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Helicon-wave propagation in a periodic structure

B. N. Narahari Achar
Memphis State University, Memphis, Tennessee 38152

(Received 28 March 1986; revised manuscript received 29 December 1986)

Dispersion relations have been obtained on the basis of linear-response theory for helicon waves

propagating in a periodic structure with a modulation of charge density along one dimension, but

with an essentially free-electron-like behavior in the other two. Numerical applications are made to
the so-called "charge-density-wave" state of potassium, in which there is a sinusoidal modulation of
charge density, and the results are in basic agreement with those obtained by Overhauser and colla-

borators in some earlier studies. In addition, a band of high-frequency helicon modes well below the

cyclotron frequency occurs as a result of the one-dimensional band structure induced by the periodic

modulation.

I. INTRODUCTION

It is well known that under the influence of a strong
magnetic field, a conducting medium can support the
propagation of electromagnetic waves, ' whi'ch are trans-
verse, circularly polarized, and propagate along the axis of
the applied magnetic field. Aigrain termed such waves
"helicon waves. " Helicon waves are generally slow, rela-
tively loss free, and span a convenient frequency range for
experimental work. Consequently, they are found to have
many applications in solid-state physics, including
dynamic Hall-effect and Fermi-surface measurements.
There exists a vast literature on helicon waves embodying
several review articles and monographs. " Although
helicon waves (corresponding to the propagating solutions
pertaining to a homogeneous medium) have been studied
in many systems such as metals, semiconductors, super-
conductors, and ferromagnets, helicon propagation in
periodic structures has not received as much attention. It
is to be expected that the periodic modulation would give
rise to "band-structure" type of effects in the dispersion
relations, i.e., there would be "forbidden" regions. The
periodic structure envisaged here is characterized by a
charge density which is strongly modulated along one di-
mension but is essentially free-electron-like in the other
two. Such a periodic structure is typified by a semicon-
ductor superlattice or by a free-electron system which has
undergone a charge-density-wave (CDW) modulation.

Baynham and Boardman ' have studied the propaga-
tion of helicon waves in a Kronig-Penney type of periodic
structure in the local limit. They find that in the absence
of scattering, the dispersion equation breaks up into bands
of allowed and forbidden propagation regions. When
scattering is taken into account, there occurs a blurring of
the band edge and, in addition, there arises a second prop-
agating solution. In the strong scattering limit, the two
propagating circularly polarized solutions collapse into a
single plane polarized wave. Because of the resulting
mathematical simplifications, Baynham and Boardman
chose to limit their studies to the Kronig-Penney type of
sandwich structure only. A more serious limitation of the
Baynham and Boardman approach is the local approxi-

mation used in their study. Helicon waves were shown to
be possible in a superlattice consisting of a periodic array
of two-dimensional layers of free-electron gas by Das Sar-
ma and Quinn. ' The dispersion relations for helicons
propagating in such a system were obtained by Tselis
et al. ' " on the basis of linear-response theory and
Maxwell's equations. Although the approach used by
Tselis et al. is more general than that of Baynham and
Boardman, numerical applications were made' ' ' in the
quasiclassical approximation, and the effect of the period-
icity on the dispersion relations was not brought out clear-
ly. The studies mentioned above basically dealt with the
Kronig-Penney model either in its finite width ver-
sion, ' or in the 6-function version. ' ' ""' '

In a much earlier study on helicon wave propagation,
Overhauser and Rodriguez' had considered the propaga-
tion of helicon waves in the so-called charge-density-wave
(CDW) model for potassium. ' According to Over-
hauser, ' the ground state in the CDW model is character-
ized by a sinusoidal modulation of the charge density, and
a lemon-shaped Fermi surface. Overhauser and Rodri-
guez' studied the position of "Kjeldaas edge, " i.e., the
onset of absorption of energy by the electrons from the
helicon waves, when the condition for Doppler-shifted cy-
clotron resonance first occurs for the CDW model and
concluded that the helicon wave dispersion near the Kjel-
daas edge was sensitive to the electronic band structure.
The dispersion relations for this model were calculated by
McGroddy et al. ' and were found to be double valued,
and the range of the associated wave vector was limited to
a very small region of the Brillouin zone due to the pres-
ence of the Kjeldaas edge.

It appears, therefore, that there is need to reexamine the
theory for propagation of helicon waves in a periodic
structure to bring out clearly when "band-structure" type
of effects occur. It is the purpose of this paper to study
helicon wave propagation in a periodic structure on the
basis of linear-response theory. In Sec. II, the dispersion
relation for helicons propagating parallel to the applied
magnetic field is obtained by generalizing to periodic
structures the standard linear-response theory used for a
free electron gas. ' Numerical applications are made
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to the Overhauser CDW model for potassium by special-
izing to sinusoidal modulation. Application to semicon-
ductor superlattices will be considered in a future publica-
tion.

y b„*(k,+K)b, (k, +K)=~„, ,

g bi*(k, +K)bi(k, +K') =Ax
I

(2.9)

(2.10)

II. LINEAR-RESPONSE THEORY FOR HELICONS
IN A PERIODIC STRUCTURE

Consider a system with an electronic structure which is
free-electron-like along the x and the y directions, but is
periodic along the z direction. Applied along the z direc-
tion is a static magnetic field Bo described by a vector po-
tential Ap, whose components in the Landau gauge are
(O, BoX,O) Th. ere is also an electromagnetic disturbance
that varies as exp(iq r icot—) The. wave vector q is also
taken to be along the z direction. A (ir, t) is taken to be
the vector potential for the self-consistent field produced
by the disturbance. SI units are used throughout.

