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The time-dependent local-density approximation is used to formulate the eigenvalue problem for
the electronic excitations of small jellium spheres. These spheres provide a model system for the in-

vestigation of the response of the conduction electrons in small metal particles. The dynamic
response of the sphere to a time-dependent field is continued to complex frequency in order to iso-
late the eigenmodes of this model system. We are particularly interested in the determination of the
frequencies for the collective excitations of these spheres. Computations are reported for the dipolar
response of spheres with closed-shell electronic configurations containing from 8 to 198 electrons.

I. INTRODUCTION

The electronic structure' and polarizability of
small metal particles have been the subject of a large num-
ber of recent theoretical and experimental studies. The
electronic structure is calculated using the density-
functional formalism, and this formalism in combination
with a linear-response approximation provides for a
quantum-mechanical calculation of the static polarizabili-
ty. ' ' " The complexity of the density-functional calcula-
tion is reduced by introducing a local-density approxima-
tion for the exchange-correlation energy of the interacting
electronic system. The time-dependent local-density ap-
proximation (TDLDA) is the dynamical extension of this
self-consistent procedure and this has been employed with
great success in the calculation of the polarization and
photoionization of atoms. ' ' In this paper we employ
the TDLDA in a computation of the excitation modes of
small jellium spheres which are a model for the behavior
of the conduction electrons in small metal particles. In
this model the electrons are confined by a positive uni-
form spherical charge density of radius R and density
n+ =3/4mr, . There are two types of excitations for this
electronic system---=ollective and single particle —and we
shall focus our attention on the collective modes. '

In a single-particle excitation an electron is excited
from an occupied ground-state energy level into an occu-
pied level (electron-hole transition) or a continuum state
(ionizing transition). These transitions are responsible for
most of the prominent features in the response of the sys-
tem to a time-dependent perturbation, Fig. 1. However,
we should not expect the TDLDA to accurately predict
the excitation energies for these transitions. The TDLDA

gives the linear response of the system to an applied
stimulus, and, one assumes that the induced density
response, 5n (r, t ), is a "small perturbation" of the
ground-state density. It is certainly not possible to argue,
convincingly, that an electron hole or ionizing transition,
which requires the excitation of an electron and the result-
ing rearrangement, is only a small perturbation of the
ground-state density of these spheres (or atoms'5). For ex-
ample, in these calculations the continuum threshold in
the imaginary part of the dynamic dipolar polarizability
occurs at a frequency corresponding to the energy of the
highest occupied level of the ground-state system which
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FIG. 1. Imaginary part of the dynamic dipole polarizability
for a jellium sphere with N=20 and r, =4.0 a.u. The vertical
lines, below the continuum threshold at 0.104 a.u. , indicate the
frequencies for the low-lying excitations.
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does not correspond to the frequency determined by the
ionization potential (a well-known problem for the LDA).
An additional weakness of employing this approximation
for these excitations is that the change in the exchange-
correlation energy is treated by expanding the local-
density expression in a Taylor's series in 6n(r, t) and re-
taining only the term proportional to 5n(r, t) in the effec-
tive potential for the electrons.

The collective or "plasma" excitations are excitations
where the electronic charge density as a whole is excited
and oscillates as a result of the restoring force provided by
the rigid positive background. In this type of excitation
none of the electrons are transferred from an occupied to
an unoccupied energy level and the induced density asso-
ciated with the excitation can be an infinitesimal pertur-
bation of the ground-state system. Hence, one expects the
TDLDA to give an accurate estimate of the energy of this
type of excitation. However, the features associated with
these excitations tend to be less prominent in the dynamic
polarizability than the single-particle features and, conse-
quently, it is difficult to determine their excitation ener-
gies.

