibrational motion. It is conveniently written as

E(. . . ,u, . . . ) = , Ma]—ogup+a(. . . ,u, . . . ) —2J,
P

where e(. . . ,u, . . . ) is the energy eigenvalue of the "electronic" equation

[ n+1( ~um~ ) n( ~um~ )+an —]( ~urn& ~ ~ ~ )] ~un n( ~ mr ~ ~ ~ )=e(' ' ~ m~ ~ ~ ) n( ~um&

(2.4)

(2.5)

In the continuum approximation, appropriate for the case
of the large polaron, (2.5) takes the form

8 a„({u j)
H({u j)a„({u j)= —J —Au„a„({u j)

Bn

g (p) ATQ~ zV

correspond to "electronic" eigenvalues

c.=Jk a

i.e., to total energy

(3.3)

(3.4)

=E({u j)a„({u j), (2.6) E = —2J+Jk a (3.5)

wherein the aggregate, { u j, now corresponds to a con-
tinuous field variable. The electron-lattice interaction
plays the role of an effective potential energy in the elec-
tron Hamiltonian:

a' a'
H = —J + V(n) = —J —Au„.

Bn Bn
(2.7)

The solution of (2.3) or of (2.6) for arbitrary displace-
ments u is extremely difficult. However, within the
Born-Oppenheimer approach, one first solves the prob-
lem for those values of u which minimize E( {u j ), and
then develops perturbative solutions for small displace-
ments of the u about their equilibrium values u' '. The
first part of this program, namely, obtaining the minimal
energy solution, has been accomplished by Holstein and
by Rashba. ' We review the results of this minimal ener-

gy solution in the next section.

(p) ~ (p) 2
&n =

2 &a
Mcop

(3.1)

III. REVIEW OF THE MINIMAL ENERGY
ADIABATIC SOLUTION

The "equilibrium" displacements, u' ', corresponding
to the minimal energy E( {u'

j ), are given by

(p)a n 2
sech[y(n —g/a)], (3.6)

which is normalized according to

J /a„/'dn =1.
The parameter

4McooJ

(3.7)

(3.g)

characterizes the size, L =a/y, of the polaron, where a is
the lattice spacing, and may be used to define a natural
length scale transformation

z=yn . (3.9)

The variable g' denotes the polaron-centroid coordinate;
the translational invariance of the polaron is reflected in
the g independence of (3.2).

Using (3.1), the equilibrium displacements are given by

and describe the bottom of the single-particle electron
band.

In addition, as is well known, the nonlinear Schrodinger
equation (3.2) possesses an exact self-trapped solu-
tion, namely,

1/2

in terms of the, as yet undetermined, electron wave func-
tion, a„' '. Substituting (3.1) into (2.4), yields the so-called
nonlinear Schrodinger equation

e2a"' '
2

(3.2)
Bn Mao

u„' '=
2 y sech [y(n —g/a)] .

2Mcop

The electronic energy is obtained from (3.2)

c.= —Jy 2

(3.10)

(3.11)

The unusual delocalized Bloch states
whence the total energy (2.4) of the coupled electron-
lattice system is
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E =E+ &M~o+ I

&'" I'= —Jy'/3 . (3.12) Thus we may consider an "m-well" solution, with alter-
nating electronic amplitude from well to well,

The energy Ep represents the polaron binding energy; it
gives the minimum value E ( [ u ' '

j ) of the self-trapped
state (3.6) relative to the corresponding (3.5) minimum,
—2J, for the delocalized Bloch electron state (3.3). This
minimal-energy polaron solution (3.6) and (3.10) is shown
in Fig. 1.

The self-consistent electron-lattice interaction is

y/m
E —k'K (4.5)

(4.4)

where X is the total number of sites in the chain. Nor-
malization (3.7) of the electronic amplitude identifies

V' '(n) = —Au„' '= —2y J sech [y(n —g/a)] .

