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Model dielectric constants of GaP, GaAs, Gasb, InP, InAs, and Insb
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A new method is described for calculation of the real and imaginary parts of the dielectric func-
tion of semiconductors at energies below and above the lowest band gaps, in which the model is
based on the Kramers-Kronig transformation and strongly connected with the electronic energy-
band structures of the medium. This model reveals distinct structures at energies of the Eo,
Eo+ ko El El +hl, and E2 critical points. Analyses are presented for GaP, GaAs, GaSb, InP,
InAs, and InSb, and results are in satisfactory agreement with the experimental information over the
entire range of energies. The model is able to properly give the optical constants, such as the refrac-
tive indices and the absorption coefficients, which are important for a variety of optoelectronic de-
vice applications.

I. INTRODUCTION

Studies of the optical properties of solids have proved
to be a powerful tool in our understanding of the electron-
ic structure of these solids. The dielectric function,
e(co)=Ei(co)+ie2(pi), is known to describe the optical
properties of the medium at all photon energies E =%co. '

Real and imaginary parts of this dielectric function are
connected by the Kramers-Kronig relations:
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Spectroscopic ellipsometry is an excellent technique to
investigate the optical response of semiconductors and has
been used to study Si, Ge, ' a-Sn, most III-V semicon-
ductors, ' and CdSe. On-line digitization of the data
permits fast and efficient analysis of the structure ob-
served in the e(co) spectra in terms of standard analytic
line shapes for interband critical points (CP's). Numeri-
cal differentiation of the data facilitates this analysis.

Recently, Strossner et a/. have studied the refractive
index of CxaP and its pressure dependence. The data were
fitted with a model dielectric constant which includes the
lowest direct gap Eo, the corresponding bound exciton,
and the E~ gap as the dispersion mechanisms. Their
model well explains the refractive-index dispersion at pho-
ton energies below the E& gap ( —3.7 eV). However, the
model does not take part in the dispersion above this ener-

gy, and the e2 spectrum predicted from this model is still
far from the actual one.

In this paper, we present model dielectric constants,
ei(co) and e2(co), which cover the optical response of semi-
conductors in the entire range of photon energies. In Sec.
II, we describe the details of our model which includes the
Eo Eo+50, E& E]+A~, and E2 gaps as the main
dispersion mechanisms. We show in Sec. III the fits with
our model to the experimental data for III-V compounds
(CxaP, CraAs, GaSb, InP, InAs, and InSb) reported previ-
ously. Dielectric-function-connected optical constants,
such as the refractive indices and the absorption coeffi-

cients, ' are easy to obtain from this study in the form of
practical functions. Since the expressions obtained here
are purely analytical functions of the fundamental elec-
tronic band parameters, the present model would also be
applicable to the analysis of some perturbation-induced
effects of the optical constants (e.g., the pressure and tem-
perature dependence of the refractive index, the piezo-
birefringence, ' and light-scattering spectra" ' ).

II. THEORETICAL MODEL

Optical properties of solids are known to be well ex-
plained by the optical joint density of states which be-
comes large for electronic transitions in the neighborhood
of CP's. The critical points of some kind can occur as a
consequence of the periodicity of the conduction- and
valence-band energies in which case their position in k
space is predictable from symmetry alone. Further criti-
cal points may also occur whose position cannot be
predicted from symmetry.

The joint-density-of-states function J„(co) can be relat-
ed to the optical constant ez(co) as follows:

4A e
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where ( ~p ~
) is the momentum matrix element for v

(valence) —+c (conduction) transitions. In the following,
we try to obtain the model dielectric functions for the
CP's of various transition energies (Ep, Ep+ b,p, E, ,
E~+hi, and E2). We also discuss the effects of indirect-
gap transitions which will take an important part in the
analysis of the e2 spectrum (Sec. III).

A. Eo and Eo +50 transitions

The lowest direct gaps in the zinc-blende-type semicon-
ductors, such as CxaP and InP, occur in the center of the
Brillouin zone (k=O), where it has fourfold (counting the
two spin states) Ep and twofold Ep+b, p gaps. First, we
consider the contribution of the free electron-hole pair
transitions to e(co). The Ep and Ep+kp transitions are of
the Mo type. Assuming the bands are parabolic, the con-
tribution to e2(co) of these transitions can be written as
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(fico E—p;) (fico)Ep, fico)Ep+b, p),
e,(~)=;=~,a, c 3(fi )'

0 (fico &Ep), (3)
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A= —( —m ) P4 3 + 15 2
3 2 (4)

—1.5 Eo
e, (co)—1 =AEp f(Xp)+—

0+ 0

1.5

f(Xp, )

