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A new algorithm for the construction of a dense random packing of a binary mixture of hard
spheres is presented. The algorithm uses periodic boundary conditions and is capable of handling
any binary composition with radius ratio between 1.0 and 2.0. Computed results are relatively in-
sensitive to variations in program parameters. The resulting packings are extremely homogeneous
and isotropic. The packing fraction, the radial distribution function, and the Voronoi-cell statistics
are all calculated for equal spheres. The packing fraction is also calculated as a function of compo-
sition fraction and size ratio for unequal sphere mixtures. For all cases the packing fraction is be-
tween 0.64 and 0.68. This contradicts the popular notion that the packing fraction increases rapidly
as a function of size ratio for a given composition fraction for dense random packings. Since the
mass density scales linearly with packing fraction and amorphous metals have mass densities very
close to those of the corresponding crystal, the dense random packing of hard spheres predicts mass
densities that are 8—14 % lower than in the crystalline metal. The unlikelihood of this implies that
the atoms in an amorphous metal cannot act like hard spheres. Rather they deform in such a way
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Numerical simulation of the dense random packing of a binary mixture of hard spheres:

as to pack together more efficiently than a dense random packing of hard spheres.

I. INTRODUCTION

The random close packing of hard spheres model seems
to be an excellent approximation to the atomic structure
of amorphous metals composed of similar sized atoms (eg.
NiP).!=* However, most real amorphous metals are
binary (or ternary) alloys in which there is a substantial
size difference between the smallest and largest atomic ra-
dii. It is thought that the size difference raises the stabili-
ty against crystallization of amorphous metals and also
makes it easier to form the amorphous solid (as indicated
by lower critical cooling rates, for instance).’~’ Whether
these effects are really due to size differences, chemical
bonding effects or a combination of the two is not clear
yet.® What is clear is that a size difference will substan-
tially change the atomic structure of the amorphous alloy.
Consider, for instance, a dense packing of equal spheres in
three dimensions. The maximum number of spheres that
can touch another sphere is 12.° The densest packing of
12 spheres around one is a regular icosahedron (with the
atoms at the vertices)® (see Fig. 1). However, there is a
gap between each outer sphere and its outer neighbors: If
the sphere diameter is unity then the minimum distance
between outer spheres is approximately 1.05. If we slowly
increase the outer sphere diameters we can close the gap,
but if there is any further increase the maximum number
of outer spheres touching the inner spheres must decrease
to 11. Increasing the outer sphere radii further, the num-
ber of outer spheres touching the inner sphere must de-
crease in discrete steps (10,9,...). Similarly decreasing
the outer sphere diameter, the maximum number of outer
spheres can increase.

Metal-metalloid glasses may exhibit a large degree of
chemical short-range order (CSRO). However, metal-
metal glasses often exhibit much less CSRO. Because the
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dense random packing of a binary mixture of hard spheres
does not incorporate any CSRO, it is much more likely to
be applicable to metal-metal glasses than metal-metalloid
glasses. For a dense random packing of equal spheres the
average coordination number (depending on how it is de-
fined) ranges from approximately 12 to 14 with some
spheres having as few as 10 neighbors and some as many
as 17 [see Fig. 2(a)]. For a dense random packing of un-
equal spheres some small spheres will be surrounded by
only large spheres, some large spheres will be surrounded
by only small spheres, and most spheres will have neigh-
bors of each type. Thus we expect a much broader distri-
bution of coordination numbers. We also expect the den-
sity (or packing fraction) to increase as we increase the ra-
dius ratio; the larger holes being filled by the smaller

FIG. 1. A regular icosahedron provides the densest packing
of 12 atoms around one. If the bond length between the central
sphere and all outer spheres is 1.0, then the outer-outer sphere
bond length is approximately 1.05.
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spheres. In fact this is the basis of the Polk model of
metal-metalloid glasses: The small (metalloid) atoms fit
into the largest holes in a dense random packing of large
(metal) atoms.!® Since a cluster with small spheres tightly
packed around a large sphere is denser than a cluster with
large spheres tightly packed around a small one, we might
also expect the packing fraction to peak at a high concen-
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FIG. 2. Voronoi-cell statistics for a dense random packing of
equal spheres constructed using the algorithm described in this
paper. (a) Distribution of cells with F faces, (b) distribution of
faces with N edges, and (d) distribution of cell volumes.

tration of small spheres. The extent to which these expec-
tations are fulfilled will be addressed in this paper.