Using (3.13), one may rewrite (3.2) in the form

2
an + [2y sech [y(n —g/a)] —y j —a„=O .2 2 2

dpi

(3.13)

(3.14)
(rn)

m

1 —2k

(E —k' K )2
(4.6)

where E (k) is the complete elliptic integral of the second
kind, and where k' =1—k . Equations (4.4) and (4.5) to-
gether determine the modulus k of the elliptic functions
and integrals. The electronic energy is given by

IV. ADDITIONAL STATIONARY ADIABATIC
SOLUTIONS In the limit the self-trapped wells are sufficiently separat-

ed (k~ 1)
In addition to the self-consistent solution a„' ', Eq. (3.2)

possesses a hierarchy of other solutions' /3~y/m, (4.7)

a„' '= cn f I3(n —g/a);k j,
2y

(4.1)
and the electronic energy becomes

E ~Eo™=—J(y/m) (4.8)

with increasing electronic energy

'=JP (1—2k ) (4.2)

cn[u +2 K;k j = —cn[u;k j . (4.3)

Here cn[u;k j is the Jacobi elliptic function (of modulus
k) that reduces to the cosine in the limit k~O. While
cn[ u;k j has periodicity 4 K [where K (k) is the complete
elliptic integral of the first kind], it is antiperiodic over
2K:

In terms of the total energy
'2

E~—2J ——J
3 m

(4.9)

(mj & ya„
m 2

(4. 10)

In this limit, the wave function takes the approximate
form of m noninteracting wells

1/2
m —]

y
( —1) sech (n ——2p K —g/a)

p=0 m

1.0—
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O
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z(o)an

rn
Z
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QJ./2)3

where we have normalized (4.10) according to (3.7). We
thus have an entire hierarchy of lattices of self-trapped
bound states. It remains to be seen, however, whether
these represent minimal or only stationary solutions. A
typical such lattice solution is sketched in Fig. 2.

A second-order variation, similar to the calculation
presented in Sec. VI, gives the eigenfrequencies co of the
normal modes as solutions to

(O) (0
n Un

I I I I ( J f I I I I I

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-2Jy2

(0)
n

FKx. 1. The self-consistent minimal solution for the large po-
laron. The bold solid curve gives the potential energy
V„' '= —Au„' ' seen by the self-trapped electron; the solid curve
gives the adiabatic electron wave function a„' '. Sketched at the
bottom is a linear diatomic crystal, with nuclei displaced by u„,
indicating the presence of the polaron. The bottom of the Bloch
energy band is the zero of energy. The maximum depth of the
potential well is 2Jy . The self-trapped polaron state is bound
relative to the Bloch band by —Jy /3. Shown in the sketch is
the case y= 10.

FIG. 2. A typical stationary state, comprised of a lattice of
wells (nuclear displacements u„denoted by the bold solid curve)
with alternating electron amplitude (solid curve). Such a lattice
is unstable with respect to a relative displacement of the wells
(acoustic mode), and hence is not a minimal solution.
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d2 2 2 k+2 1+ 2 2 k cn Iz k J+(1—2k ) f (z)=
2 2 cn[z kI f dz'cn [z'k If (z'),

dZ 1 —co~/cop r 1 —co /cop
(4.11)

where the function f (z) is defined by

8r (m)5un =
2 2 +n fa(Z)

1 —
Cga /coo

(4.12)

where 5u„ is the atomic displacement deviation from the stationary solution, and where [similar to (3.9)] z =f3n F.or the
odd modes, the left-hand side of (4.11) vanishes

+2 1+ 2 2
k cn Iz;kj+(1 —2k ) f (z)=0. (4.13)

dZ 1 —co~/cop

Unfortunately, (4.13) is a Lame equation of, in general, nonintegral order, whose eigenspectrum is not known. With the
change of variable

u =snIz;k],
Eq. (4.13) takes the form

(4.14)

d df
(1 u2)i/2(1 k2u2)i/2 a + 2 1+ 2

dQ dQ 1 —co~/67@

1 —0 1 —2k
1 —k u

+ f (u)=0.
(1 u 2)1/2(1 k2 2)1/2

(4.15)

