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Spin resonance of donor-bound electrons in n-type InSb is investigated experimentally and
theoretically. The resonance is observed in far-infrared magnetotransmission experiments carried
out in the wavelength range 96.5—151 pm on a series of samples with various doping levels. That
the resonance is due to donor-bound electrons is established unambiguously from the dependence of
the resonance intensity on temperature, magnetic field, and donor concentration. Owing to the ex-

tremely narrow linewidth of the resonance, the effective g factor of the donor electrons, gb, can be
determined very precisely and can be compared to the g factor of the conduction electrons, g, . We
formulate a theoretical model which predicts the behavior of g, —gb in analytical terms. By fitting
our experimental data to the model, we then obtain a set of parameters which completely describe
the value, magnetic field dependence, and anisotropy of the effective g factor for donor-bound elec-
trons in InSb. The observed anisotropy of gb is the same as that for g, . The small difference in the
anisotropies of gb and g, predicted by the theory is apparently less than the margin of error in our
experiment.

I. INTRODUCTION

In InSb the low value of the effective mass —and conse-
quently large effective Bohr radius a' —is responsible for
the small donor binding energies and for the overlap of
impurity wave functions which occurs at zero magnetic
field even in very pure samples of this material ~ As a re-
sult, the donor energy levels are "smeared out, " and merge
with the conduction band. As is well known, application
of a magnetic field increases the binding energy and
reduces the wave-function overlap, which in turn leads to
"freezeout" of free carriers, i.e., to electron localization at
donor sites. This occurs when the quantity y, defined by

Ace,

2%*

is much larger than unity. Here cu, is the cyclotron reso-
nance frequency and A'* the effective Rydberg energy,
which for InSb is 0.6 meV. For InSb this limit is typical-
ly reached at magnetic fields above 1 T.

The experimentally observed magneto-optical transi-
tions, such as the impurity-shifted cyclotron resonance
and the impurity combined resonance, ' are well
described by the existing theory. This theoretical formu-
lation does not fully explain the effective g factor associ-
ated with the spin resonance of donor-bound electrons.
The spin-flip transition of donors in InSb was first report-
ed by McCombe and Wagner and by Appold et al.

The purpose of this paper is to present a theory of the g
factors for conduction electrons and for electrons bound
to donors in zinc-blende semiconductors. The results of
the theory are compared with existing experimental data
for electric-dipole-excited spin resonance of conduction
and donor-bound electrons in n-type InSb, observed in

far-infrared (FIR) magnetotransmission. At low tempera-
tures the spin-resonance lines appearing in the FIR
transmission spectrum are extremely sharp (the lines are
less than 100 G wide at 40 kCx so that the resonance posi-
tion can be pin-pointed within 10 G), allowing a very pre-
cise determination of the g factors for both the
conduction-band Landau levels and for the Zeeman sub-
levels of the donor ground state. We shall relate the posi-
tion of both resonances to a set of phenomenological con-
stants describing the dynamics of the conduction electrons
in crystals with the point symmetry group T~.

The structure of this paper is as follows. In Sec. II we
develop a theory of the g factors for electrons in the I 6

conduction band, as well as for electrons in the ground
state of a donor in a zinc-blend-type semiconductor. In
Sec. III we describe the FIR magnetotransmission ap-
paratus and sample preparation. Finally, in Sec. V we
present the experimental results and their interpretation.

II. THEORY

In this section we give first a theory of the g factor for
electrons in the I 6 conduction band of a zinc-blende-type
semiconductor. The final expression for the g factors is
given in terms of three phenomenological constants. A
similar development is subsequently carried out for elec-
trons in the ground state of a donor in the limit y »1.
This program is carried out because, as we shall see, the g
factors for conduction band and bound electrons differ.
The difference between these g factors forms the main
subject of this paper.