There seem to be two types of hard-sphere models of
amorphous metals: sequential addition or “cluster”
models, and collective rearrangement or ‘‘gas compres-
sion” models.!"!? In the sequential addition method a
seed of atoms that is incompatible with long-range order
(e.g., a tetrahedron or an icosahedron) is chosen. Then
atoms are sequentially placed on the “low-energy sites” (in
the dimples at the surface of the cluster) using some algo-
rithm. Eventually a large cluster (maybe thousands of
atoms) is formed for subsequent structural analysis. In
the gas-compression approach N points are placed at ran-
dom positions within a box. Each point is assigned a ra-
dius and the spheres are moved until there are no over-
laps. Then the radii are increased and the process is re-
peated until any further increase in radii or any displace-
ment of the spheres creates overlaps that cannot be elim-
inated.

There are several problems with models built using
sequential addition.'"!? In at least one case it has been
shown that this method produces packings that are not
isotropic or homogeneous on any scale up to the size of
the model.!* The authors found significant differences in
structure as a function of position and direction in their
clusters.!® The ideal amorphous metal should be isotropic
and homogeneous (at least on a scale of >5—10 atomic
diameters). Models built using sequential addition also
have lower packing fractions (from 0.52 to 0.60 depending
on the algorithm) than those that are constructed using
collective rearrangement.''> This illustrates another
problem with this type of modelling: Different algo-
rithms give different structures, as measured by radial dis-
tribution functions (RDF’s), and packing fraction.

In contrast, collective rearrangement models seem to
converge to a unique structure that agrees well with exper-
imental sphere packings.'>!4~!7 Several experiments by
Scott and Finney (using different methods) produced the
same packing fractions (7=0.6366+0.0005). Finney also
measured the positions of the spheres in one experiment
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FIG. 3. Pair correlation function (PCF) for a dense random
packing of equal spheres constructed using the algorithm
described in this paper. The pair correlation function is equal to
the radial distribution function minus 1.0.
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and from these calculated the Voronoi-cell statistics and
RDF’s. More recently Jodrey and Tory performed a com-
puter simulation of a dense random packing of equal
spheres using cubic periodic boundary conditions and ob-
tained the identical RDF’s and packing fractions between
0.637 and 0.649.'®!7 As long as care is taken so that the
packing does not “crystallize” at the boundary, all of
these laboratory and computer experiments give the same
results: homogeneous, isotropic packings with 7=~0.64
and Voronoi cell statistics and a pair correlation function
(PCF) as in Figs. 2(a), 2(b), 2(c), and 3.

II. THE ALGORITHM

Our algorithm is designed to simulate the dense random
packing of a binary mixture of hard spheres. The final
configuration is produced using a collective rearrange-
ment algorithm. No chemical short-range ordering ef-
fects are incorporated. All previous algorithms (by other
authors) either use a sequential addition algorithm com-
bined with chemical short-range ordering rules, or else
only consider a dense random packing of equal spheres
using collective rearrangement. Thus our algorithm is
unique.

The algorithm is based on several very simple ideas.
Starting with a random distribution of points inside a box
we assign radii to the points to define spheres. In general,
the spheres overlap so we must move them to reduce over-
laps. If the radii are too large it may not be possible to re-
move all overlaps by simply moving the spherés, so we
must decrease the radii. If the initial radii are too small
we may be able to move all the spheres apart so that some
spheres are not touching any others; then to reach a high
density we must increase the radii. Alternatively, suppose
we have an overlap-free packing in which each sphere is
touching several others. We have no way of knowing
whether this is the highest-density random packing attain-
able. Therefore we must test this by increasing the radii,
moving the spheres to reduce overlaps (then possibly de-
creasing the radii) until there are no overlaps. Then we
compare the resulting overlap-free packing fraction with
the previous packing fraction. We repeat this until the
overlap-free packing fractions converge. It is possible
(though not likely) that the packing may converge to a
low-density stable packing (such as a simple cubic lattice).
Once the spheres are in such a configuration no amount
of increasing or decreasing the radii will change the
structure—the spheres are locked into place. To prevent
just this kind of occurrence we vibrate the spheres by giv-
ing each sphere a small random displacement independent
of its neighbors’ positions. This unlocks the spheres and
allows them to find higher-density configurations.

