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Magnetoplasmons in a two-dimensional electron gas: Strip geometry

V. Cataudella and G. Iadonisi

Mostra d'Oltremare, I-80125 Napoli, Italy
(Received 6 October 1986)

We study the hydrodynamic magnetoplasma modes of a two-dimensional metallic strip deposited
on a dielectric substrate. The "anomalous" dependence on the magnetic field, which has been
predicted for different geometries, is also found in this case. We compare the effect of different
equilibrium densities on the spectrum and analyze its dependence on the strip width. An analytical
solution is reported for the case of the zero-field regime.

I. INTRODUCTION

The electromagnetic modes of a two-dimensional (2D)
electron gas' have received much attention essentially in
connection with the wide development of systems in
which a very good approximation for a 2D electron gas is
available. More recently the interest has been focused on
the effect of boundaries on such systems. In fact, as in
the 3D case, the presence of boundaries reduces the sym-
metry of the system and introduces new electromagnetic
modes localized at the boundaries themselves.

In particular, recent experiments on electrons trapped
on the surface of liquid He in presence of a perpendicular
magnetic field have been successfully explained in terms
of magnetoplasmons localized to the boundaries of the 2D
electron gas. ' The main result of those studies was the
detection of two sorts of magnetoplasma modes. One
type shows the same behavior of the usual bulk modes
whose frequency increases with the magnetic field, while
the frequencies associated to the second set of modes de-
crease when the magnetic field increases. However, al-
though these features seem not to depend on the shape of
the boundaries (all the studied geometries show this
behavior), the detail of the dispersion relations can be very
sensitive to the shape of the boundaries.

The aim of this paper is to formulate in detail the prob-
lem for the special case of an infinitely long metallic strip
deposited on a dielectric medium and compare the results
with those obtained with different geometries. ' The
geometry used seems to us to be of increasing interest be-
cause these system. s are becoming technologically avail-
able and could be used in the future as a wave guide tun-
able with the magnetic field.

In the following we will neglect the effects of retarda-
tion on the field propagation. Thus the problem reduces
to solving Laplace's equation with appropriate boundary
conditions, since, as we will see, the electron dynamics
will enter just as a boundary condition. We will take into
account the electron motion on the basis of the hydro-
dynamic theory. In the general case we have found an in-
finite set of allowed frequencies labeled by an integer in-
dex. For fixed values of the magnetic field and of the
wave number associated with the direction parallel to the
strip, the self-induced density shows a localization at the

edges which decreases for higher-order modes. We can
speak, in this sense, of a quasi-1D electromagnetic mode
analogous to those found for 3D wedge-like systems.
The spectrum also depends on the width of the strip and
on the equilibrium density profile.

In Sec. II we set the basic equations for our problem
taking into account the substrate. Then we give a quite
general integral formulation (Sec. III) which allows an
easy approximate solution in the case of a uniform equili-
brium charge density. In Sec. IV a different approach is
presented useful to investigate the effect of the equilibri-
um density on the dispersion relation. Finally, in Sec. V
we discuss briefly our results.

II. PROBLEM FORMULATION
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a(y)V P =4~en5(y)B(x +c)6(—x +c), (3)

where a(y) is equal to e if y & 0 and to I if y & 0; 6 is the
usual unit step function. In the preceding equations, e
and m are the electron charge and mass, np and n are,
respectively, the equilibrium and the self-induced 2D den-
sities, P is the self-induced electrostatic potential, v is the
local velocity in the x-z plane, and s is an effective wave
speed that arises from the compressibility of the fluid (the

Our system is a 2D classical electron gas confined in a
strip (y =0; —c &x & c) extending infinitely in the z
direction. It is surrounded by a dielectric material with
dielectric constant e for y &0 and by vacuum for y &0.
The system is immersed in a magnetic field B=(O,B,O)

and the electron gas is also neutralized by a positive back-
ground (jellium model). However, this second condition
can be relaxed because, as we will see later, the only
equilibrium quantity that enter our problem is the equi-
librium charge distribution which can be considered as an
input. The basic equations in this linearized hydrodynam-
ic model ' are the equations of continuity, the equations
of Euler and Poisson,