We describe the electrons in the conduction band of a
zinc-blende semiconductor using the effective-mass ap-
proximation and expand the energy as a function of the
wave vector k to include terms up to fourth powers of the
components of the wave vector. The energy eigenvalues

35 7464 1987 The American Physical Society



35 THEORETICAL AND EXPERIMENTAL INVESTIGATION OF. . . 7465

for an electron with wave vector k are obtained by di-
agonalizing

AkE+ —— +5ok M(e)+[ep+2aoK(e))k
2m

(8)

E(k) = Q o„E„(k), (2) The signs + correspond to the orthogonal spin states

where p ranges over the indices O, x,y, z; o.
p is the two-

dimensional unit matrix and o.„,oy, and o, are the com-
ponents of the Pauli spin operator with respect to the cu-
bic axes x,y, z. The quantity E(k) and, hence, Ep(k)
must belong to the totally symmetric representation of the
point group Td. Since cr, o.y, and o, belong to the ir-
reducible representation I 4, the quantities E„(k),E»(k),
and E,(k) must generate the same representation. The
lowest combinations of powers of the components of k
generating I 4 are

7+ ——
~

1')cos—+
~

l)e'~sin—0; . 0

and

—
~

t)sin —+
~

l)e'~cos—0; 8
2 2

where
~

t ) and
~

t ) are the spin-up and spin-down states
referred to the [001] axis, cosO=M 'e, (e„—e» ) and

singe'~=M '[e„(e» e,—)+ie»(e, e„—)] .

«„=k„(k»—k, ),
s» —k»(k, —k„),
~, =k, (k„—k» ) .

For example, for k parallel to the [110]direction

AkE+(k)=, + 25ok +(eo+ ~ ao)k
2m

(9)

Using this argument, Rashba and Sheka ' showed that
the expansion of E(k) in powers of k gives an energy ma-
trix of the form

AkE(k)=, +5oa"a+
2m

(4)

where the constant 6p is a measure of the strength of the
spin-orbit coupling for states in the conduction band.
Note that we have written 0 K:o&Kz+oyKy+ozKz as a
scalar product of two vectors. This notation is somewhat
misleading because K Ky and K, do not form a vector or
a pseudovector with respect to the three-dimensional
orthogonal group. They are the components of a pseu-
dovector within Tq The notati. on in Eq. (4) is used as a
convenient shorthand.

Besides k" there is only one independent invariant com-
bination of fourth powers of components of k, namely

ky kz +kz kx +kx ky Thus& taking terms to order four in

k, the energy eigenvalues of a I 6 band near k=0 are ob-
tained by diagonalizing

AkE(k)= „+5oa«+eok.
2m

kXk= —ieBp/Ac . (10)

The Hamiltonian of a conduction electron near the center
of the Brillouin zone in the presence of a magnetic field
sl 1

H =Hp+Hi,
where

The g+ and g states are the eigenvectors of cr.ez, where
er =2 ' (1,—1,0), i.e., the eigenvectors of the com-
ponent of o along [110]. The sign of 5p determines the
orientation of the spin in the lowest energy level for elec-
trons having k vectors along (110). Taking the origin of
the cubic axes at an indium site and orienting the cubic
axes so that an antimony atom lies along [111]at a dis-
tance (a/4)v 3 from indium, with a the lattice constant,
Cardona et al. ' have shown that 5p is negative in InSb.
Thus, in its lowest state, the spin of an electron with k
along [110]is parallel to [110].

To derive the effective-mass Hamiltonian in the pres-
ence of a uniform magnetic field Bp ——VX Ap we replace
k in E(k) by the operator —iV+(eAp/Ac) The com. -

ponents of k do not now commute but rather they obey
the relation

+2ap( k» k, +k, k„+k„k») . Ak
Hp =

+ + z g'ppBBp ~
2m

(12)

and

K(e) =e»e, +e,e„+e„e» (6)

The quantities 6p and ap are phenomenological constants.
For convenience we introduce the functions K(e) and

M (e) of an arbitrary unit vector e defined by

and

(13)

H~ =5pr» K+epk +ap([k» k J+ [k k [+ [k k» ] )

+PoijgBp+g'pgr» Bpk +g "pg [rr.k, Bo k]

+y~~(r»„Bo„k„+o»Bo»k»+o,Bp,k, ) . .