In the limit k~1, this reduces to

d 2df
(1 —u') +2 1+

dQ dQ

2 1
2 2 f (u) — f (u)=0,

1 —cu /cop 1 —u
(4.16)

which is the equation (6.5) of the small oscillation spectrum of odd modes for the isolated self-trapped solution. This
suggests that the additional m-well lattice solutions are stable with respect to opticlike distortions, similar to the stability
of the single-well solution to such distortions. The limit k~1, however, eliminates the branch cuts emanating from
u = + 1 and u = +k and does not give any information as to the stability of the m-well solutions with respect to collec-
tive, or acousticlike, distortions; these acousticlike modes disappear in the limit k~1, as the first Brillouin-zone boun-
dary moves to k =0. For completeness, under the transformation (4.14), the general normal mode equation (4.11) be-
comes in the limit k~1d, df

(1—u ) + 2 1+
dQ ' dQ 1 —co&/cop

1f (u) =
2 2, f du'(1 —u' )'/ f (u') .

1 —u2 1 —co /coo(1 —u )'

(4.17)

(m) (m)—E,p
m

1 —2k +1(E —k' K)
(4.18)

which, in the limit of sufficiently separated wells (k 1 ),
reduces to

2

Ac= ——J1

2
k' [ln(4/k') ——,] . (4.19)

In order to investigate the stability with respect to lat-
tice displacements, we juxtopose the exact m-well solution
(4.1) with m noninteracting wells (4.10). Comparing (4.8)
with (4.6) gives an "interaction" energy

2

b, n =2 K =21n(4/k')+O(k' ink'),

allows the interaction per pair to be written

2

b, c,
~ „,= e "(An —7),

m

(4.21)

(4.22)

where b, n is the number of sites between interacting wells.
As the pairwise interaction is attractive, the m-well

solution is unstable with respect to collapse. To show this
explicitly, consider a lattice of such interacting wells,
separated by An sites. If one of the wells is displaced by
5n, the change in energy of the lattice is

The interaction per pair,

Jr k'
Ae

~ ~„,= — [ln(4/k') ——,
' ],

2m
(4.20)

5e' '=I e "I(bn —7)[1—cosh(5n)]+5n sinh(5n) I,(m) 8r' -~n
m

(4.23)

is thus seen to be attractive. Evaluating the periodicity, which, for small displacements 6n /An « 1, reduces to
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5e( '= — bn e "[cosh(5n) —1],(m) 8JV
m

(4.24)
()) g l

(0)
l

2gV

i.e., we can lower the energy of the stationary solutions
(4.1) by distorting the lattice. Thus, while these m-well
lattice solutions are stable with respect to opticlike modes
(4.16), they are unstable with respect to acousticlike
modes (4.24). Therefore these solutions (4.1) are not
minimal but rather saddle-point solutions and hence will
not be relevant for the small oscillation spectrum nor for a
transport discussion of the large polaron.

(5.9)

a2
+2@ sech [y(n —g/a)] —y a„''

Bn

g sech [y(n —g/a)]5u„.
n

This is manifestly linear in the nuclear displacements 5u„.
The first-order correction to the wave function then satis-
fies

V. SMALL OSCILLATIONS
OF THE LARGE POLARON —FORMULATION

We now consider the electronic problem for vibrational
configurations in the vicinity of the minimal configura-
tion [specified by the u' ' of (3.10)]. We study the modi-
fications of the electronic wave function, electronic ener-

gy, and total vibrational potential energy, for small depar-
tures

{0) (5.1)

from the minimal configuration. The starting point of
this analysis is Eq. (2.6), which we solve perturbatively,
obtaining corrections to the electron wave function
a„(. . . , u' ', . . . ) and energy s(. . . , u' ', . . . ) to first and
second orders in the 5u, respectively.