Bn
C}t

+ V2. (nov) =0,
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terms containing s describe the electron-electron interac-
tion in the hydrodynamic approximation). The symbol V2
is the operator (a/ax, a/az) and co, =eB/mc is the cyclo-
tron frequency. We emphasize that the equilibrium prop-
erties are present in Eqs. (1)—(3) only through np which
depends in the general case on x and z. On principle we
should compute n0 by solving the proper equilibrium hy-
drodynamic equations self-consistently but, in the follow-
ing, we will only use np as a parameter. Equations (1) and
(2) describe the 2D dynamics of the electrons and couple
electron motion to the self-induced potential P. On the
other hand, P has to satisfy Laplace's equation everywhere
but on the strip, where Eq. (3) becomes the boundary con-
dition

ay ay—E
a

= —e 4~n (x,z) .

In this way the problem is reduced to solve Laplace's
equation with boundary condition (4) where n depends
self-consistently on the solution of (3) through Eqs. (1)
and (2).

Translational invariance along z direction and in time
implies that all the unknown quantities have a traveling
wave solution of the form e'~' ", where q and cu are,
respectively, the wave number and the frequency associat-
ed to the solution. Putting together Eqs. (1) and (2) and
assuming that n0 depends only on x, we obtain

2 2 2 d 2
2 2

n (x)(cp, —co ) =s —q n (x) — np(x) —q P(x)
e d 2

dx m dx

np(x)
S

np(x) dx

cu, q e
n (x)——

m dx
P(x)

np(x) =ppo(x +c)e( —x +c), (6)

Eq. (5) will contain terms proportional to 5(x+c). Hence,
if we do not want such a singularity in the solution, the
coefficients of the 5 terms must vanish. From (1) and (3)
it is easy to see that this condition is fulfilled if

In our hydrodynamic model, Eq. (5) describes the intri-
cate differential relation between the density and the po-
tential. It takes into account both the dispersion and the
effect of a nonuniform equilibrium density.

Here we want to emphasize that Eq. (5) includes a term
proportional to dnp(x)/dx. This means that we have to
take some care in choosing np(x) because, in order to have
a nonsingular density n (x), np(x) should be continuous
and vanish on the edges of the strip. In fact, if we intro-
duce, for instance, the ansatz

2e C
2P(x,y) = — J Kp I q [(x —x')

1+@

+y ]' In (x')dx', (8)

where Ep(z) is the modified Bessel function of the second
kind of zero order. In order to get an integral equation we
need to extract from the differential relation (5) an in-

tegral one connecting the potential P(x, O) with n (x). If
we use the ansatz (6), this can be achieved easily with the
help of an appropriate Green function. Unfortunately the
inversion presents significant difficulties in the general
case. We obtain

P(x) = [s n (x)+(co —co, )
cpa

C

G x,x' n x' dx'

v„(+c)=0, where P(x) is shorthand for P(x, O) and G(x,x') satisfies
the following differential equation:

which means that no electron can escape from the strip.
As we will see, the additional condition (7) can be satisfied
only if s&0, otherwise the self-induced density will con-
tain 6 singularities on the edges x =+c. Finally, we want
to underline that, due to magnetic field, the solutions will
not have a definite parity along the x axis.

d2 —q G (x,x') =5(x —x'),
(dx')

for
~

x'
~

& c and with the boundary conditions

(10)

III. INTEGRAL EQUATION
FOR THE INDUCED DENSITY

d ~cq
, + G(x,x') ~„+,=0.