M(e) = [K(e)—9e„e»e,]'~2,

where e„,ey, and e, are the components of e along the
cubic axes. The extrema of K(e) are —,', —,', and 0 and

occur along the (111), (110), and (100) directions,
respectively. The corresponding values of M(e) are 0, —,

and 0, respectively. The electron energy levels, to fourth
order in k=ek, are

Here gp is the electron g factor in the limit of vanishing
magnetic field and pB is the Bohr magneton. The symbol
[ u, v] stands for the anticommutator uv +vu and g', g",
yo, and Pp are additional phenomenological constants re-
quired by symmetry. Here the expansion has been carried
to the fourth power in k„,k», k„and Eq. (13) is obtained
after use of Eq. (10). The operators K„,lc», K are made
Hermitian by symmetrizing their expressions in Eqs. (3).
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The appropriate Hermitian forms are

=kyk„ky —k, k k, ,

~y
——k, krak,

—k krak„,
(14)

W =E„+(v
I H, I

v)+ g'
E —E ~

(16)

and

z, =k k, k —
krak, ky .

using standard second-order perturbation theory. We note
that 6oo..a is nondiagonal and thus contributes to the en-
ergy only in second order. The g factor is defined by

The eigenstates of Ho are the ordinary spin-split Landau
levels characterized by the following quantum numbers:
n =0, 1,2, . . . , the Landau quantum number; k~, the
momentum along Bo in units of A; M, the component of
orbital angular momentum along Bo, and s =+ —,, the in-
trinsic spin along Bo. ' In the presence of the perturba-
tion H], the quantum numbers n, k~, M, and s cease to
be good quantum numbers. We denote the eigenvectors of
Ho by

~

v) instead of by
~

n, k~, M, s ). The correspond-
ing unperturbed eigenvalue is E ~ The perturbed wave
functions P and their corresponding eigenvalues W, are
obtained from the Schrodinger equation

(Ho+H))P =W Q„.
The energy eigenvalues are

Ro ——(AcleBo)' (19)

and Ag the second-order contribution proportional to 5O.
The latter equals

gpiiBo = W(ii kg M ) —W(ii kg M — )

Carrying out the operations implied in Eqs. (16) and (17)
we obtain

g =go+4g'Ro-'(n+ 2+ 2 kc2R02)+4g"k~2

+4) oR o [(n + —,
' —k gR o )K ( g) + —,

' k cR o ) + b,g .

(18)

Here Ro is the Landau length (the radius of the classical
cyclotron orbit of energy , fico, ), —

m mac
Ag = —6O

6
3 —p

1
[cos (2a)cos (2p)+ —,sin (2a)cos p(1 —3cos p)]2 2 i 2

1+p

9+ sin (2a)sin (2P)sin P
1 —p

(20)

In this equation

p =gom */2m (21)

[Ioo] [IIO] [OI0] [tIO] [Ioo] [TIo] [oio] [ITO] [Ioo]
I I I I

B in (OOI ) plone
-43.23

and P and a are the polar angles of g (a unit vector paral-
lel to Bo) with respect to the cubic axes x,y, z. Using
5o ———2.2)&10 eVcm = —56 a.u. (Refs. 10, 12, and
13), m*=0.013m, and go= —50 for InSb we find that
Ag-0. 7)&10 at Bo——4. 15X10 G. Therefore, Ag can
be neglected compared to the other terms. We note that g
depends on the quantum numbers n and k~ and all the
anisotropy is associated with the term in yo as expected
from the form of H&. For the lowest Landau level ( n =0,
k~ ——0) we find

-43.30

O

0

a -43.36

—43.43

g =go+2g Ro +2yoRo &(g) . (22)

