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A charged particle passing near a spherical body engenders real collective excitations which con-
tribute to the stopping power. The greatest contributions occur at small impact parameters where
many multipoles are excited on the spherical surface. An analytical form for these contributions is
obtained for spheres that are sufficiently small that retardation is negligible and which are charac-
terized by a spatially local, frequency-dependent dielectric function. Results are given for a variety
of materials for which the optical-uv properties are known.

I. INTRODUCTION

This paper presents calculations of energy-loss rates to
collective excitations for charged particles interacting
with a sphere. The sphere is characterized by a spatially
local, frequency-dependent dielectric function €(w), and is
assumed to be sufficiently small that retardation is negli-
gible. This problem is of general interest, but our work is
motivated by considerations of energy losses by low-
energy electron beams in aloof scattering near a surface,’
and by similar considerations related to scanning
transmission electron microscopy,”?”* as indicated in an
earlier letter.’ However, a detailed comparison with the
great variety of relevant experimental data is beyond the
scope of this paper and we simply show general results for
several types of targets. Since the results obtained are rel-
atively straightforward to apply to any given beam pro-
file, we do not attempt to specialize the calculation to any
single profile. Our main concern is that the strongest sur-
face effects occur for passage of the beam close to the tar-
get where high orders of multipolar excitations occur,
these modes being rather complicated to analyze in previ-
ous treatments.®~® By obtaining a simple analytical calcu-
lation of such effects, we are able to give a succinct result
valid for all impact parameters and which may be applied
to any material with known optical properties.

In Sec. IT we consider a charged particle moving at con-
stant velocity outside a small sphere and find the work
done in order to maintain the constant velocity. This ex-
pression in turn yields the differential energy-loss proba-
bility. In quantum terms, the charge excites both real and
virtual collective effects, the former giving rise to energy
dissipation and the latter to conservative effects. Both ef-
fects can be encoded in a complex self-energy function,
and possible excitations include surface plasmons,—!°
surface optical phonons,!! helicons, ripplons,'? and quanta
of orientation effects on permanent molecular dipoles.'’
The classical analysis is in agreement with the quantum
results in all these cases as long as the frequency is con-
verted to energy by multiplication of Planck’s constant in
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the final result. We present the details of this analysis for
the charge in one medium and the sphere composed of a
material of different dielectric function, a result of partic-
ular interest in producing chemical maps of composite
materials by electron energy-loss analysis.

In Sec. III we consider the sphere to be surrounded by a
layer of material different from that of the sphere or of
the surrounding material. This case is of importance for
materials which readily form a thin oxide or sulfide layer
on their surfaces. The result obtained has the same
dependence upon impact parameter as the case without a
layer and thus can be numerically evaluated with equal fa-
cility.

In Sec. IV, we consider a range of several distinctly dif-
ferent materials, including metals, semiconductors, and
organic compounds for which optical constants are avail-
able. In each case we give the differential probability of a
given incremental energy loss as a function of the loss,
presenting the results for several incident beam energies at
near grazing incidence. We present our conclusions about
these results in Sec. V.

II. ALOOF SCATTERING NEAR A SPHERE

Consider a point charge g moved at constant velocity v
along a trajectory specified in Cartesian coordinates by
z'=uwut, x'=b, y'=0, at time ¢, and with v <<c. In terms
of spherical coordinates (r,0,¢), one has r’ equal to
(b%+2'%)'/% and cos 6’ equal to z'/r’. The scalar electric
potential at (#,0,¢) for r'>ris
1

Py, (cosB)

9 r
|r—r'(1) | | sy r
X Pp,(cos@’) cos(me) , (1)

where P, is the associated Legendre function as given by
Stratton.'* Also,
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(2—8¢pm (I —m)!

Nim = (I4+m)

, ()
where 8, is unity for m =0 and is zero otherwise. If
r>r’', then r and r’ are exchanged in Eq. (1).