dx co

Following essentially the scheme proposed by Fetter
for a different geometry we now present an integral for-
mulation to our problem. This allows us, in connection
with the ansatz (6), to solve the problem by using standard
approximate method. With the help of Green functions,
Poisson's Eq. (3) can be inverted" giving

It is straightforward to show that the solution of (10) with
the condition (11) is

G(x,x')= . [g](x+x')+gz( ~x —x
~
)],—1

4q sinh(2qc)

where,
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(u) Cteg(u —2c)+ e
—9(u+2c)1

g2(u)=2cosh[q(2c —
~

u
~
)],

(12)

(13)

and a = (co+ cuc ) /(co —cuc ). Introducing the dimensionless
quantities t =x Ic, II =re /ra~(c), II, =co, /roz(c),
S =s /c a)~(c), and ru~(c) =8npoe2/mc(1+e), the densi-
ty satisfies the integral equation

1 —Ko qc t —t' + 0 —0, 6' t t' n t' dt'= —S n t (14)

We have defined G'(t, t')=(1/c)G(ct, ct'). Equation (14) can be solved easily, by standard methods, substituting the
function Ko(

I
z

~
) in the kernel of Eq. (14) with (vr/v'2)exp( —v'2q

~

z
~

) which has equal area and second moment.
Then the solution is

n(t)=Ae ' +Be ' +Ce ' +De

where k
&

and k2 are the two positive roots of

S k +k (3q S +q —0 +II )+2q S q +——02+0, =0
2

(15)

(16)

(17)

Inserting (15) in Eq. (14) it is easy to see that the four unknown coefficients of (15) must fulfill a 4)&4 homogeneous
linear system, whose solubility condition gives the dispersion relation 0=f„(A„q,S). Unfortunately, the calculation of
the determinant is very cumbersome so we report here only the limit s ~0

4kc v2k) —1 0, v2k +1 0,
Q2 v 2+k,

where k) ——[qc+2(Q, —0 )]/(qc+0, ,—II ).
We stress here that the limit s =0 has to be performed

carefully. In fact the density n(t) becomes singular in
this limit at the edges of the strip because condition (7) is

I

not more satisfied. Physically this can be understood
since the electrons are not able to screen, when s =0, the
charge accumulation at the edges due to the Lorentz force
acting on the bounded electron gas.

qc:1 qc=2 qc=6

2

n

I
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FICs. 1. The first few magnetoplasmonic squared frequencies as a function of 0,,' for different values of qc. The solid lines corre-
spond to the density profile (1—x )'~ [Eq. (22)] while the dashed lines correspond to the uniform one [Eq. (17)]. The upper dashed
lines are stopped at those values of 0, where k, [see Eq. (17)] assumes imaginary values.
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Equation (17) has two solutions which are plotted in
Fig. 1 (dashed line) as a function of 0, for some specific
values of qc. The first of the two solutions shows the
anomalous behavior with the magnetic field already found
for other geometries. For qc) 5 there are no relevant
differences with the case of a half-plane: it means that
the two edges do not interact. When qc decreases the two
edges interact, the frequencies repel and a frequency gap
comes out at 0,, =0.

In the zero-field regime, when c becomes smaller and
smaller the allowed frequencies increase as 1/c: a 1D
electron gas, in fact, is not able to support electromagnetic
modes. However, with increasing Q„ the frequency asso-
ciated with the first mode decreases, so we have two com-
peting effects which make it possible for a quasi-1D elec-
tron gas to support a self-induced traveling wave. We be-
lieve that this aspect could be very promising for a possi-

ble future use of this type of system as wave guides.
Furthermore, the possibility of changing the frequency
with the magnetic field seems to us also a very interesting
feature.