The Hamiltonian (2.7) may be decomposed into an
equilibrium piece and a perturbation due to the departure
of the nth nucleus from its equilibrium position

—g sech [y(m —g/a)]5u —5u„a„' .
m

= —5(n —n')+ sech(yn)sech(yn') (5.11)
2

which is orthogonal to the electronic ground-state wave
function a„' ', i.e., for which

G(n, n')sech(yn)dn =0, (5.12)

the first-order correction to the wave function is given by

a„"=— G(n g/a, —n' g/a—)a„' '5u„dn' .J (5.13)

(5.10)

Defining the Green's function G(n, n') as that solution of
the equation

a2
+2@ sech[y(n —g/a)] —y G(n, n')

Bn

H =Ho+~&Vn l2=) ~

with

a2 a'
H() ———J + V()(n) = —J —Au„'

Bn Bn

(5.2)

(5.3)

An explicit solution for G(n, n') can be obtained but will
not be needed for our discussion here. As can be readily
verified from the explicit solution, G(n, n ) is symmetric
with respect to the interchange of the variables n and n'.

To second order in A, ,

and (H (0)) (2)
(

()) g V )
(1)+ (2) (0) (5.14)

5V„=—A 6u„.
Within Rayleigh-Schrodinger perturbation theory

(5.4) Multiplying by a„' '*, integrating and using the Rayleigh-
Schrodinger orthogonality conditions (5.7), the second-
order energy is given by

and

E= g vs")
p=0

a„=g X&a„"),
p=0

(5.5)

(5.6)

E' '=~ a' '*6V a' '—~ Qn nan

Substituting for a„' ' and a„'" yields

s' '= ——,M(0() g S(n g!a,n' g/a)5u—„5 „—u
nn'

where

(5.15)

(5.16)

where the corrections a„' ' are orthogonal to the zeroth-
order wave function (3.6):

(5.7)

To first order in A, ,

(H (0)) ())
(

(1) g V )
(0) (5.8)

Multiplying by a„' '* and integrating over the length of
the chain, using the Rayleigh-Schrodinger orthogonality
condition (5.7), the first-order correction to the energy is
given by

S(n, n')=4@ G(n, n')sech(yn)sech(yn') . (5.17)

E ( u ) e(0) +E(1)+e(2)

(5.18)+ —,
'

Mco0 g (u ' '+ 5u )
m

The cross term in the last sum precisely cancels the first-
order correction e") to the electronic energy [as it must,
since the adiabatic solution (3.6) is minimal] leaving

Thus to second order in the small displacements 6u„, the
total electron-lattice energy (2.4) is given (parametrically
as a function of the displacements 5u„) by
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E(. . . ,u, . . . )= —2J —Jy l3+ , M—coo g(6u„) —g S(n gl—a, n' —(la)6u„6u„
n nn'

(5.19)

We now are in a position to investigate the normal
modes of vibration associated with the new vibrational
potential-energy function, V(. . . ,6u~, . . . ), as given by
(5.19). The odd modes have previously been studied
analytically by Melnikov, while the even eigenfrequen-
cies only have been treated numerically by Shaw and
Whitfield. The principal utility of these modes is their
incorporation of translational invariance in a relatively
straightforward and automatic way, thereby serving as a
convenient vehicle for our study of the interaction be-
tween the translational motion of the polaron and the oth-
er (nontranslational) vibrational degrees of freedom.

Assuming harmonic time dependence e'"' for the nu-
clear displacements, the small oscillations are the eigen-
modes of the classical dynamical equations

=4y sech(yn) g G(n, n')sech(yn')6u„
n'

Defining the function

f (n) =g G (n, n')sech(yn')6u„
n'

(5.22)

(5.23)

centroid coordinate g as being located at the origin.
Equation (5.21) has the form of a standard linear homo-
geneous integral equation, the solution of which, subject
to a normalizability boundary condition, constitutes a
complete set of normal-mode functions u (n), with asso-
ciated eigenfrequencies co .