The g factors determined in our measurements from
the position of the spin-resonance line differ from go (i.e.,
from the limiting value of g as Bo tends to zero) by about
30%%uo. Figures 1, 2, and 3 show the variation of the g fac-
tors as a function of the angle between the magnetic field
Bo and the [100], [001], and [ 1 10] directions when Bo is
confined to the (001), (110), and (112) planes, respectively.
The data of Chen et al. ' are shown in solid circles and
the theoretical curves have been fit to the data with

go ———51, g'=6. 0&& 10 ' cm =2.1 ~ 10 a.u. , and

yo ——8.2)&10 ' cm =2.9&10 a.u.
The graph of Bo lying in the (111) plane was not

-4349
0 45 90 I 35 I 80 225 270 3 l5 360

a (deg)

FIG. 1. g factor at the bottom of the conduction band of
InSb as a function of the direction of the magnetic field Bo in
the (001) plane. The intensity of Bo is at the position of the
EDSR line for incident radiation of wavelength 118.8 pm.
Liquid helium used as coolant. Experimental points taken from
Chen et al. (Ref. 14). The solid line is the theoretical curve de-

duced from Eq. (22). The parameters go, g', and yo were fitted
to the data.
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~I/4~~~'p M ~F( —,
'

IM I+ —,'M —n, IM I+1,—,yp'),

where F(a,c,z) is the confluent hypergeometric function
and C„Ma normalization constant. The confluent hyper-
geometric function is defined by

F(a,c,z) =1+—z +a a(a+1)
Z +'''

c 2!c(c+1)
a(a +1) (a +k —1)
k!c(c+1). (c+k —1)

Some of the wave functions R„M(p)are

Rpp(p) =y' 'exp( —yp'/4),

Rp, (p) = (yp/v'2)exp( —yp'/4),

R )p(p) =y' '( I ——,yp')exp( —yp'/4),

R „(p)=(y/W2)exp( —yp /4) .

The quantum numbers n and M have the ranges
n =0, 1,2, . . . and M= —oo, . . . , —2, —1,0, 1,2, . . . , n,
respectively. Substitution of the wave function (27) into
the Schrodinger equation for the Hamiltonian (25), multi-
plication by pR„M, integration over p from 0 to oo, and
one integration by parts yield

~ R pp(p)p dp
p (

2 + (2 )
I /2

]/2

exp( —,yg )erfc

' ]/2

2
(30)

00

Here erfc(x)=(2/v'vr) e ' dt is the complementary
X

error function.
The Schrodinger equation (29) has been solved numeri-

cally to find E and P as a function of y for several levels.
We have also calculated the expectation value of k& in the
lowest energy state as a function of y. This result will be
needed in the evaluation of the g factor and is displayed
in Table I and in Fig. 4. The difference in energy between
spin states resulting from this solution, taking into ac-
count the term —,

' gppgBp'o. and the perturbation H] gives

gb go+2g (k ) +2g (kg)

+2y (g'(k')+e,'(k')+g.'(k,')) . (31)

This expression can be simplified when y ~~1 because the
wave functions are products of X(g) and C„MR„M(p)e™.
In the ground state ( n =0, M=O), we obtain

1 ~X
gg2 ( 2+ g2)1/2

—[E (n + —,
'

)y]—pR„,vldp=O . (2g) and

(k') = «', &+ «', +k'„)= «', &+
0

(k„'&= «', &g'. +(k', &g'. +«'„)q'.

(32)

For the ground state (n=O, M=O), Rpp(p) differs signifi-
cantly from zero only for p&y ' =Rp. In our case
Rp &&a*, so that we can approximate X(g,p) by
X(g) =X(g,p=0) and obtain the equation

= «', )g.'+, (g.'+~.')
2R0

= (k', &g.'+
2R0

(33)

where

+ Upp(g)X = E ——X,1dg y
2 dg2 2

(29) with similar expressions for (k~ ) and (k, ). Thus

gb
——gp+ 2g 'R

p
' +2y pR p K ( g)

+2 Ig'+g" +yp[1 —2K(g)] I (kg ) (34)

TABLE I. Energy of the ground state and value of ( k ~ ) as a
function of y=(a*/Rp) . E is in effective Rydbergs and (kr~)
in atomic units.