If one uses spatially local, frequency-dependent, com-
plex, dielectric functions to characterize the electro-
dynamic response of the (nonmagnetic) media involved, it
is necessary to introduce Fourier transforms to match
boundary conditions. That is, for any time-dependent
function f(t), one writes

Flor= [ rweds 3)

assuming the integral exists, and

HJ) CL)
f_w 129 - 4)

We now consider a sphere of radius a <b centered at
the origin and having dielectric function e(w)
=e€,(w)+ie(w), where € is the real part of € and ¢, is its
imaginary part. The charge is assumed to move in a
medium of dielectric function &w)=¢€(w)+i&(w).

If <‘Iv>q is the Fourier transform of the potential ®, due
to g as given in Eq. (1) for ' >r, then the potential out-
side the sphere has Fourier transform

- (I)q © i
(bout: _ + 2 2
I=0m=0

€w)

1+1
a

m (2 —80m )

X Py, ( cosB) cos(me) (5)

and inside the sphere the Fourier component of the poten-
tial is

0 1
=3 z (2 — ao,,,)[i
[—0m=0 a

!
P, (cos@)cos(md), (6)

where terms odd in the angle ¢ are omitted as they are in-
consequential. The Fourier transform of ®, requires the
integral

— f_m r/A(l+1)PIm( coser)eiwz’/vd(zr/v) . (7)

To perform this integration we took the tedious route of
calculating it for several values of the indices, observing a
pattern in the results, and then proving the inferred
answer by induction. We have since obtained more
elegant and simpler proofs, and note that it is given in the
literature!® in terms of Meijer’s function (a rather incon-
venient answer). Of course, once the integral is known,
mathematical induction is a straightforward manner of
proof. We find

2i' 7 k| IK
v(l —m)!

I—m

kb |) | k

[k |

Ilm = » (8)

where kK =w /v, and K,, is the modified Bessel function of
order m.

Matching the potentials (5) and (6) at » =a and similar-
ly matching their normal derivatives multiplied by the
dielectric function appropriate to each, one obtains two
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equations which may be solved for A4,,. This gives the
homogeneous portion of the external potential ®, in fre-
quency space. One finds that the /=0 term identically
vanishes, leaving

- © 1
Do=—q > > Nyna'=[a)(@)+B)(w)

I=1m=0

+7y(w)]

I+1
SimIim » 9)

X

where f},, stands for Pj,,( cosf)cos(md), the integral 1,
is given by (7), while Ny, is given by (2), and a ~*y(w)
stands for —1+[1/&w)], the reduction in the volume-
plasmon contribution due to the presence of the surface
(the so-called begrenzung term'® which is neglected hence-
forth, as discussed below), and

Bilew) = a2+ 1)[Ew)—1] (10a)
! [lelw)+ &)1+ 1)]
while
aI(w):a3 elw)—&w) (10b)

o)+[(I+1)&w) /1]

is the /-dependent polarizability. Although we neglect the
begrenzung term and volume losses, the surface losses
occur at energies well separated from the energy of the
volume plasmon. Even in silver (for which the volume
plasmon has an energy of 3.72 eV) the energy loss for the
highest-order modes is 0.1 eV less than the volume-
plasmon energy, and silver has one of the smallest differ-
ences in energy between the bulk and surface plasmons.
Defining

daw ad,
dz =9 oz

(11)

r'=r
one has also by letting &@,;(w) replace a;(w)+ B;(w) that

. . a2
aw _ Efﬂfi}’ ) 3 U+ 1=m)

X NI Py 41, (cosO) (12)

where the coordinates referring to the location of ¢ are
now left unprimed.