Upon introducing (5.17) into (5.21), we have

(1 —co fcoo)6u„

a'
M 5un =—

at2

BV(. . . , 6u, . . . ) (5.22) becomes
(5.20)

Using (5.19) for the potential and rearranging

(coo —co )6u„=n)o g P(n, n')6u„. (5.21)

6u„= 2 sech(yn)f(n) .4r'
1 —CO /COp

(5.24)

n'

We remark that, in differentiating the double sum con-
tained in (5.19), we have utilized the symmetry of S(n,n')'
in the variables n and n'

~ Moreover, in writing down
these expressions we are tacitly considering the polaron

u n dn=0.
Differentiating (5.23) and using (5.11), we have

(5.25)

We remark that a direct consequence of the orthogonality
condition (5.12) is the result

d' y QO

+y [2 sech (yn ) —l]f (n) = —sech(yn)6u„+ —sech(yn) f sech (yn')6u„dn',
dn

n
OO

(5.26)

where we have replaced the n sum by an integral over a
continuous variable n Using (5..24) in (5.26), we have

d 4+y 2+ 2 sech (yn) —1 f (n)
dn 1 —co /coo

y2 f sech (yn')f (n')dn' .2y sech(yn)
1 —Q) /COp

(5.27)

equivalent to the integral equation (5.21). The latter clear-
ly has the form of a standard linear homogeneous integral
equation, the solution of which yields a complete set of
normal-mode functions u (n), with associated eigenfre-
quencies, co . Equivalently, the solutions of (5.28) yield
the eigenfunctions f (z), with the same eigenfrequencies,
co . Finally, we note that (5.28) is invariant with respect
to the replacements z~ —z, z'~ —z'. Thus the eigen-
functions f (z) may be classified as either even or odd.

Introducing the length scale transformation (3.9) into
(5.27), yields

d 2f
d"+ 2+ 2

sech z —1 f (z)
4

1 —Cu /~p

2 f sech (z')f (z')dz' .
1 —CO /COp

(5.28)

Equation (5.28) constitutes an integro-differential equa-
tion which, with appropriate boundary conditions [nor-
malizability and the orthogonality condition (5.25)] is

VI. SMALL OSCILLATIONS
OF THE LARGE POLARON —ODD MODES

d 2f
d" + 2+ 2 2 sech z —1 f (z)=0.

1 —CO /COp
(6.1)

Introducing the transformation

The odd-parity solutions have been previously obtained
by Melnikov and by Shaw and Whitfield. For the
odd-parity solutions, the integral term on the right-hand
side of (5.27) vanishes:
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u =tanhz

into (6.1), yields

(6.2) with eigenvalues

I =2,4, 6, . . . (6.7)

d 2df
(1—u) +

du du

42+ 2 2
1 —co~ /cop

[odd I being excluded by the requirement that PI'(u ) be an
odd function of z, and hence of u]. The odd-parity solu-
tions trivially satisfy (5.25). The odd eigenfunctions of
(6.1) are conveniently written as

which, upon defining

2+» —I (1+1),4
1 —

co& /cop

becomes

1 f (u)=0,
1 —Q

(6.3)

(6.4)

f, (z) =P,'+q(tanhz)

dP, +2(u)=(1—u)'
u =tanhz

where

I =s+2,
s =0,2,4, . . . .

(6.&)

(6.9)

d „,de
du du

+ I(&+1)—,f/(u) =0 . (6.5)
1

1 —Q

The eigenvalue equation (6.4) then takes the form

The normalizable eigenfunctions of (6.5) with odd parity
are the associated Lengendre polynomials

2 2 4
co /cop= 1—

s +5s+4
(6.10)

fI(u) =PI'(u) =(1 u)'—
du

(6 6) The actual normal modes (5.24) become

u, (z) =( —, )' 2s +5
(s +2)(s +3)

1/2
dP, +q(u)

(1—u )
du

u =tanhz
(6.1 1)

which is normalized by an integral over all space in vari-
able z. We note that the lowest eigenfrequency, co,
vanishes; the other eigenfrequencies converge with in-
creasing s towards an accumulation point at ~p.