(kc)

3.0

25—

2.0—V)

1.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

—0.3637
6.6591

15.6945
25.0243
34.4957
44.0532
53.6695
63.3288
73.0212
82.7400
92.4805

0.2583
0.8620
1.2115
1.4692
1.6826
1.8657
2.0275
2.1751
2.3062
2.4370
2.5437

l.5—

I.O—

V

0.5—

0.0 I

20
I

40 60
I

SO

r
FKx. 4. Variation of (k~ ) with y.

IOO
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We note that the first three terms in Eq. (34) are formally
identical to those for the lowest Landau level in the con-
duction band displayed in Eq. (22). Thus the difference in
the g factors of the free and bound electron is given by the
last term. There is, however, a small correction because
the resonances do not occur at the same magnetic field.
This means that in evaluating the contribution to gb of
the first three terms care must be taken to substitute the
value of Bo at the spin resonance for the bound electron.

III. EXPERIMENTAL PROCEDURE

O
(f)
(A

IV. EXPERIMENTAL RESULTS

An example of a typical magnetotransmission spectrum
taken in the parallel Voigt geometry is shown in Fig. 5.
The electric dipole spin resonance of conduction electrons
is marked as EDSR in the figure. This normally electric-

TABLE II. Sample parameters.

Sample
number

Donor
concentration

(cm ')
Thickness

(mm)
Sample

orientation

1.6X1O"
2.3 &&

10'4

3.6)& 10'
4.5 && 1O'4

9.0 && 10'4

1.07
4.52
3.95
3.94
2.49

(112)
(110)
(100)
(111)
(112)

Far-infrared magnetotransmission measurements were
performed at liquid-helium temperature at a series of
fixed wavelengths (A, =96.5, 118.8, 163, and 251.1 pm).
The source of the radiation was an optically-pumped FIR
laser, with CH3OH as the lasing gas filling the FIR cavi-
ty. The samples were mounted in a Janis "supervaritemp"
optical Dewar at the center of the split coil, 60-kCx, super-
conducting solenoid. The temperature of the sample was
monitored by a carbon-glass resistor placed next to it.

The transmitted FIR signal was detected by a carbon
bolometer placed directly behind the sample. A lock-in
amplifier with a 16-Hz chopper and an XY plotter were
used to amplify and record the signal. The measurements
were carried out in both the Voigt and the Faraday
geometries, using linearly polarized waves in the former
and circularly polarized waves (cyclotron-resonance-active
and cyclotron-resonance-inactive, designated CRA and
CRI, respectively) in the latter configuration.

The characteristics of the n-type InSb samples used in
our experiments are given in Table II. Carrier concentra-
tions were obtained from FIR Fabry-Perot oscillations. '

Each sample was oriented by the standard Laue x-ray
technique, cut on a diamond-wire saw such that the sam-
ple faces were parallel to a desired crystal plane, and then
cut in the form of discs 7 mm in diameter. The surfaces
of the disk samples were ground in succession with 600-
and 1200-grit carborundum powder and then polished on
a microcloth saturated with a suspension of 5-pm alumina
powder in distilled water.

n= 4.5 x l0' cm
EDSR

l l

30 40
I

l0
I I

50 60
MAGNETIC FIELD Bo ( kG )

FIG. 5. Typical FIR magnetotransmission spectrum for the
parallel Voigt (EI IBo) configuration obtained on sample No. 4 at
4.5 K and 96.48 pm, showing the EDSR of conduction electrons
(marked in the figure), and the weaker line due to donor-bound
electrons (next to EDSR). The features occurring at low fields
were identified as combined resonances of conduction and
donor-bound electrons, and are not discussed in this paper.

dipole-forbidden transition (An =0, b,s = 1) is allowed in
group-Td crystals in the presence of spin-orbit coupling
due to the lack of inversion symmetry. ' ' The weaker
sharp line which occurs at a lower magnetic field
(Bo=52.56 kG) next to the conduction-electron EDSR is
attributed to the spin-flip resonance of electrons bound to
donors.