If one converts (12) to positive limits on o after in-
tegrating z from negative to positive infinity, then the
work done in maintaining constant velocity is found to be

2
=8—‘132M,,,, f Z—wK (b /v)(wa /) Ima(w) ,
as Im

(13)

where Im@&;(w) is the imaginary part of the generalized
polarizability and
(2—80m)
My,=——". 14)
= (I —m)N I+ m)! (
The differential energy-loss probability is defined in
Hartree atomic units (e =m =#=1) by
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ar
dw

so that for an electron the differential probability is

W= fowdww (15)

21

K,%, wb

wa

dP 4a~?
L M @wa
do sz 1,2”. Im

Imé&, (o) . (16)

For each value of / and m the critical value of the dif-
ferential energy-loss probability as a function of v occurs
at v=v,, the first derivative with respect to v vanishing
for each mode at v=v, to give

wb

— |Km+1
Uy m+

wb

wb

(I+14+m)K, (17)

U1

The second derivative at this value of v is

S =2K2 (wb /v o720+ | |22

5 )
——(l+1)2+mzl .
Uy

(18)

If wb /v, is large compared to unity, then the Bessel func-
tions lie in the asymptotic regime and Eq. (17) demands
I+1+m be large. Then S, is positive and v, gives a
minimum value to the large-order contribution. No value
of v, satisfies Eq. (17) for wb /v, <<1. For low order,
wb /v, is on the order of unity and one has a maximum in
the low-order contribution at v=v;. In the dipole case
I=1,m =0, one has wb /v, from Eq. (17) must be about
1.65 and S g <0. Then for a silver sphere with w evaluat-
ed at the dipolar surface plasmon energy (w~0.13) and
b =200 bohr radii, one finds the energy E,=v?/2 to be
about 124 Hartree rydbergs (1 Hartree rydberg = 27.2
eV), or roughly 3.4 keV. Above this energy the m =0 di-
pole contribution drops with increasing beam energy. For
materials with a higher surface-plasmon energy the max-
imum occurs at higher energies, e.g., for aluminum, the
maximum occurs at an incident electron energy of about
39.2 keV.

Equation (16) can be applied to several cases. If one
has a vacuum outside a condensed matter sphere, then
€=1 and e(w) can be obtained from the bulk optical prop-
erties of the material of the sphere so long as the sphere
contains a sufficient number of atoms. For spheres on the
order of several nanometers in size many hundreds or
even thousands of atoms are present and it can be expect-
ed that bulk optical properties are sufficient. Application
of the results in this instance to several materials is given
in Sec. IV. If one considers the case of a spherical void,
then e=1 and & w) is the dielectric function of the medi-
um containing the void. Both cases are of interest in
transmission of electron beams through samples and near
microspheres. For materials present both inside and out-
side the sphere two different files of optical data must be
called in applying the calculations, but the simplicity of
Eq. (16) allows this to be done with an economical pro-
gram. The more severe problem comes for near-grazing
incidence, a case requiring up to a hundred values of /.
This necessitates a program for calculating high-order
Bessel functions accurately, and for dealing with under-
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flows. By use of downward recurring formulas the Bessel
functions can be accurately tabulated, and by judicious
use of logarithms the underflows can be eliminated. Oth-
erwise the calculations proceed in a straightforward way.

III. THE SPHERE WITH A LAYER

It is not uncommon to find that a small sphere oxidizes
or in some other fashion obtains a thin layer on its surface
with very different optical properties from those of the in-
terior. Indeed, for aluminum, the oxide layer is very diffi-
cult to avoid even under ultrahigh vacuum for a time suf-
ficient to complete an experiment. In this section, we
consider the effects of a layer on the differential energy
loss probability per incremental energy loss. Schmeits has
given an analysis of the dipole limit in this case.!”

