
PHYSICAL REVIEW B VOLUME 35, NUMBER 14 15 MAY 1987-I

Density-functional approach to second-harmonic generation at metal surfaces
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Using density-functional theory we have determined the longitudinal second-harmonic response of
various simple-metal surfaces in the limit of small frequencies. The metal is described by the semi-
infinite jellium model and the electron distributions in the absence and in the presence of the exter-
nal field are calculated self-consistently using the local-density approximation. Previous theoretical
estimates of the normal component of the surface current density were based on the free-electron or
the hydrodynamic model which do not adequately describe the detailed behavior of the electronic
density in the vicinity of the surface. We find that, at low frequencies, the longitudinal surface
current is proportional to the static second-order polarization whose integrated weight is given by
the first moment of the second-order induced density. The centroid of the second-order polarization
lies about 0.5 Bohr radii farther away from the positive background edge than the static image
plane. Its integrated weight is 1—2 orders of magnitude larger than in the hydrodynamic model.
Correspondingly, the a parameter, which had been introduced by Rudnick and Stern as a measure
of the longitudinal second-harmonic response, is also significantly larger than its hydrodynamic
value.

I. INTRODUCTION

There has been a recent resurgence of interest in the
second-harmonic generation (SHG) of light at metal sur-
faces because of its demonstrated utility as a surface
probe. ' The second-harmonic current present near a met-
al surface consists of three parts: a "bulk" current which
extends about an optical skin depth into the metal, and
two surface currents (parallel and perpendicular to the
surface) which extend only a few angstroms into the met-
al. The nonlinear surface current most sensitive to the
details of the surface charge distribution, and hence most
interesting to calculate quantitatively, is the longitudinal
surface current which flows normal to the surface.

Theoretical work on the second-harmonic response of
metal surfaces has been until now treated only within the
free-electron model or the hydrodynamic model, both of
which, as pointed out by a number of authors, are too
crude to give a quantitative description of electron
behavior near surfaces. The most serious drawback of
these models is that the electron distribution of the metal
is assumed to be constant up to the plane of the surface
and to fall abruptly to zero at this plane. In a quantum-
mechanical description, of course, the density must vary
continuously in the region of the metal-vacuum interface.

In the present work, the density-functional approach is
used to calculate the second-harmonic response of a
semi-infinite metal to a low-frequency uniform electric
field oriented perpendicular to the surface. Since we are
primarily interested in the response at simple-metal sur-
faces, the ionic potential is treated within the jellium
model. The free-electron-like aspects of the noble-metal
conduction electrons should also be represented adequate-
ly by this model. Electron-electron interactions are
described within the local-density approximation (LDA)

of exchange and correlation. Thus, in contrast to the pre-
viously employed free-electron and hydrodynamic calcula-
tions, the smoothness of the electron distribution in the
surface region, the Friedel oscillations in the interior of
the metal, as well as the exponential tails in the vacuum
are fully taken into account.

The theory presented below is intended to describe the
normal component of the surface current at very low fre-
quencies. In this limit, the longitudinal surface current is
linear in cu and the constant of proportionality is directly
related to the second-harmonic polarization. Since this
polarization is nearly independent of co near the static lim-
it, we derive it from the nonlinear electron density in-
duced at the metal-vacuum interface by a purely static
electric field oriented perpendicular to the surface. The
recent hydrodynamic results of Corvi and Schaich
showed that the a parameter, which is a measure of the
normal component of the second-harmonic polarization,
at low frequencies does not differ much from its value in
the static limit. If we assume that this qualitative
behavior also holds in more realistic response theories,
then our results can be expected to be representative of the
longitudinal second-harmonic response for frequencies
co (0 1cop where co~ is the bulk plasma frequency.