In Eqs. (3) and (4), i stands for the Ep (I s~I 6, A,B) and
Ep +Ap gap transitions ( I'7~I 6, C), m * is the combined
density-of-states mass, and P is the squared momentum
matrix element. Substituting Eq. (3) into Eq. (1) and as-
suming P independent of energy, we obtain' '

ei(co) —1=
OO FD

i n [(E,"„) (fico) ]—

with

In Eqs. (9) and (10), f is the strength parameter, P„(0)
the envelope function of the nth exciton state, V0 the
volume of the unit cell, a 0 the exciton Bohr radius, K the
exciton wave number, M the effective electron plus hole
mass, and G is the exciton Rydberg energy. The
Kramers-Kronig transformation of Eq. (9) gives'

(5)
F =2E,"„n'fDI y„(0) I'~-'. (12)

with

f(Xp)=Xp '[2 —(1+Xp) '—(1 —Xp) 'H(1 —Xp)],

f(Xp, )=Xp, [2—(1+Xp, )
' —(1—Xp, ) 'H(1 —Xp, )],

XP——Ace/E0,

Xp =fico/(Ep +Ep)

and

1 fory)0,
0 fory&0.
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The continuum-exciton transitions have like free
electron-hole pair characteristics, and the contribution of
these transitions to e(co) can be considered with expres-
sions similar to Eqs. (3) and (5).'

The discrete-exciton term [Eq. (11)] gives a sharp
dispersion compared with the continuum-exciton or the
free electron-hole pair term [Eq. (5)]. However, the exci-
tonic effect in materials of interest here is present at low
temperatures only. The contribution of this effect is,
thus, not important in the present analysis.

B. E~ and E~+4~ transitions

~2(co)=, g I
P„(0) I'(E,"„fico), —

(fico)
(9)

with
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Next, let us consider the contribution of the Wannier-
exciton transitions to e(co). The discrete series of exciton
lines in the E0 gap can be given by

D oo

for the E1 transitions, and

(13b)

Band-structure calculations and some experimental
work indicated' that the E1 and E1+61 transitions take
place along the (111)directions (A) or at L points in the
Brillouin zone. These CP's are of the M1 type. The con-
tributions to e2(co) of this type are

m.Xi [Bi—Bii(Ei fico) ](fic—o &E, )',
ei(co)= ' (13a)
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(14b)

for the E1+61 transitions, where

71——Ace/E1,

Xi, fico/(Ei+&i)——.

(15a)

(15b)
E2(co) =rc[B,X( H(Xi —1)+B2X,, H(X„—1)] (16)

three-dimensional (3D) M& CP's as two-dimensional (2D)
minima. The contribution to E2(co) of this type of 2D
minima is given by

In Eqs. (13) and (14), B's are the strength parameters.
Since the M1 CP longitudinal effective mass is much
larger than its transverse counterparts, one can treat these

where H's are functions defined by Eq. (8). The contribu-
tion of the E, and E, + b,

&
transitions to e&(co) can be cal-
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TABLE I. Parameters used in the calculation of el(~) and ez(~).

Parameters GaP GaAs GaSb InP InAs InSb

Ep (eV)
Ap (eV)

E, (eV)
a, (eV)
E2 (eV)

Eg (eV)
A

B)

r (ev)
C
y
D

2.74
0.10
3.70

(0.1

5.0
2.26 (X)

13.76
6.35
9.49
0.06
2.08
0.132
4.6
0.1

1.42
0.34
2.90
0.23
4.75
1.73 (L)
3.05
6.37

13.08
0.10
2.98
0.168

24.2
1.2

0.72
0.74
2.05
0.45
4.0
0.76 (L)
0.71
6.68

14.29
0.09
5.69
0.290
7.4
1.0

1.35
0.10
3.10
0.15
4.7
205 (L)
6.57
4.93

10.43
0.10
1.49
0.094

60.4
1.6

0.36
0.40
2.SO

0.28
4.45
1.07 (L)
0.61
6.59

13.76
0.20
1.78
0.108

20.8
2.8

0.18
0.81
1.80
0.50
3.9
0.93 (L)
0.19
6.37

12.26
0.16
5.37
0.318

19.5
3.1

culated from Eq. (16) by using the Kramers-Kronig
transformation. The result is ei(~) —1=—B~X~ In

e~(co) —1=—B~X~ ln(1 —X~) B2X—~, ln(1 —X~, ) .

with

(19)

The first and second terms in the right-hand side of Eq.
(17) correspond to the E~ and E~+5& gap contributions,
respectively.