We now comment on the physical implications of the
above results. By far, the most important of these is the
lowest frequency mode, namely

fo(z) —sechz tanhz . (6.12)

To understand the physical meaning of this mode, let us
consider the corresponding displacement functions, u, (z),
as given by (5.24). According to (6.11), we have

uo(z)-sech z tanhz .

Upon comparing (6.13) with (3.10), we note that

Bu' '(z —g/a)uo(z)-

(6.13)

(6.14)

From (6.14) it is clear that, if we displace the polaron cen-
troid from its initial value (zero) by an infinitesimal incre-
ment, 5$, we find the change

u' '(z —o$/L) —u' '(z) —uo(z)g' . (6.15)

Thus, the existence of a nonvanishing vibrational ampli-
tude associated with the zero-frequency mode, uo(z), cor-
responds just to a rigid displacement of the self-consistent

polaronic distortion, u I I(z). This result, of course,
expresses the invariance of the self-consistent solution
with respect to infinitesimal displacements (translational
invariance).

In the usual theory of lattice dynamics, the determina-
tion of the normal modes of vibration constitutes the
essential problem. Once these modes are found, the usual
harmonic-oscillator theory takes over, yielding the well-
known picture of noninteracting phonons. However, in
the present problem, having found one mode —the transla-
tional mode —for which the "stiffness" constant, Mco
vanishes, we now encounter a fundamental difficulty.
The motion associated with such a mode is clearly not os-
cillatory, as the "displacement" amplitude, Qo, may be-
come indefinitely large. Under these circumstances, the
small amplitude assumption for the displacements, 6u„,
about a fixed centroid coordinate, as defined by (5.1), is
completely inadequate for dynamical problems. In partic-
ular, the harmonic form of the potential function
V(. . . ,5u„, . . . ), given by (5.19), will not properly
describe the vibrational dynamics of the system in which
extended translational motion of the polaron is necessarily
involved. In view of the above essential difficulty, the
co=0 translational (Goldstone) mode must be separated
from the other (small oscillation) modes and treated to all
orders in the amplitude. This complication is inherent in
the strong coupling of the electron and phonon degrees of
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freedom that give rise to the Holstein large polaron; to
adequately deal with this difficulty requires a major
departure from conventional noninteracting phonon
theory. A consistent formalism for so separating out the
Goldstone mode is contained in Ref. 6.

VII. SMALL OSCILLATIONS
OF THE LARGE POLARON —EVEN MODES

1
Pr(u) =

2l+1
dPI+ ) dPI

du du

which, upon introduction into (7.5},yields

g (u) = a[PI+ ~(u) Pr —&(u)]

+p[P(+, ( u) —P( —)( —u)]+y .

(7.6)

(7.7)

g(u)=(1 —u )' f(u)
and using the definition (6.4), (5.28) becomes

d2
(1—u ) +l(l+1)g(u)

du

( I +2)(& —1)

(7.1)

(7.2)

We now study the integro-differential eigenvalue equa-
tion (5.28) for the even modes. The numerical eigenfre-
quencies of these even-parity prodes have previously been
obtained by Shaw and Whitfield. We compare our ana-
lytic results to their numerical results at the end of this
section (Table I). Defining

The constant y is then determined to be

(1+2)(1—1)y=
4

a+
1

&& f du [PI+i(u ) PI—i(u )]. (7.8)

The constants a and p must be determined from the
boundary conditions at infinity.