We find that the second-harmonic polarization is larg-
est in the tails of the equilibrium electron distribution. In
general, its spatial shape is similar to that of the linearly
induced density, but it is shifted farther out into the vacu-
um. Typically, the centroid lies about 0.5ao (Bohr radius)
farther away from the edge of the positive background
than the static image plane. The integrated weight of the
second-harmonic polarization is found to be about 1 to 2
orders of magnitude larger than in the hydrodynamic
model and, in addition, to vary quite differently with the
bulk density n. As a consequence, the a parameter ob-
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tained from the density-functional response treatment also
differs significantly from its hydrodynamic value. For
bulk densities specified by r, =2, 3, 4, and 5
(r, =[3j(4vrn)]'~ ) we find a = —28.4, —12.9, —8.6, and
—7.4, respectively. In contrast, in the low-frequency lim-
it, the single-step hydrodynamic model gives a = —

9 in-

dependently of the bulk electronic density. If the elec-
tronic density at the surface is assumed to consist of more
than one step, however, hydrodynamic theory can give
much larger absolute values of a. These results clearly
demonstrate the need of a proper quantum-mechanical
description of the electron distribution in the surface re-
gion.

II. THEORY

To determine the ground-state electronic properties of
the semi-infinite metal we use the density-functional for-
malism' which, in principle, yields the exact electron
density of the interacting many-particle system. In prac-
tice, the local-density approximation (LDA) is usually
made, which leads to a local exchange-correlation poten-
tial. Here, the same potential is used as in the work by
Lang and Kohn" (Wigner interpolation formula).

In order to describe the response of the semi-infinite
electron gas to a finite-frequency external electromagnetic
field the time-dependent extension of the density-
functional approach, ' which has recently been applied to
determine the dynamical response of a variety of sys-

E(t) =Eosin(cot) . (2)

If the frequency co is sufficiently small, we may assume
that the electronic density responds adiabatically to this
time-dependent field, i.e., the time-dependent density
n(z, t) has a similar expansion as in (1), with E replaced
by E(t),

n (z, t) = no(z)+E(t)n&(z)+E (t)n (2z)+ (3)

Using (2) and trigonometric identities, this expression may
be rewritten as

tems, ' ' could be used. The nonlinear optical response
of atoms has also been calculated using this approach. '

However, at small real frequencies and long wavelengths,
stable solutions of the response of a semi-infinite metal
seem difficult to achieve. We therefore propose here a
different procedure which relies principally on the static
response properties of the metal, but which nevertheless
should give qualitatively correct results for the longitudi-
nal response in the limit of small frequencies.

In the presence of a static external electric field E
oriented perpendicular to the surface, the electron density
may be expanded as follows:

n (z) =no(z)+En~(z)+E n2(z)+

where no(z) is the equilibrium density profile and the in-
duced densities n;(z), i ) 1, are independent of the exter-
nal field strength E. Now, let us assume that the uniform
applied field has a time dependence of the form

n (z, t) =[no(z)+ —,Eon2(z)+ , Eon4(z)+—.. ]+[Eon &(z)+ , Eon3(z)+ . —]sin(cot)

+[——,Eon2(z) ——,Eon4(z)+ . ]cos(2cot)+ [—,' Eon3(z)+—.]sin(3cot)+[ , Eon4(z)+ . —]cos(4cot)+

This series is now in the~roper form for comparison with
a Fourier expansion (leaving out terms which vanish iden-
tically),

n (z, r) =nq, (z)+n (z)sin(cot)+n2„(z)cos(2cot)

+n 3 (z)sin( 3cot) + n4 (z)cos(4cot) +
where nq, (z) is the time-independent part of the density,
not to be confused with the field-independent equilibrium
distribution no(z). Focusing on the second-harmonic con-
tribution, we find

n q~(z) = —,
'

Eon 2(z) +0 (Eo )—.

Thus, we have established a direct connection between the
static second- order density and the low-frequency
second- harmonic density.