The dependence of el on frequency ~ obtained from
Eq. (17) is shown in Fig. 1. The numerical values used in
the calculations correspond to those for CxaAs (see Table
I). The theoretical e& spectrum exhibits a divergence at
the E& CP energy. It is well known that the optical tran-
sitions are strongly affected by a damping effect, i.e., a
lifetime broadening. The broadening parameter can be ex-
pressed by a sum of two different contributions:
I (T)= I 0+ I =( T), where I 0 is independent of the tem-
perature T, arising mainly from lattice defects, and I =(T)
is a contribution through emission and absorption of pho-
nons of average frequency ", proportional to
[ exp(:-/T ) —I ]

The lifetime broadening effect can be easily introduced
in Eq. (17) in a phenomenological manner by replacing co

by co+i ( I /fi) "Variation . of E~(co) for a particular
choice of the broadening energy I (0, 0.1, and 0.2 eV) is
shown in Fig. 1 by the solid lines. As seen in the figure,
the broadening effect can decrease the strength of the
E&/E~+6& structure and lead to a fact which is coin-
cident with experimental verification.

As pointed out by Strossner et al. , the parabolic bands
extending to infinite energies implied by Eqs. (16) and (17)
should be nonphysical. We, thus, modify the model by
taking into account a cutoff at the energy E, . This modi-
fication provides

E2(co) =m [B,X, H(X, —1)+B2X,, H(X„—1 )]H( 1 —X, )

and

g, =Pm/E, .

C. E2 transitions

The more pronounced structure found in the higher-
energy region than E& and E&+6~ is usually labeled E2.
The nature of the E2 transitions is more complicated

25

20-
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FIG. 1. Line shape of the E& gap contribution to e&(co) for
CxaAs [Eq. (18)] with three different damping parameters
(I =0, 0.1, and 0.2 eV). The dashed line represents the depen-
dence of e& on n with high-energy cutoff correction in Eq. (19)
(E,=6.0 eV, I =0. 1 eV).

In Fig. 1, the dashed line represents the dependence of E'&

on co obtained from Eq. (19) (E, =6.0 eV; 1 =0. 1 eV).
This cutoff correction lowers the Ej and E&+6& gap
contributions below E, and gives a divergence close to
this energy (see Fig. 5).
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since it does not correspond to a single, well-defined CP.
Because of this fact, we shall characterize the E2 struc-
ture as that of a damped harmonic oscillator:

i)(fico) (Eo & fico & Ef ),
0 otherwise, (25)

CX2y
ei(co) =

2 2 2 2(1 —Xp) +Spy

C(1 —X2)
e, (co) —1 =

(1—X', )'+X',y'

with

(21)

(22)

X2 ——Ac@/E2 . (23)

Here, the quantity C represents the strength of the in-
teraction between the oscillator and the electromagnetic
wave (photon) and y is the damping factor. If y is much
smaller than 1, e2 then has a significant value only when
Xz is close to 1.0.

D. Indirect-gap transitions

Transitions between states which are not vertical in an
energy-band diagram are called indirect transitions. The
transition mechanism at the indirect gap is known to be
expressed by a second-order process in the perturbation.
Using the result of second-order time-dependent perturba-
tion calculation, we obtain the contribution of the indirect
optical transitions to ez(co) as

(24)

where D is the indirect-transition strength parameter, E~
the indirect-gap energy, and Amq is the phonon energy
taking part in the indirect transitions. In Eq. (24), only
the phonon absorption process is taken into account. The
phonon emission process remains possible, however, the
only difference from the above case is the sign of the pho-
non energy. Unfortunately, there has been no expression
for contribution to ei(co) of the indirect transitions.
Analytical expressions for this contribution from the
Kramers-Kronig transformation are also not yet available.
In Sec. III, thus, we take into account the contribution of
the indirect transitions only to ei(co) but not to ei(co).

Wemple and DiDomenico' have proposed a sem-
iempirical single-effective-oscillator model to analyze
refractive-index dispersion in more than 100 widely dif-
ferent solids and liquids. Their model requires two pa-
rameters, E& and Ed, where the imaginary part of the
dielectric constant (e2) of the material was assumed to be
a 5 function at energy E~ and the strength of an effective
oscillator at energy Ez was defined to be ~Ed/2.