In the absence of the magnetic field, the system is
described by the Hamiltonian, in the usual notation,

The eigenstates in Eq. (2.6) can then be written as

~

v) =e'"yyU„(x +lHky ) g bi(k, +K)e
K

(2.11)

A =(p —eAo —eAi) /2m+ V(z) .

To first order in A~, this can be written as

A =Ap+A].
With A o given by Eq. (2.5) and

P', = —e[v Ai+Ai v]/2,
where v is the velocity operator

(2.12)

(2.13)

(2.14)

With the perturbing electromagnetic field, the Hamiltoni-
an is

A =p /2m+ V(z), (2.1)
v=(p —eAo)/m . (2.15)

where V(z) is the periodic potential along z.
The stationary states belonging to the wave vector k are

given by

Using linear-response theory, an expression for the con-
ductivity tensor can be obtained as

~
kxkykz, l ) =e gi(kz, z)'

where gi(k„z) satisfies the equation

d'k
+2ik, +[E((k, ) —V(z)]pi ——0 .

dz2 ' dz

(2.2)

(2.3)
N

(2.17)

o (q, co) =icky eo[ 1 +I(q, oi) ]/oi . (2.16)

Here wy is the plasma frequency, 1 is the unit tensor, and
the tensor I(q, co) is given by

Ei(kxkykz) =(A' /2m )(k +ky )+v)(k, ) . (2.4)

When the uniform magnetic field is applied along the z
direction, the system is characterized by the Hamiltonian

Here 1 is the band index and si(k, ) is the energy of the
one-dimensional band. The eigenvalue of the state in Eq.
(2.2) is given by

where

A '=
Ifo(E(v )) fo[E (v)] I /—[E(v') E(v) fi(co —roc) I .— —

(2.18)
The fo's are the Fermi factors and the operators v(q) are
given by

~()——(p —e Ao) /2m+ V(z) (2.5) v(q) = (e 'q'v+ ve 'q') /2 . (2.19)

with the eigenstates

~
kyk, nl) =e ' ' U„(x+lHky)gi(k„z) . (2.6)

E(v) =E(k nyk, l) =(n + —,
' )Rcoc+Ei(k, ) . (2.7)

Here U„(x) are the harmonic-oscillator wave functions,
lH =(4/mwc)'y is the magnetic length, and coc ——eBo/m
is the cyclotron frequency. Spin-dependent effects have
been neglected. Using a collective index v to denote the
eigenstate as

~
v), the eigenvalue is given by

In writing down the expression for the conductivity tensor
in Eq. (2.16), relaxation effects have not been considered,
but they can be included in a straightforward manner.
The expression in Eq. (2.16) will be used in the next sec-
tion to obtain the dispersion relations for helicon waves.

A. The dispersion relations

We assume that the medium is nonmagnetic. The elec-
tric and the magnetic fields associated with the wave are
related through Maxwell's equations

The eigenfunctions gi(k„z) satisfying Eq. (2.3) can be ex-
panded in terms of plane-wave basis functions according
to21

BBcurie=-
at

(2.20)

gi(k z) = g bi(kz+K)e' ', (2.8)

Be
curlB =pp J+G~Ep

Bt
(2.21)

where K's are the one-dimensional reciprocal-lattice vec-
tors and bi(k, +K) are the expansion coefficients satisfy-
ing the usual orthogonality and closure conditions '

where J is the current density and e] is the dielectric con-
stant of the lattice. The fields are assumed to vary as
exp(iq r idiot) Exp—ressing. the current density J in terms
of o Eq. (2.20) and (2.21) become
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q Z e=cuB,

q XB= co—/C (icrlcoeo+e&1)e .