Let a sphere of radius a; be surrounded by a concentric
layer between r =a, and r=a,, the dielectric function of
the interior being €(w) and that of the layer being &(w).
The dielectric function of the material outside the layer
(r>a,) is denoted &w). Due to coupling, the layer sus-
tains two surface-plasmon energies for each mode of a
bare sphere. Thus, the dispersion relationship

elw)=—(+1)&w)/! (19)

for a bare sphere becomes a quadratic relationship involv-
ing é€(w) when a layer is present. We find from elementa-
ry electrodynamics that

R éw) |_ I+1 1
0=€(w)+ g €w) ] +g; | +€lw) 51 +g;
+e(w)élw) , (20)

where g; is (a;/a,)*'*! which is assumed not to be unity

here. If a,=a,, then the term in square brackets vanishes
because Eq. (19) holds. Since all the dielectric functions
involved are complex, in general Eq. (20) is never satisfied
for real frequencies, as is the usual case with surface-
plasmon dispersion relations. But in energy-loss prob-
lems, Eq. (20) occurs in the denominator of the imaginary
part of the energy-loss function and merely gives rise to
finite-width peaks in this function at the surface plasmon
frequencies.

The scalar electric potential has a Fourier frequency
component for r>a, which is denoted as ®,, and is
given by Eq. (5) but with a =1 for purposes of conveni-

ence here. For a; <r <a, the potential has frequency
component
~ Cim
Dpe = D, e /12— 803 )Py ( cOsO) cos(me)  (21)
Im 81—

with the subscript “bet” meaning “between” a; and a,,
while

g(B—Dr! g —B
PR + S

Ji= (22)

and By is an amplitude to be determined. Also, for r <a,
one has
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_ 1

®in= 3 CimBi(2—8om) 377 Pim( cosO) cos(me) . (23)
ILm aj

In order that the potential be continuous

C 4 (l—m)!a§’+11 04
m=Atm +q——————Ip, .
m = m ) Ew)

Applying the continuity of the normal components of the
electric displacement vector in frequency space one finds

gad ', (1—m)

€w)l+m)

(14+Dyy,) , (25)

P _ 2Dl —g) &)+ +1]
"I D[Eo)—e, J[8w)—e_1(1—g))

with €, and e_ being the two values of é&(w) given by the
two roots of Eq. (20). The amplitude A4;,, contains the be-
grenzung term which may be omitted by retaining only
D,;,, in the parenthesis in Eq. (25). The modified coeffi-
cient Aj, then contains only the surface plasmon effects
for I >1 and may be separated into two coefficients using
partial fractions if desired.

We find for the surface plasmon contribution to the dif-
ferential probability of losing energy between o and
w—+do (in Hartree atomic units)

—2 21

dp 4a; wa, 2 b (21+1)
=L Rty ) Rl BT ¢
dw 7TU2 LElim v Km l(l+1) mgl ’
(27)
where
3
()(1—g;)—&w)(]] 1+1)
6 a; elw g)—€lo)ilg; +1+ 28)

1—g [Elw)—e, ][6lw)—e_]

For a,—a, and é—¢, Eq. (27) yields Eq. (16). Since the
same sum on the azimuthal index m occurs in Eq. (27) as
in Eq. (16), one may calculate the effect of the layer by
comparing the dependences on the mode index. We con-
sider only the unlayered sphere for presentation of the re-
sults in the next section, as the numerous possible com-
binations of materials for display of Eq. (27) would re-
quire a rather lengthy exposition. Indeed, once an algo-
rithm is developed for Eq. (16), it is not difficult to modi-
fy it to selected cases appropriate to individual experi-
ments.

IV. ANALYSIS OF SPECIFIC CASES

To illustrate the application of Eq. (16) to a variety of
cases without embarking upon a complex trail of the
many combinations of materials which may be of interest,
we first take €(w)=1. This is the case of a vacuum-
bounded sphere. We then consider several materials, in-
cluding metals, semiconductors, and insulators. Figure 1
shows our results for an aluminum sphere bounded by
vacuum. A graph of log,o(dP/dE), for E =#iw in Hartree

atomic units (e =#%=m =1) versus w (or E) is shown for
a sphere of radius 10 nm and for »=10.4 nm. Several
different curves are displayed, each corresponding to a
given energy of the incident beam of electrons. All of the
ensuing cases assume the same spherical radius, impact
parameter, and incident energies. Figure 2 shows the re-
sults for a silver sphere bounded by vacuum, and Fig. 3
gives the same results for gold. The beam energies for
each curve in each of the figures are 100 eV, 500 eV, 2.5
keV, 10 keV, and 50 keV. The results at 100 eV are al-
ways shown as a dashed curve, while the other energies
are distinguished by the fact that the excitation probabili-
ty at the central peak diminishes with increasing beam en-
ergy above 100 eV. In all cases presented, the sum on [
gave sufficient accuracy by including 100 values of /. We
used a Digital Equipment Corporation PDP/1123 micro-
computer, all programs being written in FORTRAN. Run
times were on the order of 5 min.