The spin-flip transitions of interest are shown schemati-
cally in Fig. 6. Our identification of the donor resonance
is supported by the study of the dependence of this ab-
sorption line on the temperature, on donor concentration,
and on the magnetic field. Comparison of the intensities
of both the free-carrier and the donor resonances, mea-
sured at low temperatures in the parallel Voigt (E~ ~Bo)
geometry, is presented in Fig. 7. As can be seen in the fig-
ure, the intensity of the lower-magnetic-field peak de-
creases as the temperature increases, due to the ionization
of the donors. It disappears at 12 K.

We have studied all the samples listed in Table II at
T=4.5 K and we have found that the intensity of the
lower-magnetic-field line decreases with respect to the
higher-field line as the donor concentration increases. Ex-
amples from this study are presented in Fig. 8. As the
donor concentration is increased, the width of the donor
levels increases (due to interdonor perturbation), thus de-
creasing the ionization energy for the donors. As this
"smearing" effect increases with increasing donor concen-
tration, less and less energy is required to thermally ionize
electrons from the donor levels to the n=0 Landau level
of the conduction band. This in turn will decrease the
impurity-related spin-resonance intensity. Eventually, at
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( 0 1 0 );i
Voigt E II Bo

X = II8.8 p. m

T = 4.5K

(010 )'I

n=o;
(010);
(000);

Z
O
CA
(f)

Cf)

n= I 6xlO cm

(oio );&

(000);f
n = 4.5 x IO c m

n =9xlo cm~
FIG. 6. A schematic representation of the energy levels of

free and localized electrons in InSb in the high-field case. The
lowest two Landau levels for both spin orientations are indicated
by parabolas. Impurity states are identified using the notation
of Ref. 11. The free-electron spin resonance transition is shown
by a solid arrow, and the spin resonance of donor electrons by
the dashed arrow. The energy levels are not drawn to scale.

4 I 42 4I 42 41 42
'vtACAETtC FIFLD R„(kG )

FIG. 8. EDSR spectra obtained in the parallel Voigt
geometry vs magnetic field obtained at 4.5 K and 118.8 pm
samples with different donor concentrations n. Note that the
intensity of the donor EDSR decreases, and ultimately disap-
pears, as the donor concentration is increased.

O
(A
(/)

V)

T =2K T= 4.6K T=8x T =l2X

Voigt E II B~

X = II8.8 p. m

n= 4.5 x IQ cm

4 I 42 4 I 42 4 I

I rr I

42 4I 42
MAGNETIC FIELD Bo (kG)

FIG. 7. EDSR spectra in the parallel Voigt geometry vs mag-
netic field, obtained on sample 4 for different temperatures.
The stronger line is the free-electron EDSR, and the weaker line

is EDSR of donor-bound electrons. Note that the intensity of
the donor spin-flip transition clearly decreases with increasing
temperature.

some value of donor concentration, the impurity levels
will be sufficiently broad to merge with the conduction
band (forming a low-energy tail connected to the bottom
of the band), and the donor-related transitions will disap-
pear altogether.

Finally, magnetic field dependence of the EDSR spec-
trum is shown in Fig. 9. As the magnetic field is in-
creased, this increases the "magnetic freezeout" of the free
electrons onto impurity states, and hence increases the
transition intensity of donor electrons with respect to the
intensity of the free-electron line.