According to Eqs. (4) and (5), the time-dependent terms
of the density are in the adiabatic limit given by the densi-
ty components induced by a static electric field. We cal-
culate the first-and second-order contributions n &(z) and
n2(z) by solving the density-functional equations for the
semi-infinite jellium system in the presence of the external
potential P,„,(z) = +eEoz. ' Thus, the linearly induced

with the boundary condition of zero current far from the
surface. Of course, at finite frequencies, there will always
be a tangential electric field which, in turn, leads to a
current parallel to the surface. Thus, knowledge of n (r, t)
does not give one full knowledge of both parallel and per-
pendicular components of j(r, t). However, since the
tangential component of the electric field at the surface of
a metal vanishes in the static limit, we neglect the trans-
verse current and replace Eq. (7) by

a ~ a
az atj~(z, t)+ en(z, t) =0 . — (8)

density n~(z) is the same as that obtained previously by
Lang and Kohn. " Its centroid defines the static image
plane. The main quantity of interest in the present work
is the second-order density nz(z) whose spatial distribu-
tion and overall size determine the second-harmonic
response in the low-frequency limit.

In order to obtain the current density from the time-
dependent density, we use the continuity equation ( e & 0)

V.j(r, t)+ en(r, t) =0a
at
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Support for the validity of this approximation comes
from the results obtained by Corvi and Schaich for the
hydrodynamic model: At low frequencies, the a parame-
ter is nearly independent of the angle of incidence of a p-
polarized electromagnetic wave and its magnitude is
determined by its value in the static limit. %'e expect this
qualitative behavior to hold also in more refined dynamic
response theories, i.e., the static second-order density is
the central quantity which governs the longitudinal
second-harmonic response at frequencies up to about
0. leone.

III. RESULTS AND DISCUSSION

Figure 1 summarizes our results for the second-order
densities induced at several metal surfaces by a uniform
static electric field. Shown is the polarization

(V P=n, e= —1),
z QO

P2(z) = dz'n2(z') = — dz'nz(z'),
00 Z

(9)

n(z) =no(z)+on, (z)+cr n2(z)+. . .

one has

1
n ~(z) = [n+(z) n(z)—],20

together with the equilibrium densities no(z) and the
linearly induced densities n&(z). The functions n&(z) and
nz(z) were obtained from a calculation of the self-
consistent density for a semiinfinite metal with a slight
positive or negative surface charge o. Denoting these
densities by n+(z) and n (z), respectively, and using the
expansion

n (z)/n

n {zj

-P&(z) —~;I~A
) Ill)

t t
Zp Z)

(a)

n (ZI/n

~ ~ ~ ~ ~ ~ ~~ ~

(b)
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FICs. 1. Second-order polarization P2(z), Eq. (9) (solid line) and first-order density n l(z) (dashed line) induced at four metal sur-
faces by static uniform electric field. The normalized equilibrium profile, no(z)/n, is shown by the dot-dashed line. The arrows indi-
cate the centroid positions, z& and z2, Eqs. (14) and (15), of n&(z) and P2(z), respectively. Inset: qualitative form of corresponding
quantities in the hydrodynamic model.
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1
n2(z)= [n+(z)+n (z) —2no(z)] .

2CT
(12)

In the numerical calculations, the actual values of o. were
of the order of 10 a.u. The linear-induced density n i(z)
in Fig. 1 is normalized to unity:

f dz n i(z) = 1 . (13)

Thus the centroid of n
~ (z) is

z)= Qzzni z (14)

while that of Pz(z) is given by

z2 —— dz zP2 z dz P2 z

dzz n2 z dzzn2 z

In Eqs. (9) and (15), we have made use of the fact that

f dz n2(z) =0 .

(15)

(16)

The numerical values of z] and z2 are given in Table I to-
gether with the widths y, and yq [full width at half max-
imum (FWHM)] of ni(z) and Pq(z), respectively. Also
given is the integrated weight of Pz(z) which is deter-
mined by the first moment of n2(z),

pa= ~ 2 z = — dzzn2 (17)

From the continuity equation (8) and the relation (4) we

see that the spatial distribution of the longitudinal
second-harmonic current is directly proportional to the
second-order polarization defined in Eq. (9):

n for z(0,
0 for z &0, (19)

the first- and second-order-induced densities are given by
the expressions

n, (z)=ke

k
nz(z) = (2e "'—e"')

9n

(20)

(21)

for z(0 and n, (z)=n2(z)=0 for z &0. The second-
order polarization then has the form

of the linearly induced density n i(z). However, its width
tends to be somewhat larger than that of n&(z) and its
center of gravity, z2, typically lies about 0.5a0 farther
from the jellium edge than zi. (Note that the jellium edge
lies at a distance d/2 outside the outermost plane of nu-
clei where d specifies the spacing of atomic planes parallel
to the surface. ) Furthermore, the integrated strength of
the normal surface current is, in the low-frequency limit,
directly proportional to the first moment of the static
second-order-induced density.