Matters are complicated by the lack of agreement of the
data, e.g. , for GaAs, with the Wemple-DiDomenico
model at the direct absorption edge. Afromowitz' has,
therefore, proposed a modified model which takes into ac-
count the direct absorption edge (Eo). The ei spectrum
proposed by Afromowitz is an empirical one which agrees
closely with the data on the low-energy side of the spec-
trum. The spectrum of his model is written as

(fico Es + ficoq ) —(i)ico )Eg ficoq ), —
e2(co) = (fico)'

0 (fico & Es fico~ ), —

where

il = irEd /2' (Ep Eo—),
Ef =(2' Eo—) '

(26a)

(26b)
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FIG. 2. Representations of the e~ spectrum of GaAs. The
solid line is obtained from the sum of Eqs. (3), (13), (21), and
(24). The dashed line is taken by the sum of Eqs. (3), (16), and
(21). The dotted line represents the Afromowitz's model [Eq.
(24)]. Delta function (so) represents a single-effective-oscillator
model (Ref. 16).

In Fig. 2, we compare our e2 spectrum with those of the
Wemple-DiDomenico (arrow) and the Afromowitz model
(dotted line). The dashed line is obtained from the sum of
Eqs. (3), (16), [2D Mo], and (21). As we will see later, it
shows a poor fit with experimental data in the spectrum
region between the Eo+Ao and EI gap. In GaAs, a
direct-gap material, the lowest conduction minimum is lo-
cated at I and the second and third set of conduction
minima, respectively, lay 0.31 eV (L) and 0.49 eV (XI
above the I minimum. The lowest direct gap Eo
(Eo+b,o) of GaAs, I s 16 (I'~ I 6), is 1.42 eV (1.76
eV), and the indirect gaps Eg ( I s~L 6 ) and Eg
(I s~X6) are, respectively, 1.73 and 1.91 eV at room tem-
perature. The solid line is obtained from the sum of Eqs.
(3), (13) [3D M&], (21), and (24). A consideration of the
indirect-gap contribution [Es ', Eq. (24)] can improve a fit
to experimental data in the Eo+Ao and E& spectrum re-
gion. An important difference between the 2D minimum
[Eo] and the 3D saddle point [M&] is that the lower-
energy side shoulder of the E& structure can be cut off in
the Mo CP while the shoulder is never cut off in the M&
CP. A better fit to experimental data can be achieved us-
ing the Mi CP model [Eq. (13)].

An individual contribution to e~ of the Eo, Eo+50,
E&, and E2 gaps for GaAs is shown in Fig. 3. They are
obtained from Eq. (5) for the Ec and Eo+b,o gap contri-
bution, from Eq. (17) for the E, gap one, and from Eq.
(22) for the E2 gap one. As indicated in the figure, the
E& and E2 gap contributions exhibit the strongest singu-
larity as photon energies approach those of the E& and E2
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FIG. 3. Individual contribution to el of the Eo, Eo+Ao, El,
and E2 gaps for GaAs.
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edges. The Eo and Eo+Ao gap contribution becomes ap-
preciable only in the photon-energy region close to these
edges.

The model given above can be used to fit the experi-
mental dispersion of e& and e2 over most of the spectral
range (0—6.0 eV). The parameters, such as A, B&, and I,
can be commonly used as adjustable constants for calcula-
tions of both t ] and e2. The experimental data of e] in the
transparent region are, however, usually somewhat larger
than our model [E~ equal to the sum of Eqs. (5), (17), and
(22)]. In order to improve a fit, therefore, we shall consid-
er an additional term, e&, to e&. This term is assumed to
be constant and may arise from the indirect-gap and other
higher-gap transitions (Eo, Eo+ bo, Ej, E', + b, '~, etc.).

III. ANALYSIS AND DISCUSSION

A. Gallium phosphide

The GaP crystal is known to be a more suitable materi-
al to study some of the indirect-gap optical process, since
it has three indirect gaps, I 8~X6 near 2.26 eV, I 8~X6
near 2.48 eV, and I 8~L6 near 2.63 eV, as well as the
lowest-direct gap Eo, I 8~I 6 near 2.74 eV. In GaP, the
E& transitions are known to occur near 3.7 eV. The spin-
orbit splitting energy 6& in this material is rather small
( &0. 1 eV) and can be neglected here. The structure that
appeared in the region =5.0 eV is labeled to be E2 ~

Figure 4 shows the fit with our model to the experimen-
tal e2 spectrum of GaP. The experimental data are taken
from Ref. 2. The solid line is obtained from the sum of
Eqs. (3), (13), (21), and (24). The dashed line is the result
of the sum of Eqs. (3), (16), and (21). The parameters of
the fits are listed in Table I. As clearly seen in the figure,
the fit in the fundamental absorption edge region becomes
quite satisfactory when the indirect-gap contribution [Eq.
(24)] is taken into account. As discussed in Sec. II, we are
able to fit the E& critical-point structure with either 2D
[Eq. (16)] or 3D model [Eq. (13)]. The 3D model well ex-
plains the experimental lower-energy shoulder of this
structure. The structure in the 6.0-eV region of our model

FIG. 4. e~ spectrum of GaP. The experimental data (solid
circles) are taken from Ref. 2. The solid line is obtained from
the sum of Eqs. (3), (13), (21), and (24). The dashed line is taken
by the sum of Eqs. (3), (16), and (21). The high-energy cutoff
correction is represented by the dash-dotted line.
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FIG. 5. el spectrum of GaP. The solid and open circles are
taken from Refs. 2 and 18, respectively. The solid line is ob-
tained from the sum of Eqs. (5), (17), (22), and e&„(=0.1). The
high-energy cutoff correction is represented by the dash-dotted
line.