One can introduce an effective dielectric tensor

(2.22)

(2.23)

+ ~x +~y (2.25)

and e, . In this representation the dielectric tensor is diag-
onal with the components

1CT
e(q, co) =e, 1 +

ct)E'p
(2.24)

and eliminate the B field in Eqs. (2.22) and (2.23) and ob-
tain a set of homogeneous equations for the components
of e. The determinant of the coefficients in these equa-
tions is the required secular equation giving the frequency
of oscillation cu for the helicon waves of wave vector q.
For waves propagating along the magnetic field, the
dispersion relation is most conveniently expressed in the
polarization representation in which the field components
are given by

e+(q, co) =e„„(q,co)+ie„y(q, co) (2.26)

and e (q, co). The equations for the field components e+
are

(C q —co e+)e+ ——0 . (2.27)

e+(q, co)co+ ——C q (2.28)

The relevant matrix elements appearing in Eq. (2.17)
needed for the calculation of e+(q, co) are given by

Therefore the frequencies of the helicon waves are deter-
mined from

(v'
~
U„(q)

~

v) =i(Acmic/2m)[(n+1)' 5„„+& n' 5„—„&I+5&,z 5&. &
b~*(k, +q+K)b~(k, +K),

K

(v 1Uy(q)
1

v~=(Rcoc/2m)' [(n+1) 5n', n+r+n' 5n', n —tl +5& 5, br*(kz+q+K)bl(kz+k)
K

(2.29)

(2.30)

(2.31)

and the components of the conductivity tensor required in Eq. (2.28) for the dielectric tensor components e+ are given by
~ 2

1 COp 6p
cr+ = 1+~c/N g A(nk~k, ll') g bt' (k +q+&»I-(k. +E)bI*(k, +K')b( (k, +q +K')

CO
n, k k KK'

11'

where

[fo[E(n + l, k, +q, k~, I')] fo[E(n, k„k~—, l)] IA(nkyk ll')=(n+1)
E(n + l, k, +q, kz, l') E(n, k„k,l) f—i(co —coc)— (2.32)

We will concentrate on the mode corresponding to the
plus sign in the numerical applications in the next section.

III. NUMERICAL APPLICATION

The dispersion relation given by Eq. (2.28) has been
evaluated numerically for the Overhauser CDW model of
potassium at absolute zero. The values of the parameters
taken from Ref. 15 are the following: sF —2. 14 eV, the en-
ergy gap at the zone boundary Q/2=0. 62 eV and the
CDW wave vector Q = 1.33 X2vr/a where a is the lattice
constant for potassium. The static magnetic field Bp was
assumed to be 2 T and corresponded to a cyclotron fre-
quency co& ——3.516)& 10" s

The band structure was calculated by using a basis set
of five plane waves. This was found to be adequate since
the potential causing the sinusoidal modulation in the
CDW model involves only a single Fourier coefficient.
The dielectric tensor e+(q, co) was evaluated by summing
over points in the Brillouin zone. No significant differ-
ences were found when the number of waves in the basis
set was increased to fifteen.

The dispersion relation was determined in the following
way: First, a value of the wave vector q was chosen, and

the dielectric tensor e+(q, co) was calculated as a function
of the frequency co. The particular value of co, for which
the product co e+(q, co) is equal to the product C q,
(within the accuracy of eight significant digits) would
then give the frequency of the helicon wave of wave vec-
tor q. The dispersion so calculated is shown in Fig. 1.

It can be seen that the range of q, for which helicon
wave propagation is possible, is restricted to a very small
part of the Brillouin zone. In fact, we had to use the
long-wavelength expansion of the dielectric tensor com-
ponent e+(q, co), retaining terms up to q, in obtaining the
dispersion for q/Q (1.0X 10 . The dispersion curve ex-
hibits a maximum and then a sharp drop and agrees quite
well with that given in Ref. 17, although the frequencies
given in the present work are somewhat higher.

We find additional high-frequency modes ranging
from co=3.1X10"s ' at q/Q-=l. OX10 to co=2.4
X 10" s ' at q/Q=- 1.0X 10 s '. These modes are
discrete, and form, at each value of the wave vector q in
this range, a band of 1—5 closely spaced modes lying well
below the cyclotron frequency, co~. While the exact na-
ture of these modes is still not clear, a clue as to their ori-
gin can be given. These modes satisfy Eq. (2.28), of
course, and arise when the components of the dielectric
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10

perimental confirmation of these modes would provide
additional evidence for the CDW state. More theoretical
work regarding the damping of these modes is required
before the nature of these modes becomes clear.

IV. CONCLUSIONS

10
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FIG. 1. Helicon wave dispersion in the CDW state of potas-
sium.

In this paper, helicon wave propagation in a periodic
structure has been studied on the basis of linear-response
theory and numerical applications have been made to the
Overhauser model of potassium. The dispersion curve ob-
tained is in basic agreement with the earlier results. Hel-
icon wave propagation is severely restricted to a small
part of the Brillouin zone—mainly, it appears, due to non-
local effects. Additional high-frequency modes appear as
a result of the resonance nature of the dielectric tensor.

"Band-structure*' type of effects are not apparent in the
system, unless one interprets the high-frequency helicon
modes as part of the "band structure. " One would have
to consider other periodic structures to look for band-
structure type of effects. Semiconductor superlattices
may be the most likely candidates. It is planned to study
these systems in the future.

Additional theoretical work regarding the damping of
the high-frequency modes is also required.

tensor increases sharply. This means that the physical
origin of these modes, as indicated by Eq. (2.32), lies in
the resonant nature of the dielectric tensor and the one-
dimensional band structure induced by the CDW which is
responsible for it. It would appear, therefore, that an ex-
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