Since most of the previous calculations of the second-
harmonic response at metal surfaces were based on the
hydrodynamic model, it is of interest to compare its pre-
dictions for the induced densities with the results present-
ed above. In the static limit, it is straightforward to cal-
culate n&(z) and n2(z) analytically in the hydrodynamic
case for a uniform electric field perpendicular to the sur-
face. If the ground-state profile is taken to be

jp~(z) =coEoPp (z)l(4m). (18) P ( ) (
2kz ekz)k

9n
(22)

Thus, the polarization curves shown in Fig. 1 give a direct
picture of the shape of the normal surface current and of
its location with respect to the surface. Our results
demonstrate that the longitudinal second-harmonic
current is concentrated predominantly outside the ionic
background. Its shape as a function of z is similar to that

rs

Z]

z2

yl
y2

—p2
hd—P2

1.57
2.18

3.0
3 ' 8

239
1.9

28.4

1.35
1.92

3.6
4.3

365
6.3

12.9

1.25
1.77

4.2
4.9

579
14.9
8.6

1.17
1.70

4.7
5.5

970
29.1

7.4

TABLE I. First- and second-order response properties of
various simple-metal surfaces: centroids, z& and z2, of linear-

induced density n&(z) and of second-order polarization P2(z),
respectively [see Eqs. (14) and (15)]. The widths (FWHM} of
these distributions are y] and y2. The integrated weights of the
second-order polarizations in the density-functional approach
and in the hydrodynamic model are pi and p z, respectively [see
Eqs. (17) and (24)]. The density-functional value for the o pa-

rameter is obtained from Eq. (25). In the hydrodynamic model

a = —
9 independent of r, [see Eq. (27)]. (All values are in

atomic units. )

The parameter k in these expressions is defined by

477e n '

5$/3
(23)

0

pz —— dzPz z = —18n (24)

For the four bulk densities specified by r, =2, 3, 4, and 5,
these values are given in Table I. They tend to be 1 to 2
orders of magnitude smaller than the density-functional
values. They also exhibit a rather different dependence on
the bulk density n.

Having determined the second-order polarization, we
are now able to make contact with the dimensionless pa-
rameter a which was introduced by Rudnick and Stern as
a measure of the longitudinal part of the second-harmonic
surface current. According to Eq. (29) of Ref. 8 [see also
Eq. (3.3) of Ref. 3], at low frequencies a is given by
(atomic units),

where the constant g relates electron density and pressure
in the hydrodynamic theory, i.e., p =gn

~~ .
The functions n i(z) and P2(z) are sketched in the inset

of Fig. 1(a). The centroids of these quantities are located
at z] ———1/k and z2 ———1.5/k, respectively. Thus, in
contrast to the density-functional results, the centroid of
Pz(z) actually lies deeper inside the metal than that of
n i(z). Moreover, the integrated weight of P2(z) is
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a =4n dzP2 z =4np~, (25)

where the Drude dielectric function has been used to
determine the electric field in the interior of the metal.
Thus, at low frequencies, the parameter a is a direct mea-
sure of the integrated weight of the static second-order
polarization induced at the metal surface. Using Eq. (18),
we may express a in terms of the longitudinal second-
harmonic current

a =(4')
2

dz j2„(z) .
4n

NEp
(26)

From the density-functional results for pz in Eq. (25),
we obtain for a the values given in Table I. These values
are considerably larger than the hydrodynamic result
which, according to Eq. (24), is

hd 4— hd (27)

independently of the bulk density. It should be recalled,
however, that this hydrodynamic value refers to an equili-
brium electron density which drops abruptly from its bulk
value to zero. If the density profile is modeled, on the
other hand, by a two-step profile, a is approximately
given by

a = —2/(9f), (28)

where f is the average fractional charge density over the
range near the surface where the screening of the applied
field takes place.