(dash-dotted line) is the result of the cutoff-energy modifi-
cation [Eq. (18)].

A comparison of our e& model to the experimental data
of GaP is shown in Fig. 5. The data are taken below 1.5
eV from Ref. 18 and those at higher energies taken from
Ref. 2. The solid line is obtained from the sum of Eqs.
(5), (17), (22), and e& . The result of the E, (cutoff) modi-
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fication [i.e., the sum of Eqs. (5), (19), (22), and ei ] is
also shown in the figure by the dash-dotted line. It is ap-
parent from the figure that the E, modification provides
no notable change in the e& spectrum below —5.0 eV.
However, to obtain the best fit we must take into account
different values of the background contribution e& in the
calculations between the models with and without the E,
modification. Values of this constant are, respectively, 2.1

and 0.1 with and without the E, modification. A large
value of e& with the E, modification is required to com-
pensate the cutoff-lossed strength in the ez spectrum at
above E, (see Fig. 4).

The E, modification gives a significant feature in the e&

spectrum near the cutoff-energy region, i.e., the calculated
e& spectrum shows a divergence as photon energies ap-
proach E, and becomes nonphysical above this energy. In
view of this, we believe that the model of no E, correction
(solid line) provides an e& spectrum in much better agree-
ment with the experimental data. A model somewhat
similar to those of Eqs. (18) and (19) has also been used in
Ref. 9 to investigate the refractive-index dispersion of
GaP. However, their analysis is limited in the energy
range 1.5—3.5 eV. No attention has, therefore, been paid
to structures in the Ei, E2, and E, regions.

B. Gallium arsenide

The GaAs crystal is a direct-band-gap semiconductor.
The lowest-direct gap Eo is 1.42 eV at room temperature.
The E~, E]+5~, and Ez transitions occur at 2.90, 3.13,
and 4.75 eV, respectively. The indirect gaps E~ and Eg
are, respectively, 1.73 and 1.91 eV at room temperature.
These indirect transitions may, thus, take part at above
the onset of the direct-gap transitions which occurs at
1.42 eV (Eo gap energy). This is in contrast with the case
for GaP in which the indirect transitions occur before the
onset of the direct-gap ones.

A comparison of our e2 model to the experimental data
of GaAs is shown in Fig. 6. The experimental data are
taken below 1.5 eV from Ref. 18 and above this energy
taken from Ref. 2. The solid line is obtained from the

C. Gallium antimonide

Like GaAs, GaSb is a direct-band-gap semiconductor,
but GaSb has an indirect gap Es (0.76 eV) very close to
the lowest direct gap Eo (0.72 eV). The Ei and Ei+hi
gaps are, respectively, 2.05 and 2.50 eV. The spin-orbit
splitting energy 6&, thus, seems to be considerably larger
as compared with those of GaAs and GaP. The Ez tran-
sitions occur in GaSb at -4.0 eV.

A comparison of our Eimode'l to the experimental data
of GaSb is shown in Fig. 8. The data are taken below 1.0

30

25- GQAs

sum of Eqs. (3), (13), (21), and (24). The dashed line
represents the fit without taking into account the
indirect-gap contribution [Eq. (24)] and assuming that the
E, critical point is to be 2D minimum [Eq. (16)]. The E&
transitions can contain sufficient strength to represent
both E& and E&+4]. Because of this fact, we neglected
the E&+b, i gap contribution [Eq. (14)] and that in Eq.
(16) in the calculations. An excellent agreement between
our model (solid line) and the experimental data is seen in
the figure over the entire spectral range.