We can further increase the rate of convergence to the
highest packing fractions by moving the spheres as much
as possible at each step. This is accomplished by increas-
ing the radii until the maximum overlap is greater than or
equal to some tolerance A,,;. Since the distance each
sphere moves is proportional to the magnitude of the
overlaps, increasing the size of the allowed overlaps
speeds up the program. Increasing the allowed overlap
A1 also allows the spheres to sample a larger volume at
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each step, reducing the tendency for spheres to become
“locked up.” Thus, a large value of A, accelerates the
program’s rate of convergence and causes it to converge to
a higher packing fraction. This trend apparently saturates
above A,y ;~0.20 since the packing fraction never exceeds
0.645 (for equal spheres) under any conditions for
N >100. A more detailed explanation of the algorithm
follows.

Using periodic boundary conditions we place N random
points in a cube 0<Xx,y,z<1. Some number of these
points is specified to be small (Ny) and the rest are large
(N;). The radii (R; and R;) are determined so that the in-
itial nominal packing fraction is

No=4/37R.N;+4/37R}N, , (1)

where 77, is between O and 1. The initial packing fraction
is not the true packing fraction because in general there
will be overlaps among the spheres. To reduce the over-
laps we then move the spheres one at a time along the vec-
tor sum of the overlaps as in Fig. 4.

At low packing fractions most moves will reduce or el-
iminate overlaps. However, as the packing fraction in-
creases, moving a sphere along the vector sum of the over-
laps reduces some overlaps but creates or increases others.
To counteract this tendence we accept a move as long as it
does not create any overlap as large as the maximum over-
lap among all the spheres. Thus, the maximum overlap
always decreases or stays the same. We found by trial and
error that accepting the move only if it reduces the max-
imum overlap of the sphere being moved is too
stringent—the spheres tend to become locked up. If the
move is not accepted for a particular sphere the sphere is
moved again in the same direction but by a smaller
amount. If this is not successful (after a few attempts) the
sphere is given a small random displacement. Again, the
move is accepted or rejected depending on whether the
maximum overlap is less than or greater than the max-

move

FIG. 4. The central sphere moves along the vector sum of the
overlaps. The move is accepted if the new maximum overlap is
less than the maximum overlap among all the spheres. This
guarantees that the maximum overlap among all spheres will
not increase.
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imum overlap among all the spheres. Each sphere in the
packing (I=1,2,...,N) is moved sequentially in this
way.

Using this scheme the maximum overlap exhibits a ra-
pid initial decrease. All the spheres are moved in this way
until the maximum overlap drops below some tolerance
(Ay1). Then the radii are increased so that R;/R,
remains constant. This procedure (move, increase radii) is
repeated until finally the maximum overlap does not drop
below A,y within some specified number of steps (I,,,).
Then the radii are decreased slowly (each time moving the
spheres to reduce overlaps) until the maximum overlap
drops below some other (smaller) tolerance (A,,;). At this
point the packing is almost overlap free so the nominal
packing fraction is approximately equal to the true pack-
ing fraction. Now we increase the sphere radii again and
repeat the whole sequence many times until the packing
fractions at the end of each cycle approach a constant
value. Then we decrease all tolerances and repeat the pro-
cedure several more times to “fine tune” the resulting
packing (see Fig. 5).

DEFINE RANDOM POINTS
AND RADI

RATE MOVE SPHERES TO
VIBRA J REDUCE OVERLAP
" \
OVERLA y 1C <<
<< TOL1 1C1MAX
n
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OVERLAP = 0
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PACKING FRACTION

PRINT RESULTS AND
STOP PROGRAM

FIG. 5. Program flow chart. IC is the number of steps since
the last time the spheres were increased or decreased.

7353

We vibrate the spheres by giving each sphere a small
random displacement approximately every other step dur-
ing the increasing radius phase without regard to whether
the overlaps increase or decrease. This greatly improves
the rate of convergence of the program since about 90%
of the time it takes the program to converge is spent
reaching the last 1% or 2% of the final packing fraction.
We optimized the parameters (vibration amplitude, vibra-
tion frequency, Ay, Az, €tc.) by trial and error to im-
prove the convergence. Then we varied the parameters
from the “optimal” values to test the sensitivity of our re-
sults. We found that our results are very insensitive to
variations in the parameters. The only significant effect is
that the program takes longer to converge to the same
packing fraction or it converges to a slightly lower pack-
ing fraction if the parameters are not close to their op-
timal values.