IV. MATRIX EIGENVALUE PROBLEM

The integral formulation is a quite general approach to
the problem and, as we have seen, it also leads to a very
compact and manageable equation. Nevertheless, infor-
mation on the solutions is easily extracted only in connec-
tion with the ansatz (6) for the equilibrium density. In or-
der to study the effect of different electron density pro-
files on the allowed frequencies of the system, we develop
a different scheme. From Eqs. (4) and (5), putting s =0,
we obtain the following differential self-consistent condi-
tion for the potential P:

ay
aV y p+

ay 8~pae' a' a—e = —
2 o(x) —q' (b(x)+ co —qco, P(x)

&y m(co, —co ) cjx ~ Bx Bx
(18)

where we have assumed n0(x)=petr(x). This condition has to be fulfilled for x &c and y =0; it is important to em-
phasize that Eq. (18) is not a differential equation for P because the electrostatic potential has to satisfy Laplace s equa-
tion out of the strip. Furthermore, P must be continuous everywhere and it means that we have to seek a solution whose
y derivative is continuous when

~

x
~

& c and discontinuous for
~

x
~

& c in order to satisfy condition (18). This can be
automatically achieved choosing as a solution of Laplace's equation a function of the following form:

P(g, g) = g [A„cez„(g,—Q)Fek2„(g, —Q+B„ce2„+&(g,—Q)Fek2„+&(g, —Q)],
n=0

(19)

where we have defined Q =(qc/2) . The potential in Eq. (19) is expressed in elliptic coordinates where x =ccoshgcosg
and y =csinhgsing, (0&/& oo, 0&g &2m.). The functions ce (g, —Q) and Fek (g, —Q) are Mathieu s and modified
Mathieu's functions ' the former is a complete set of functions in the range (O, vr). The use of this coordinate system
and of the complete system take into account in a "natural" way the necessary discontinuities of P. In fact, because the
segment ( —c,c) is defined by the equation (=0, the different conditions inside and outside ( —c,c) can be imposed
separately on ce (g, —Q) and on Fek (g, —Q). In the Appendix we define all the quantities involved in Eq. (19) and
discuss their main properties.

In elliptic coordinates Eq. (18) becomes

a
(g, g)

—1

2(0, —fI )sing
cosy c3 2cr(g ) —4Q sin gsing

ac a+ (g) +qc sing P(O, g) .
aq aq n (20)

By using the orthonormality between Mathieu's func-
tions and remembering the form assumed for P we can
reduce (20) to a linear system in the unknown A„,B„. For
simplicity we consider, now, in detail only a particular
density profile; that is cr(g) =sing. The general case is re-
ported in the Appendix.

With this choice Eq. (20) becomes

where

a =(II,—Q )Fek,' (0)—Fek2 (0) Q+
2

P =(II, —II )Fekz~+, (0)—Fek2~+&(0) Q +
2

a = g cq B„O „Fekq„+~(0),

0mnB P = g cq A„' Fek2„(0),

(21a)

(21b)

and 0„,0„,a2, and b2 +& are defined in the Ap-
pendix. The prime stands for derivation with respect to g.

Equation (20) couples the two kinds of coefficients
A„,B„(A„and B„are associated, respectively, with even
and odd functions in the variable x) in such a way that



35 MAGNETOPLASMONS IN A TWO-DIMENSIONAL ELECTRON. . . 7447

the potential has no definite parity along x; however,
when Q, =0, the equations for A„and B„are decoupled
and we are left with an infinite number of allowed fre-
quencies given by a„=P„=O, whose associated electro-
static potential has definite parity. Inserting (21b) in (21a)
we get the following linear system for the 3„:

oo

a =4Q g T „Fek2„(0)A„, (22)
0

where

00

T „=g 0 )0) „Fekz{+t(0)/P)
1=0

whose solubility condition defines implicitly the magneto-
plasmon frequencies.