The large values of a which we obtain from density-
functional theory are consistent with a recent qualitative
argument by Sipe et al. Using the hydrodynamic model,
they take into account the fact that the electrons produc-
ing the longitudinal second-harmonic current may have a
local "effective plasma frequency" coo. Writing

a = —2(co~ —4' )/(coo —4' ),
they find at low frequencies

a = —2~& /cop ———2n /np,2 2—

(29)

(30)

IV. CONCLUSION

where we have related cop to a local effective dens&ty np
via cop=4~np. Thus, with a taking on the values given in
Table I, we obtain the following for r, =2,3,4, 5:
np/n =0.07, 0.16, 0.23, and 0.27, respectively. This trend
is quite consistent with the fact that the maxima of the
second-harmonic polarizations shown in Fig. 1 are located
at distances from the jellium edge where the equilibrium
density has dropped to about 11%, 20%, 27%, and 33%
of their bulk values (for r, =2, 3, 4, and 5).

have shown that at low frequencies the longitudinal part
of the second-harmonic current can be obtained from the
nonlinear density induced by a static electric field.

Our results demonstrate that this current is located
predominantly in the exponential tail of the equilibrium
density and that the second-harmonic signal should there-
fore be very sensitive to surface conditions. This is con-
sistent with experiments which have shown that the pres-
ence of small fractions of adsorbed monolayers can be
detected using this technique. We also find that the
overall size of the longitudinal SH response is 1 to 2 or-
ders of magnitude larger than predicted by hydrodynamic
calculations based on a single-step density profile. In par-
ticular, for the a parameter we obtain values between
——28 (r, =2) and —7 (r, =5), whereas hydrodynamic
theory gives a = ——,

'
independently of the bulk density.

Since the a parameter in the present work is obtained
from a purely static response calculation, the only remain-
ing approximation in the problem is related to the treat-
ment of electron-electron interactions. In principle, the
density-functional approach yields an exact quantum-
mechanical description of ground-state properties such as
the profile of the electronic density. In practice, however,
the true exchange-correlation functional is replaced by a
local functional. As a result, the surface potential falls
off exponentially in the vacuum instead of having image-
like behavior. Since the second-harmonic polarization is
located predominantly in the tails of the ground-state
electron profile, its shape and magnitude might also be in-
fluenced by the local approximation. This effect would
become larger with growing r, because of the greater im-
portance of exchange and correlation in low-density sys-
tems. On the other hand, the discrepancy between the hy-
drodynamic value of a and the density-functional result
gets larger towards higher bulk densities. This discrepan-
cy should therefore not be a consequence of the local
exchange-correlation functional.

Recent measurements on Al and Ag films deposited on
Glass prisms were interpreted by Quail and Simon'
within the hydrodynamic model by Sipe et al. At a fre-
quency ~=1.17 eV they achieve a fairly consistent fit of
the angle dependence of the SH reflection for a = 1.5 (Al,
r, =2) and a =0.9 (Ag, r, =3). While these values are
much larger than the actual hydrodynamic value at low
frequencies, they are also much smaller than our density-
functional results. It is not clear, however, whether the
metal-glass interface at which most of the SHG takes
place in this experiment is well represented by our metal-
vacuum interface. Thus, we are hesitant to claim that
these data contradict our theoretical predictions. It would
be of great interest to have SHG performed on single-
crystal metal surfaces prepared under ultrahigh vacuum
conditions.

We have presented a calculation of second-harmonic
generation at various simple-metal surfaces using
density-functional theory. In contrast to previously em-
ployed free-electron and hydrodynamic models our
quantum-mechanical treatment takes the profile of the
equilibrium electron density at the surface and its nonlo-
cal response to the external fields fully into account. We
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