The fit with our ei model to the experimental data of
GaAs is shown in Fig. 7. The data are taken below 1.5 eV
from Ref. 18 and above this energy from Ref. 2. The
solid line is obtained from the sum of Eqs. (5), (17), (22),
and e~ ( = 1.2; see Table I). A rather good agreement be-
tween our calculation and the experimental data can be
seen in the figure especially in the region below 2.9 eV (E,
gap). The experimental value of ei at the E, peak is
23.6. As discussed in Sec. II, the smaller the broadening
parameter (1 ) gives the larger the Ei peak value. The
calculation with I'=0. 1 eV agrees well with this value.
Our model of Eq. (22) also well interprets the peculiar line
shape of the Ez structure.
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FIG. 6. e2 spectrum of GaAs. The solid and open circles are
taken from Refs. 2 and 18, respectively. The solid line is ob-
tained from the sum of Eqs. (3), (13), (21), and (24) ~ The dashed
line is taken by the sum of Eqs. (3), (16), and (21).

FIG. 7. e~ spectrum of GaAs. The solid and open circles are
taken from Refs. 2 and 18, respectively. The solid line is taken
by the sum of Eqs. (5), (17), (22), and e& „(=1.2).
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FIG. 8. e& spectrum of GaSb. The solid and open circles are
taken from Refs. 2 and 18, respectively. The solid line is ob-
tained from the sum of Eqs. (3), (13), (21), and (23). The dashed
line is taken by the sum of Eqs. (3), (16), and (21). The dotted
line represents the fit with Eq. (16) with taking into account
both the EI and E&+AI gap contributions.
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0

where ap is the lattice constant in A and E], 5& in eV.
This expression predicts BI ——3.78 and Bz ——2.71, with a
ratio BI /Bz ——1.39 and a sum B I +Bz ——6.49. The
present analysis provides the sum BI+BE equals 6.68.
The agreement is extremely good in view of the crudeness
of the theory used. The dotted line in Fig. 8 is calculated
by introducing the strength parameters of B& ——3.89 and
Bz ——2.79 (keeping B, /B~=1.39 but BI+Bz——6.68) into
Eq. (16).

In Fig. 9, we show the fit with our e& model to the ex-
perimental data of GaAs. The data are taken below 1.0

eV from Ref. 18 and those in the 1.5—6.0-eV range taken
from Ref. 2. These data reveal the presence of a weak
structure in the 5—6-eV region which was not clearly
found in the spectra of GaP and GaAs. This new struc-
ture may be due to the E'& transitions taking place from
the top valence band (A3) to the second-lowest conduction
band (A3) near the L point. We do not consider this
structure in the analysis of the ez spectrum. As discussed
in Sec. III, however, the term e& is introduced to take ac-
count of such higher-energy transitions in the analysis of
the el spectrum. The solid line represents the result of the
sum of Eqs. (3), (13), (21), and (24). The dashed line cor-
responds to the sum of Eqs. (3), (16), and (21). The
EI+6I gap contribution is not taken into account in
these calculations. As seen in the figure, the indirect gap
[Eq. (24)] and 3D saddle-point term [Eq. (13)] well inter-
pret the 1.5—2.0-eV region of the ez spectrum.

The strength of the EI and EI +6& structures of zinc-
blende materials can be easily estimated with the simple
expression:

FIG. 9. e~ spectrum of GaSb. The solid and open circles are
taken from Refs. 2 and 18, respectively. The dotted and solid
lines are obtained from the sum of Eqs. (5), (17), (22), and e&

(=1.0) with and without taking into account the El+El gap
contributions, respectively.

eV from Ref. 18 and those in the 1.5—6.0-eV range from
Ref. 2. The theoretical curves are obtained from the sum
of Eqs. (5), (17), (22), and E, (=1.0). The solid and dot-
ted lines, respectively, represent the fits with the strength
parameters of B, =6.68, Bz ——0 (E, ), and B, =3.89,
Bq ——2.79 (E& /E, +b, l). As seen in the figure, we obtain
a better fit with the solid line rather than with the dotted
one. This seems unessential: if one properly chooses the
strengths of BI and Bz, the difference may actually be
lost or a better fit may be achieved. If we try to do this
fitting, we obtain a significantly larger strength ratio
BI/Bz, as compared with the ratio obtained from Eq.
(27). As in the cases of GaP and GaAs, our model well
explains the eI spectrum of GaSb especially in the trans-
parent region.

D. Indium phosphide

The interband transition energies of InP are 1.35 eV
(Eo), 1.45 eV (Eo+bo), 3.10 eV (EI), 3.25 eV (EI+b~),
and 4.7 eV (Ez). Like GaP and GaAs, InP has a small
value of b, l (-0.15 eV) and can be neglected here. The
lowest indirect gaps Eg and Eg are, respectively, 2.05 and
2.21 eV.

A comparison of our ez model to the experimental data
of InP is shown in Fig. 10. The solid line is taken by the
sum of Eqs. (3), (13), (21), and (24), and the dashed line is
taken by the sum of Eqs. (3), (16), and (21). As seen in the
figure, our model (solid line) shows an excellent agreement
with the experimental data ' over a wide range of the
photon energies.