According to the recent calculation of Wlasak ' the
mechanism allowing the electric-dipole-induced spin-flip
resonance of donor-bound electrons in the parallel-Voigt
geometry is the lack of inversion symmetry. The angular
dependence of the matrix elements for this transition
given in Ref. 20 is identical with the angular dependence
for EDSR of conduction electrons. ' ' In Fig. 10 we
compare the spin-resonance absorption coefficients for
free and donor-bound electrons observed at 118.8 pm in
the parallel Voigt geometry as a function of orientation of
Bo in the (111) plane (sample No. 3 in Table II). Note
that the strong angular dependence of the data is identical
for both types of electrons. Note also that there is a
difference in the absorption coefficient (by a factor of
about 2) between the [011] direction and the equivalent
[110]and [101]directions. This is the recently discovered
effect of the electric-dipole —magnetic-dipole interfer-
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FIG. 9. EDSR spectra obtained in the parallel Voigt
geometry vs magnetic field observed on sample 4 at 4.5 K for
different laser frequencies. Note that the intensity of the donor
EDSR increases with magnetic field, due to the fact that as the
field increases the donor sites are increasingly populated by the
freeze-out mechanism.

FIG. 10. Spin resonance absorption coefficient of conduction
electrons (solid circles) and donor electrons (open circles) in n-
InSb for the parallel Voigt geometry as a function of orientation
of Bo in the (111)plane. The data were taken on sample No. 4
at 118.8 pm and 4.5 K. The upper solid line is the theoretical
angular dependence fitted to the experimental data. The lower
solid curve is a guide for the eyes.

ence. ' ' This effect was described in Refs. 13 and 12 for
the free-electron spin resonance, and it is important to
note that it applies equally well to donor electrons. The
upper solid line in Fig. 10 is calculated theoretically for
free electrons by adjusting the magnitude of the electric-
dipole and magnetic-dipole resonance intensities. ' ' The
lower line is a guide for the eye. Note, however, that it re-
flects exactly the behavior of the upper (i.e., the free elec-
tron) curve, indicating that both the electric dipole and
the magnetic dipole matrix elements contribute to the
spin-flip transitions of bound electrons. The calculations
for the electric-dipole —magnetic-dipole interference for
bound electrons are in progress and will be published
later.

The ability to observe EDSR in the parallel Voigt
geometry is particularly gratifying, since this configura-
tion is ideally suited for carrying out measurements of the
anisotropy of the g factor. The g-factor anisotropy of
conduction electrons has been analyzed in the paper of
Chen et aI. ' The g factor for the donor electrons can be
determined very precisely using the expression (17) equat-
ed to Acu where co is the FIR angular frequency.

In order to determine the value and the complete angu-
lar dependence of the g factor of donor electrons, we have

examined its anisotropy through 360 in the parallel Voigt
geometry for Bo in the (100), (110), (111), and (112)
planes. We have found that for every plane the g-factor
anisotropy of donor electrons is, within the experimental
error, exactly the same as for the free electrons, and that
the difference between the g-factor values for the free and
donor-bound electrons, A=gb —g„is constant for any
given FIR frequency within the experimental accuracy.
For example, 6= —0.380+0.015 for X=118.8 pm for
every crystallographic plane examined. This result is
presented in Fig. 11, showing the dependence of both g
factors on the angle between the direction of Bo, and the
crystallographic axis for the (110) plane. The solid circles
and open circles in the figure are experimental data ob-
served at 4.5 K and 118.8 pm. The solid circles were ob-
tained in the parallel Voigt geometry on sample 2. The
triangles are from data observed on sample 3 in the CRA
geometry for Bo~ ~[100] and Bo~ ~[111],since for these pre-
cise orientations EDSR disappears in the parallel Voigt
geometry. The solid curves in Fig. 11 are a guide for the
eye. Unfortunately we were not able to observe the spin
resonance of donor electrons in the Faraday geometry be-
cause, as seen for free electrons, in this configuration the
intensity of EDSR is approximately 10 times weaker than
that for the parallel Voigt geometry. '

Our measurements were carried out with incident radia-
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[llo] Since the total margin of experimental error in 6 is
0.03 we are not able to determine the contribution to 6 of
this anisotropic term. For y =37.41, corresponding to the
donor spin resonance for incident radiation of wavelength
96.48 tMm, (k& ) = 1.63. The difference b, is, then, approx-
imately —0.427 which compares favorably with the ex-
perimental value of —0.428. We note that the value of g"
obtained here is negative, as expected, but differs by 1 or-
der of magnitude from that estimated by Ogg. " The na-
ture of this discrepancy will be the object of a separate
study.