This function has been obtained by standard numerical
means cutting the infinite sum after X terms. The con-
vergency has been tested by increasing N to %+1 and
checking the variation on the frequencies obtained. We
have found that, for the values of qc shown in the figures,
X =10 is large enough, in the worst case, to obtain a vari-
ation of the frequency of about 10, which seems to us
very good. Furthermore, our numerical analysis shows
that all the frequencies allowed are real although the ma-
trix is not hermitian and hence, in principle, there are no
prescriptions on the eigenvalues. In Fig. 1 we show the
first allowed frequencies (solid line) as a function of the
magnetic field. In the zero-field regime the frequencies
arrange in an infinite set of pairs; the gap for each of
them becomes smaller when qc increases (this happens at

qc & 5 for the first two pairs and for larger values of qc
for higher-order pairs). With increasing magnetic field,
all the frequencies increase except for the first which de-
creases toward zero. This confirms the presence of the
"anomalous" magnetoplasma mode in such type of sys-
tems.

Another point of interest to us is to investigate the lo-
calization of the potential associated to the modes. In
Fig. 2 we show (()(x,O) for

~

x
~

&c for some typical
values of the parameters. We note that only the first few
modes are localized at the edges, while the potential (and
hence the induced density) for the higher modes is spread
out all over the strip. Furthermore, as we have seen in the
approximate case, the modes of even order are mainly lo-
calized on the right side of the strip while the odd-order
modes on the left side. We have also found that the local-
ization increases quickly with increasing of qc or the mag-
netic field.

V. DISCUSSION

In the present work, we have studied the electromagnet-
ic modes supported by a 2D metallic strip put on a dielec-
tric substrate, with two different mathematical tech-
niques, by using the hydrodynamic model to describe the
motion of the electrons in the strip.

Our results confirm the existence of an anomalous mag-
netoplasma mode as predicted previously for different
geometries. This is connected, so far as we can see, to the
mixed effect of the Lorentz force and of the boundness of
the system. In fact, an analogous dependence on the mag-

+(X,Q)

FICx. 2. The self-induced electrostatic potential P(x, {))(
~

x
~

& 1) associated to th= first five modes. All the curves are normalized
to their max value. n is the mode label.
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netic field is also found for the proper frequencies of a 3D
dielectric slab when the field is parallel to the slab. On
the other hand, the existence of an infinite and discrete
number of allowed frequencies, as we have seen, seems to
us to be essentially related to the two-dimensional nature
of the problem. In fact, the electrostatic modes of wedge-
like systems (which can be always reduced to a 2D prob-
lem taking into account their translational invariance) also
show a spectrum of frequencies which can be labeled by
an integer number.

The two different approaches allowed us to investigate
different density profiles and to study the effect of a pres-
sure term on the excitation spectrum.

The integral formulation has been used to study, in an
approximate way, a system characterized by a uniform
equilibrium electron density and by a pressure term. We
want to emphasize that the use of our approximate
method should provide a qualitative and quantitative
good fit for the magnetic field dependence of the first two
modes, but it is not able to provide any information about
higher-order modes, which, on the other hand, we have
found with the exact differential formulation. The accu-
racy of this approximate method has been discussed re-
cently by Fetter' for the half-plane geometry with the
conclusion that this approximation does not introduce any
qualitative correction in the spectrum. Another interest-
ing aspect is connected with the pressure term. We have
checked that for realistic values of S the charge density
shows up as a strong localization on the edges, while for
larger values of S the density (and also the electrostatic
potential associated) is less localized and the dependence
of the frequencies on the magnetic field becomes flatter.
For simplicity, we have only reported the limit S =0, in
Sec. III, because there are no differences with the realistic
case S—10 . However, unlike the (s&0) case, the
charge density becomes singular on the edges in the limit
stated above.

The differential formulation of the problem is exact
from the mathematical point of view, but s is taken to be
zero. Although the calculations can be done for an arbi-
trary profile of the equilibrium electronic density we have
chosen, in the case studied, n(x)=p0[l —(xlc) ]'i . The
property n0(+c) =0 assures us of obtaining a finite value
for the charge density at the edges. We have found an in-
finite number of allowed frequencies labeled by an integer
number and they show the same dependence on the mag-
netic field obtained previously, suggesting that this feature
is, qualitatively, insensitive to modificat'ons of both the
geometry and the equilibrium density.