In the case of aluminum, there is a double peak for a
50-keV beam, the splitting being due to the separation of
the dipole from the higher modes. Higher values of the
incident energy are not perfectly equivalent to smaller im-
pact parameters, of course, but the argument of the Bessel
function is wb /v. As a consequence of this dependence
there are higher mode excitations at higher energies.
Also, note that for aluminum the 100-eV curve has a
lower peak height at its maximum than does the 500-eV

) B S e S T

Aluminum

log,, dP/dE

| I P

VU S S U S S S |

0.0 0.2 0.4 0.6 0.8

E (hartrees)

FIG. 1. The logarithm to base ten of the differential energy
loss probability dP/dE vs the energy loss E in Hartree atomic
units for an electron passing at a distance of 208 bohr radii from
the center of a vacuum-bounded aluminum sphere of radius 200
bohr radii. The dotted curve is for a 100-eV incident beam,
while the remaining curves in descending peak height for in-
creasing beam energies are for 500 eV, 2.5 keV, 10 keV, and 50
keV.
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logyq dP/dE

E (hartrees)

FIG. 2. Same as Fig. 1, except that the sphere is made of
silver.

curve. The same does not hold for silver and gold due to
their relatively lower surface-plasmon energies. Addition-
al details of the mode dependence are given in the paper
by Ferrell and Echenique.’

In Fig. 4 we show the results for a vacuum-bounded sil-
icon sphere. Due to the extraordinary variations in the

T T T T T T YT YT T T T

Gold

logyy dP/dE

E (hartrees)

FIG. 3. Same as Fig. 1, except that the sphere is made of
gold.

2

—T T T T T T T T T

Silicon

logyg dP/dE

-4, Sy

a Lo i n
0.0 0.1 0.2 0.3 0.4

E (hartrees)

FIG. 4. Same as Fig. 1, except that the sphere is made of sil-
icon.

dielectric function of silicon, the results increase as a
function of @ with the surface-plasmon peaks being mere
bumps on the way to ever-larger loss probabilities. As in
the case of metals the 100-eV curve drops below the other
curves for the region of @ above the point where the curve
has its peak. For polystyrene, which is used in the results

TrrpTTTTYTYTYTY TrrrrTTTYY TrrTrTrT

Polystyrene

log,yq dP/dE

....... $asaasaaaataseasaaaslasagaaassalasaasaaaalaaaasaaiy

-4 i 1 1
0.0 0.2 0.4 0.8 0.8 1.0 1.2

E (hartrees)

FIG. 5. Same as Fig. 1, except that the sphere is made of po-
lystyrene.
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for Fig. 5, the 500-eV curve also drops below the higher-
energy curves in the region of the higher values of w.
Despite the larger values of €,(w) for silicon and poly-
styrene relative to the metals, there is a definite energy-
loss peak. In order to demonstrate that possible applica-
tions may be obtained for biological systems we show re-
sults for water in Fig. 6 and for adenine in Fig. 7. In
practical situations one should include a surrounding
dielectric in these cases, but we present the vacuum-
bounded case partly to show the case of applicability of
the results to any material with known optical proper-
ties.!