The program is capable of handling from approximate-
ly 100 to 10000 spheres with any binary composition
fraction and radius ratios between 1.0 and 2.0 A typical
1000 equal-sphere run takes approximately 10 h (CPU
time) to converge on an Apollo 460 computer. The pro-
gram speed scales linearly with the number of spheres be-
cause of the method used to calculate overlaps of neigh-
boring spheres. The unit cube is divided into cubic cells
with edge length slightly larger than the diameter of the
large sphere diameter. Then each sphere [
(I=1,2,...,N) sits in exactly one cell and all possible
overlapping neighbors are contained within the 26 adja-
cent cells or the cell containing sphere I. These cells are
then searched for overlapping spheres. Since only approx-
imately 27 spheres are tested for overlaps for each sphere
I, the run time is approximately linear with the total
number of spheres.

III. RESULTS
A. Equal spheres

Our results for equal spheres are in excellent agreement
with the experimental results of Finney and Scott, and the
computer results of Jodrey and Tory. We obtained pack-
ing fractions from 0.637 and 0.645 for equal spheres de-
pending on sample size, duration of the ‘“‘anneal” (run
time), and the values of the program convergence parame-
ters. The packing fraction never exceeded 0.645 for
N >100. Voronoi cell statistics are shown in Figs. 2(a),
2(b), 2(c) and the pair correlation function is shown in
Fig. 3. (The PCF is the RDF) minus one. The PCF ex-
hibits a split second peak with the second subpeak higher
than the first subpeak. These features are in common
with all the previous authors results. The packing is
homogeneous to a very small scale as can be seen from
Table I. It is also isotropic (angular correlations in these
sphere packings will be discussed in a future paper). We
find no regions of crystallization as can be seen from Figs.
2(c) and 3 and Table I. If there were any crystallization
we would expect at least one of the following: a sharp
peak (or peaks) in the low volume end of the Voronoi cell
volume distribution, a sharp peak (or peaks) in the PCF,
or high-density clustering in Table I. We see none of
these. Thus the cubic periodic boundary conditions do
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TABLE 1. We divide the cube into 27 and 8 cells, respective-
ly and tabulate the number of sphere centers in each cell. En-
tries below are the numbers of sphere centers found in each cell.

27 CELLS

39 34 34
’
38 40,7 37
.
36 39 38
.

8 CELLS
122 123

e 377 3o /130 ’,154

39,39 34 ° 123

37 35 35 125

not induce crystallization in any of these runs. It is also
worth noting that all of our results (pair correlation func-
tions, Voronoi cell statistics, etc.) are extremely insensitive
to sample size for N > 100.

B. Unequal spheres

A much more detailed presentation of the unequal
sphere results will be given in a future paper. Here we
just give some highlights.

We varied both radius ratio and composition fraction
over a wide range to study the associated changes in pack-
ing fraction and structure (see Table II). Packing fraction
as a function of size ratio and composition fraction is
shown in Fig. 6. As discussed in the Introduction, we ex-
pect the packing fraction to increase with increasing
R; /R, for fixed composition fraction. For fixed R;/R;,
we expect the maximum packing fraction to be at a high
concentration of small spheres. Both expectations are ful-
filled but the magnitude of the changes is surprisingly
small. Between R;/R;=1.0 and 1.3 the packing fraction
is approximately constant, independent of composition.
Even for R;/R;=2.0 the highest packing fraction is only
~0.68, whereas =7/v'18=0.740... for close-packed
crystalline arrays of equal spheres.

A comparison of our computer results with curve fits to
the experimental results obtained by Yerazunis, Cornell,
and Wintner!® is shown in Fig. 7. Here y is the ratio of
the volume occupied by large spheres divided by the
volume occupied by all spheres,
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FIG. 6. Packing fraction as a function of size ratio and com-
position fraction for dense random packings of hard spheres.
The dashed line indicates the experimental result obtained by
Finney and Scott for equal spheres.
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y

where v is the volume of a large (small) sphere. Our re-
sults follow the same trends as their data. As R;/R;— o
the dense random packing becomes a dense random pack-
ing of large spheres with a dense random packing of small
spheres occupying the interstices. Thus the packing frac-
tion (at R;/R;— o) has a maximum of =0.64+0.64
% (1.0—-0.64)=0.87 at y=~0.64/0.87~0.73. The au-
thors in Ref. 18 model this situation using a ‘“‘distortion
parameter” formulation in which small spheres pack into
the interstices of the large sphere packing more and more
efficiently as R;/R;— «. However, as R;/R; decreases
toward 1.0 this picture becomes more and more incorrect.
Our results for low R;/R; show the correct behavior:
The maximum packing fraction drops rapidly to the equal
sphere value as R;/R;— 1.0 and the peak position shifts
to the left. Below R;/R; =2 the effect of mixing small
and large spheres in a dense random packing becomes
much more complicated because the presence of each type
of sphere strongly affects the arrangement of the other
type of spheres.