However, a more accurate comparison of the results for
the different profiles (see Fig. 1), shows that for small qc
there are no significant differences between the two spec-
tra while when qc increases we find a large frequency
shift. This can be understood because when qc is small

the electrostatic potential associated to the mode is not
very localized at the edges and, hence, the results do not
depend very much on the details of the n0(x) at the edges.

APPENDIX

The Mathieu's and associated modified Mathieu's func-
tions with even index, introduced in Eq. (19), satisfy the
equations

d2
+a& (Q)+2Q cos(2g) cez (g, —Q) =0

. dn'

and

(A 1)

d
z

—[a2 (Q)+2Q cosh(2$)] Fek2 (g, —Q) =0,
dg

(A2)

«2 (rj, —Q) = g A 2„'(Q)( —1)"+ cos(2rg),
r=0

(A3)

«2. +1(~,—Q) = g B2', ++i "(Q)(—1)"+-
r=0

X cos[(2r + 1 )r)], (A4)

from which we see that ceq (g, —Q) is even and
cez +,(g, —Q) odd when x is changed into —x on the
strip (

~

x
~

(c). The coefficients A„"(—Q) are given by
recurrence relations; they have been well studied in litera-
ture together with the characteristic numbers: in any
case, their numerical calculation is not very difficult.

Writing the general electronic equilibrium density pro-
file as

o.(rI)= g sin(2p+1)g
p=0

(A5)

we obtain that the function (19) satisfies the Laplace equa-
tion and the boundary condition (18), if the coefficients
A„and B„are a solution of the linear set of equations

where a 2 are called characteristic numbers. Similar
equations are satisfied by the odd Mathieu's functions
cez +& and the associated modified Mathieu's functions
Fek2 +] with the only substitution of the characteristic
numbers a2~ with b2~+i. '

For any positive integer n, the product
f„(g,q)= ec„( r,I—Q)Fek„(g, —Q) is the solution of the
equation (Vz —q )f„(g,g)=0, satisfying the boundary
conditions f„(g',g)~0 as /~ ad and the periodicity con-
dition f„(g,g) =+f„(g,g+7r) The .functions ce„have
the following uniformly convergent expansion:

A Fekq (0)(Q, —0 ) = g A„D „Fekq„(0)+B„
n=0 77

0 „Fek2„+i(0), (A6)

B Fek2 +1(0)(fl, —0 ) = g B„F „Fek2„+i(0) +A„O „Fek2„(0), (A7)
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where we have defined

rrD „=a,„P „+2QR „+S „+4QZ „+Y

(A8)

S „= cez (zl )t7(zl )cost) cez„(ri) z0 sin g

Zm, n
= ce2m '9 ~ '9 s~n'9 ce2n '9 dg,

rrF „=b,„+P „+2QR „+S „+4QZ „+Y

(A9)

All the quantities in the right-hand sides of (A7) and (A8)
and the quantities 0 „and 0 „are overlap integrals ob-
tained by projecting on the complete basis ce„(g). They
are

dYJP „= cez (q)cr(rl )cez„(zl )
0 sing

d'g
R „= cez (rl )o(rl )cos(2zl )cez„(ri )

0 sing

dnY „=— cez~ (zl )t7'(zi )cez„(rl )
0 sing

Om, n
= ce2m '9 a' 7l ce2n+) '9 dg

In the preceding expressions the prime means derivative
with respect to g. The quantities P,R,S,Z, Y, O can be
obtained from the preceding ones interchanging ce2„with
cez„+&. Using (A3), (A4), and (A5) the above integrals
can be reduced to sums of products of the well known
quantities A z„"(Q) and Bz„"+,

'
( Q ).
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