-43.6 V. CONCLUDING REMARKS
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FIG. 11. Effective g factor as a function of orientation of Bp
in the (110) plane for conduction electrons (solid circles and tri-
angles) and electrons bound to donors (open circles). The points
are experimental: the solid circles and open circles were ob-
served in the parallel Voigt geometry on sample 2; the triangles
were observed on sample 3 in the CRA geometry (Btt~1[100])and
on sample 4 in the CRI geometry (Btt11[111]).All experimental
data were taken at 118.8 pm at 4.5 K. The solid lines are a
guide for the eyes.

tion of wavelengths A, =118.8 pm and X=96.48 pm. For
the first, the spin-flip resonances occurred at Bo&
=41.S~ 10 Cz for free electrons and at Bop ——41.14 X 10
G for electrons bound to donors. The corresponding
values when X=96.48 pm were Bo& ——53.095&10 G and

B02 ——52. 56X 10 Cx. The parameter y defined by Eq. (26)
has the values y&

——29.54 and y2
——29.28 at the resonance

positions for X=118.8 pm. When A, =96.48 pm the cor-
responding values of y are y&

——37.73 and yz
——37.41. Ac-

cording to the results of Sec. II the difference b, between
the values gb and g, at the free electron resonance is

6=2(m*lem) [byg'+(g'+g" +yo)(kg)

+yo(by —2(kg ) )K(g)], (35)

where b,y=yz —
y& and a11 quantities are expressed in

atomic units. For y =29.28, (k~) =1.45; using the values
of g' and yo determined previously and the experimental
result for Bz in a (110) plane, b, —= —0.380, we obtain
g"= —4.2& 10 a.u. The anisotropic term, proportional
to K(g), contributes an amount —0.109 K(g) to this
difference. Since the largest value of K(g) for Btt in a
(110) plane is 0.25 this term contributes at most 0.0273 to

In summary, we have established the following points.
(a) We have shown that in the observed spin resonance

doublet the line occurring at the lower field is due to
donor-bound electrons. This has been demonstrated by a
systematic study of the dependence of the spin resonance
absorption on temperature, magnetic field, and donor con-
centration.

(b) The behavior of the spin resonance intensity for
donor-bound electrons is the same (i.e., the same depen-
dence on the orientation of Bo relative to the crystal axes,
and the same electric-dipole-magnetic-dipole interference)
as for conduction electrons. This is to be expected, be-
cause for y ~~1 the nature of the wave functions in the
plane perpendicular to Bo is the same for both cases.

(c) The g-factor anisotropy of the donor is also observed
to be the same as that for conduction electrons. The small
anisotropy in 6 proportional to yo is apparently smaller
than the margin of error in our experiment.

(d) We formulate a theoretical model which correctly
predicts the value of A=gb —g, . By fitting our experi-
mental data to the model, we have obtained the parame-
ters go, g', yo, and g", which completely describe the ef-
fective g factor for donor-bound electrons in InSb.

(e) Our theory also predicts a frequency dependence for
b, which agrees with experiment in our FIR frequency
range. Inspection of the model indicates that for lower
photon energies (y ( 1) the donor spin-resonance line
should appear at fields above the conduction-electron spin
resonance. This may account for the behavior of spin res-
onance data in InSb reported by Appold et ai. A sys-
tematic extension of spin resonance measurements to ener-
gies Acu & 7 meV should thus be extremely valuable.
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