Both an explicit evaluation of (7.8) and a determination
of the constants a and p require an examination of the
singularity properties of the Legendre functions PI(u). In
particular, while normalized to PI(l)=1, P~(u) has a
branch cut emanating from u = —1 to u = —ao. Using
the representation

Differentiating, P((u) =F —I,l+1;1;
2

(7.9)

dg(1—u ) +l(I+1)g'(u)=0,
du du

(7.3)

g(u) =a f p~(u')du'+p f Qr(u')du'+y, (7.4)

we recover the Legendre equation, where g' =dg /du.
Thus

of Pr(u) in terms of the hypergeometric function, the
behavior on the real axis near the branch cut may be
evaluated

PI( —1+5)= sin(la. )
ln —+2C +2/(l + 1)

7T 2

or equivalently

g(u)=a f p~(u')du'+p f pr( —u')du'+y, (7.5)
+cos(lrr), (7.10)

depending upon which linearly independent set [Pr(u) and
QI(u), or P~(u) and PI( —u) for nonintegral 1] of solutions
to the Legendre equation we choose to use. In what fol-
lows, we utilize the set specified in (7.5). The constant y
is determined by resubstituting the solution (7.5) to (7.3)
back into the original equation (7.2). For this purpose, a
useful relation is

TABLE I. Eigenfrequencies of the lowest normal modes of
small oscillation about the minimal polaron solution.

where 0 & 6 && 1. Here C is Euler's constant, and 1t is the
digamma function. Using (7.10) to evaluate the integral
(7.8) yields

sin( Im. ) 21 + 1

l (1+1) (7.1 1)

2sin(lrr) 2l +1
g u

l (I +1) +r (7.12)

We may thus satisfy the integro-differential equation
(5.27) with (7.7), where the constant y is given by (7.11).

We now investigate the asymptotic behavior of the
solution. As z~ 00, u ~1, and the solution

2
2.5229
4
4.6065
6
6.6479
8
8.6740

10
10.6923
12
12.7062

0
0.647 51
0.881 92
0.912 21
0.948 68
0.958 18
0.971 01
0.975 28
0.981 31
0.983 61
0.986 93
0.988 31

14
14.7172
16
16.7262
18
18.7337
20
20.7402
22
22.7459
24
24.7508

0.990 34
0.991 23
0.992 56
0.993 19
0.994 10
0.994 55
0.995 20
0.995 53
0.996 02
0.996 28
0.996 65
0.996 85

Similarly, as z —+ —~, u ~—1, and the solution

2 sin(ln } 2I + 1
g u ~—a

1(l +1) +p. (7.13)

g u
—' 1 —u

Using the relation '

(7.14)

For even modes we require g (u ~1)=g (u ~—1),
whence a=p. It is straightforward to show that, with
a=P, as z~+ ~, g(u)~0.

We now impose the orthogonality condition (5.25)
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dPI

dQ
[P, ,(u) P—, ,(u)]22l+1 1 —g

[C+g(l + 1)]+cos(l~) = 1,

which may also be expressed as

and (7.11), yie s ean . ,
'

lds the eigenvalue equation

(7.15)

(7.16)

l~—[g(l + 1)—P(1)]=tan (7.17)
7T

the ei envalue condition 7.16) is also sa-

d 1 1

d b 1which are identicaal to those oun
mo es, both even and odd,means. eTh several lowest mo es, o

are shown in Fig.
' . 3.
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VIII. CONCLUSION

In this paper we have studied the small oscillations of
the one-dimensional large polaron within the Holstein
molecular-crystal model. We have reviewed the minimal
energy adiabatic solution for the Holstein large polaron
and have shown that additional stationary adiabatic solu-
tions are spurious —namely, that these solutions are not
minimal but rather are saddle-point solutions, being un-
stable with respect to acousticlike small oscillations. We
have solved analytically the classical equations of motion
for the normal modes of the displacements about the
minimal solution, both determining the eigenspectrum
and constructing the eigenfunctions. Both eigenspectrum

and eigenfunctions are essential for any systematic discus-
sion of the transport and dynamics of such one-
dimensional topological entities. A natural result of our
small oscillation analysis is the appearance of the transla-
tional (zero frequency) Goldstone mode for the polaron.
As this mode lacks a restoring force, it must be treated
separately, and to all orders in its amplitude, in any con-
sistent discussion of transport and dynamics.
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