In Fig. 8 we show the effect of a surrounding material
by considering an aluminum sphere surrounded by man-
ganese. For this figure only the solid curve is for 100-eV
beam, while the other curves diminish at the peak for
ever-higher energies, the same set of energies being used as
for the other figures. The effect of the manganese sub-
stantially alters the results over the case of Fig. 1. A
broad peak appears near the volume-plasmon energy of
aluminum, this blue shift from the usual aluminum sur-
face plasmon being due to the rather complicated com-
bination of the two complex dielectric functions. We have
presented dP/dE rather than its logarithm as the varia-
tion in amplitude is not nearly so extreme as in the vacu-
um bounded case for the various curves.

We have not attempted to average over impact parame-
ters; since this procedure depends in detail upon the beam
profile, it must be left to individual experiments. The ma-
jor influence of such profiles might for instance be the
enhancement of the dipole mode contribution for aloof
scattering, as there are ever more particles in the beam as

log,q dP/dE

L | VT PPTTTTITS TYTTTTTIT FRTTTTTTIT FRTTTTTT Lo
0.0 02 04 08 08 1.0 1.2

E (hartrees)

FIG. 6. Same as Fig. 1, except that the sphere is a water
droplet.

2

Adenine

log,o dP/dE

By | NPT FRTTTT FRUTTTTTIN PUTTTTTITS IVTTTTTTN Lisaisaaas
0.0 02 04 08 08 1.0 1.2

E (hartrees)

FIG. 7. Same as Fig. 1, except that the sphere is made of
adenine.

one moves outward from the surface of the sphere. The
particles with larger impact parameter, being more
numerous and tending to excite the dipole mode most
strongly, could cause such a result, but one must keep in
mind that they also have a very much weaker interaction
with the sphere. Thus, the results are sensitive to the pro-
file in a complex way. Fortunately, Eq. (16) is sufficiently
simple that convolution should be straightforward.

0.65 T T T T T
0.60 |
0.55

0.50 ’ o -
0.45 \‘\
‘l
‘\

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

dP/dE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E (hartrees)

FIG. 8. Differential energy loss probability dP /dE vs the en-
ergy loss E in Hartree atomic units for the same impact param-
eter sphere radius and incident energies as the other figures, but
for an aluminum sphere surrounded by manganese. The 100-eV
incident beam energy is here shown as a solid curve and other
beam energies have descending peak heights with increasing en-

ergy.
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V. CONCLUSIONS

We have obtained a succinct result for the differential
probability of energy loss to a sphere by charged particles
in aloof scattering. The results are given for a sphere or
spherical void embedded in another medium and for a
sphere or spherical void with a layer and with a surround-
ing medium. The formulas have been applied to electron
scattering from spheres of radius 10 nm for several ma-
terials. No account of beam profile is given, and the case
in which the beam enters the sphere is not considered.
Retardation, spatial dispersion, and relativistic effects
have been neglected. For spheres of radius 2—20 nm, re-
tardation and spatial dispersion are in fact negligible. The
effects of spatial dispersion in scanning transmission elec-
tron microscopy have been discussed by Ritchie and
Marusak!® and by Echenique.?’ Relativistic effects must
await considerably more complicated analyses, but may be
important in scanning transmission electron microscopy
at the higher beam energies.

It would be of value to consider the case in which the

trajectory intersects the sphere. In this instance the
Fourier transform of the potential of the charge in spher-
ical coordinates is broken up into three integrals, one over
the time before entering the sphere, one during the time
the charge is inside the sphere, and one for subsequent
times. The potential inside the sphere has a different ex-
pansion in spherical coordinates, and each of the integra-
tions would have to be carried out numerically. However,
the procedure is otherwise identical to that presented
above for aloof scattering. The case of spheroidal, rather
than spherical targets, is currently under investigation.
The results will be submitted at a later date for prolate
and oblate spheroids.

Our results demonstrate that for spheres for radii
greater than simple clusters and of radii no greater than
the limit for which retardation becomes significant, it is
important to include many higher modes than the dipole
modes, especially for close impact parameters and higher
energies. Moreover, we have shown that it is not difficult
to include the higher modes for a variety of materials and
beam energies.
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