The fit with our el model to the experimental data of
InP (Refs. 2 and 18) is shown in Fig. 11. The theoretical
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10 =

E,
InP

gaps. Hanke and Sham' have shown theoretically that
such excitonic effects can modify the optical constants
and give rise to shifts of CP structures.

E. Indium arsenide

E
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FIG. 10. eq spectrum of InP. The solid and open circles are
taken from Refs. 2 and 18, respectively. The solid line is taken
by the sum of Eqs. (3), (13), (21), and (24), and the dashed line
corresponds to the sum of Eqs. (3), (16), and (21).

3

30

20-
InP

curve is obtained by the sum of Eqs. (5), (17), (22), and
e&„(=1.6). The broadening parameter I considered here
is 0.1 eV. We see from the figure that in the transparent
region (fm & 1.35 eV) the theoretical model gives a good
agreement with the experimental data. However, the fit
in the E& and E2 regions is poorer than that in the trans-
parent region, although the model well explains the exper-
imental shape of these structures. As already seen in Figs.
5, 7, and 9 and shall also see later (Figs. 13 and 15), this is
a general trend holding for fits of our model with the ex-
perimental data of all materials studied here. We could
not successfully explain the reason for this disagreement
at present. A possibility may be that it is due to the ef-
fects of excitonic interaction at the E& (E&+b,~) and Ez

The lowest direct-gap energies Ep and Ep+ hp of InAs
are, respectively, 0.36 and 0.76 eV at room temperature.
The higher interband energies E&, E&+6&, and E2 are,
respectively, 2.5, 2.78, and 4.45 eV. The lowest indirect-
gap energies of this material are Eg = l.07 eV and
Eg ——1.37 eV. The spin-orbit splitting energies Ap and 6&
are, respectively, 0.40 and 0.28 eV; these values are nearly
equal to Ep.

Figure 12 shows a comparison of our ez mode1 with the
experimental data of InAs. The solid line is obtained
from the sum of Eqs. (3), (13), (21), and (24). The dashed
line is obtained from the sum of Eqs. (3), (16), and (21).
The E&+6& gap contribution is neglected in these calcu-
lations. The experimental data are taken below 1.0 eV
from Ref. 18 and above 1.5 eV from Ref. 2. The calculat-
ed curves reveal considerable structure in the region below
E& which are difficult to see in Figs. 4, 6, 8, and 10.
These arise from the Eo, ED+60, and Eg gap transi-
tions. Unfortunately, however, the fit with the experi-
mental data is not so good in this energy region. The
same situation also holds in the case of InSb (see Fig. 14).
This large discrepancy seems to be due to improper as-
sumption of the Ep and Ep+Ap gaps used in the model
[i.e., the parabolic-band assumption; see Eq. (3)]. The
nonparabolic characteristic of the band is manifest
through a change in apparent effective mass with increase
in carrier population. This is prominent in InAs and
InSb. A more rigid model should, therefore, be required
to improve the fit in such a spectral region for these ma-
terials. As in the cases of CxaAs and InP, on the other
hand, the present model well explains the spectral depen-
dence of the E& and Ez structures.

We show in Fig. 13 the fit of our e& model to the exper-
imental data of InAs. The data are taken from Ref. 2
(solid circles) and from Ref. 18 (open circles). The solid

10=
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10=

E2 InAs
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FIG. 11. e& spectrum of InP. The solid and open circles are

taken from Refs. 2 and 18, respectively. The solid line is ob-
tained from the sum of Eqs. (5), (17), (22), and el „(=1.6).

FIG. 12. e2 spectrum of InAs. The solid and open circles are
taken from Refs. 2 and 18, respectively. The solid line is ob-
tained from the sum of Eqs. (3), (13), (21), and (24) ~ The dashed
line is taken by the sum of Eqs. (3), (16), and (21).
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FIG. 13. t i spectrum of InAs. The solid and open circles are
taken from Refs. 2 and 18, respectively. The solid line is taken
by the sum of Eqs. (5), (17), (22), and e& „(=2.8).

line is taken from the sum of Eqs. (5), (17), (22), and e&

(=2.8). General features obtained from this fit are essen-
tially the same as those discussed above.

F. Indium antimonide

InSb has the interband gaps of Eo ——0. 18 eV,
ED+~0——0.99 eV, E& ——1.8 eV, E~+5&——2.3 eV, and
Eq ——3.9 eV. As in the case of InAs, the spin-orbit split-
ting energies of this material are relatively large (b,o

——0.81
eV and b, , =0.50 eV). This material has also the lowest-
indirect gaps of E ——0.93 eV and Eg = 1.63 eV.