TABLE II. Dense random packings were constructed with all 35 combinations of the below compo-
sition fractions and size ratios using the algorithm described in this paper.

Percent small spheres

20 40

80 90

Size ratio (R;/R;)

1.1 1.2 1.3

1.5 1.75 2.0
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FIG. 7. Packing fraction as a function of size ratio and com-
position fraction for dense random packings of hard spheres.
Solid lines are the curve fits to the experimental results obtained
by Yerazunis, Cornell, and Wintner (Ref. 18). Our numerical
results are plotted using symbols. Y is defined in the text.

C. Mass density versus packing fraction

The packing fraction 7 is related to the mass density p
for a binary mixture of hard spheres by

_ Nymg+Nim,;

- , 3
P Nsvs+NIUl " ®

where my; is the mass per large (small) sphere. We
denote the crystalline state by subscript ¢, the amorphous
state by subscript a, and define An=%n,—7, and
Ap=p.—p,. We then obtain

Lo _An @
Pc e

Assume, for the moment, that an amorphous metal has
the structure of a dense random packing of hard spheres
and that the atoms have the same effective hard sphere ra-
dius in the glass as they do in the crystal. If the crystal is
close packed then it will have a packing fraction of ap-
proximately 0.74. The dense random packing of hard
spheres has a packing fraction of between 0.64 and 0.68
for all compositions and radius ratios up to 2:1. Thus the
mass density of the amorphous metal must be from
(0.74—0.68)/0.74=8% to (0.74—0.64)/0.74~13.5%
lower than the mass density of the corresponding crystal.
However, real amorphous metals typically are only
0.5—2 % less dense than the corresponding crystal. Since
p is inversely proportional to sphere volume [Eq. (3)] and
volume is proportional to the radius cubed, the only way

the discrepancy between the crystalline and amorphous
mass densities can be reconciled (for hard spheres) is for
the effective hard-sphere radius to be ~3% to 5% lower
in the amorphous metal than in the crystal. However, the
average coordination number in amorphous metals is very
close to the average coordination number in the crystal.?
The effective radius depends mainly on coordination
number (assuming similar chemical environments) and a
decrease from 12 to 8 in coordination number corresponds
roughly only to a 3% decrease in radius.'” It therefore
appears that the hard-sphere model must be viewed as
only a relatively crude approximation to the behavior of
atoms in amorphous metals. In reality, the atoms appear
to deform in such a way as to fill space more efficiently
than a dense random packing of hard spheres.

IV. SUMMARY AND CONCLUSIONS

We have simulated the atomic structure of amorphous
metals using a program that constructs a dense random
packing of a binary mixture of spheres of arbitrary com-
position fraction and radius ratio between 1.0 and 2.0.
The algorithm uses periodic cubic boundary conditions
and moves the spheres along the vector sum of their over-
laps. Vibration of the spheres greatly increases the rate of
convergence to a high density, overlap-free packing. Our
results are identical to other authors’ for equal spheres
and are very insensitive to variations in the values of the
parameters used in the program. This supports our belief
that dense random packings of spheres are nearly indepen-
dent of the algorithm (or method, in the case of laboratory
measurements) used to construct them.

For unequal spheres the packing fraction increases only
slightly with increasing size ratio. The maximum packing
fraction always occurs at a high concentration of small
spheres. We find the surprising result that the packing
fraction is approximately constant for all composition
fractions and radius ratios between 1.0 and 2.0. Since the
mass density scales linearly with the packing fraction the
dense random packing of the hard-spheres model predicts
that amorphous metals are 8% to 14% less dense than
real amorphous metals. For a hard-sphere model this can
only be reconciled by reducing the effective hard-sphere
radii by 3% to 5% from the crystal to the amorphous
metal. However, the average coordination number is ap-
proximately the same in the crystal and amorphous
phases. Since effective atomic radii depend mainly on the
coordination number (for similar chemical environments)
it is extremely unlikely that the radii uniformly decrease
by as much as even 3%. Rather, the atoms in amorphous
metals act more like frogs’ eggs or caviar—they are not
spherical.?® This sponginess allows the atoms to pack
more efficiently than would be possible if they acted like
hard spheres. The deviation of the atomic radii needed to
reconcile the discrepancy between the observed mass den-
sity and the mass density predicted by the dense random
packing of hard spheres is at least 3%. This applies a for-
tiori to other hard-sphere models of amorphous metals be-
cause the discrepancy between the observed and predicted
mass densities is even greater.
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