In Fig. 14, we compare the ez spectrum of our model
with the experimental data of InSb. The solid line is tak-

en from the sum of Eqs. (3), (13), (21), and (24). The
dashed line is obtained from the sum of Eqs. (3), (16), and
(21). The experimental data are taken from Ref. 2 (solid
circles) and from Ref. 18 (open circles). We recognize in
Fig. 14 a considerable deviation of our model (solid line)
from the experimental data in the Eo and Eo+60 region,
i.e., the calculated values of eq are too large in this region.
As in the case of InAs, this deviation is probably due to
the nonparabolic nature of the conduction band at I point
(Zo and ED+ b,o gaps). The experimental data reveal the
weak E& structure in the 5—6-eV region. Logothetidis
et al. have studied second-derivative features of this
structure with a mixture of a 2D maximum and a saddle
point.

The strengths of the E& and E&+5& structures estimat-
ed with Eq. (27) are B& ——4. 12 and Bz ——2.74. Our fit pro-
vides the sum B&+Bz equals 6.37 which compares well
with the calculated value (B&+Bz——6.86). The dotted
line in Fig. 14 is obtained by introducing strength parame-
ters of B~ ——3.83 and Bz ——2.54 (keeping B, /Bz ——1.50
[i.e., the ratio of Eq. (27)] and B&+Bz——6.37) into Eq.
(16).

We show in Fig. 15 the fit with our e& model to the ex-
perimental data of InSb. The data are taken from Ref. 2
(solid circles) and from Ref. 18 (open circles). The
theoretical curves are obtained from the sum of Eqs. (5),
(17), (22), and e& (=3.1). The solid and dashed lines,
respectively, represent the fits with the strength parame-
ters of B, =6.37, Bq ——0 (E~), and B,=3.83, Bz ——2.54
(E~/E~+6, &). As in the case of GaSb, we see a better fit
with the solid line than with the dotted one.

Finally, we note in Table I that A, which represents the
strength of the Eo and E+ho gaps, is smaller in material
with smaller Eo gap. This is evident from Eq. (4). (Note
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FIG. 14. e~ spectrum of InSb. The solid and open circles are
taken from Refs. 2 and 18, respectively. The solid line is taken
by the sum of Eqs. (3), (13), (21), and (24), and the dashed line
corresponds to the sum of Eqs. (3), (16), and (21). The dotted
line represents the fit with Eq. (16) with taking into account the
EI and E~+A~ gap contributions.
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FIG. 15. ei spectrum of InSb. The solid and open circles are
taken from Refs. 2 and 18, respectively. The dotted and solid
lines are obtained from the sum of Eqs. (5), (17), (22), and e&„
(=3.1) with and without taking into account the El+61 gap
contribution, respectively.
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that the smaller Eo gap material has a smaller m *

value. ') The same conclusion has already been reached
by us from the analysis of the refractive-index data with
the theoretical prediction based on a simplified model of
the interband transitions. ' The strength parameter 8 in
Table I does not vary so widely from material to material.
The parameters, I, C, y, D, and e&, on the other hand,
vary widely in the materials. No exact quantitative
theories, unfortunately, enable us to discuss in detail the
justification of these values at present. However, we note
that the present model well explains the experimental e&

and e2 spectra over the entire range of energies. By per-
forming simple calculations, we can also properly obtain
the optical constants, such as the refractive indices and
the absorption coefficients, from this model. It is well
known that these constants are important for a variety of
optoelectronic device applications.

IV. CONCLUSION

band transitions at the Eo, Eo+60, E&, E&+5&, and E2
critical points. Line-shape analysis of e& and ez spectra
yields information about the strength and broadening pa-
rameters of the critical points. Our model shows a
reasonable agreement with the experimental data of both
the et and e2 spectra (GaP, GaAs, GaSb, InP, InAs, and
InSb) over the entire range of energies. By performing
simple calculations, we can properly obtain the optical
constants, such as the refractive indices and the absorp-
tion coefficients, which form an important part in the
design and analysis of optoelectronic devices. Since the
expressions obtained here are purely functions of the fun-
damental electronic-band parameters, the present model
can also be applicable to the analysis of some
perturbation-induced effects of the optical constants (e.g.,
the pressure and temperature dependence of the refractive
index, the piezobirefringence, and the light-scattering
spectra).

We have developed a method for calculation of the real
(e&) and imaginary part (e2) of the dielectric function of
semiconductors at energies below and above the lowest-
band gap. The model is based on the Kramers-Kronig
transformation and takes into account the effects of inter-
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