In Fig. 1 the imaginary part of the dynamic dipolar po-
larizability for a sphere containing 20 electrons and a pos-
itive charge density corresponding to a metal with r, =4.0
a.u. is presented (we use atomic units where e =A'=m = 1;
the length unit is the Bohr radius and the energy unit is
27.2 eV). The continuum threshold for this system occurs
at Ace=0. 104 a.u. or minus the energy of the highest oc-
cupied level of the ground-state system. Below this
threshold a&(co) is real, since this model has no mecha-
nisrn for an excitation with energy below the threshold to
dissipate its energy. The vertical lines below this thresh-
old indicate the position of the low-lying excitations. The
response even for this small highly symmetric system is
quite complicated. There are Fano resonances' of
single-particle modes with the continuum spectrum and
features one would associated with single-particle excita-
tions for ~-0.125 to 0.150 a.u. However, the identifica-
tion of the features to be associated with the collective
modes requires a more extensive analysis. Ekardt identi-
fies the low-lying surface mode by examining the change
in phase of the induced density at the edge of the positive
background.

In order to facilitate the isolation of the contributions
of the various excitations of the system to the dynamic
response, we have formulated the TDLDA as an eigen-
value problem and computed the eigenfrequencies for the
spheres. In Table I we have listed some of the dipolar
eigenfrequencies for the sphere treated in Fig. 1, and, for
comparison, the excitation frequencies computed from the
Kohn-Sham independent-particle model of the ground-
state system are also listed. For frequencies above the
continuum threshold an excitation can dissipate its energy
and decay, hence the higher eigenfrequencies are complex.
Their computation, therefore, requires the continuation of
the response into the complex frequency plane which
greatly complicates the search for the eigenmodes.

Our identification of the character of the excitation as-
sociated with each of the eigenfrequencies is inferred
from the induced electronic density perturbation. The

II. FORMALISM

We consider a spherically symmetric system subjected
to an infinitesimal time-dependent perturbation

TABLE I. Eigenfrequencies for the dipole excitations in a jel-
lium sphere with N=20 and r, =4.0 a.u. The probable identifi-
cation of the excitation is indicated and the excitation energies
(Ac.=c„i—c„~+&) for the ground state Kohn-Sham system are
given for comparison. The ionization potential for this sphere is
0.0918 a.u. The highest occupied level for the ground-state sys-
tem is —0.1036 a.u. and the lowest occupied level is —0.1882
a.u.

z (a.u. )

0.036—i 0
0.046 —i 0
0.071 —i 0
0.099—i 0
0.110—i 0.004
0.132—i 0.001
0.137—i 0.009
0.142—i 0.021
0.143—i 0.000
0.155—i 0.047
0.177—i 0.031
0.188—i 0.000
0.203 —i 0.044
0.277 —i 0.054
0.390—i 0.089
0.559—i 0. 129

Excitation (I
&
~l&)

2~3
0~1
2~1
coll.
e-h

0~1
1~2
coll.
1~0
e-h
e-h

0~1
coll.
coll,
coll.
coll.

Ac (a.u. )

0.0415
0.0443
0.0675

0.1288
0.1420

0.1449

induced-dipole-density responses for four of the modes
identified as electron-hole excitations are presented in Fig.
2 and those for four modes identified as collective excita-
tions are presented in Fig. 3. The features of the induced
densities for most of the single-particle modes are quite
regular and the disturbance is principally confined to the
interior of the particle. The induced densities for the col-
lective modes have more prominent surface features
which extend well beyond the positive charge.

The identification of the collective modes is complicat-
ed by a number of factors. There are single-particle exci-
tations of electrons to resonancelike states in the continu-
um spectrum and the induced densities for these excita-
tions also extend beyond the positive charge. A further
complication is the coupling between excitation modes
which prevent the unique determination of the character
of the coupled modes; for example the mode with
Rez =0. 110 a.u. [Fig. 2(c)] has a prominent surface
feature which can be attributed to the coupling of this
"single-particle" excitation and the "collective' excitation
with Rez =0.099 a.u. [Fig. 3(a)).

Our calculation of the static polarizability of these
spheres contains a description of the procedures and nu-
merical methods employed, and the details of the forrnal-
ism have been thoroughly expounded' " so only a brief
description of the TDLDA formalism and notation is pro-
vided in Sec. II. Section II also contains our formulation
of the eigenvalue problem and a discussion of the analytic
structure of the complex continuation of the generalized
susceptibility.
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for the set of complex eigenfrequencies, zj, so that we ob-
tain a finite induced density even for an infinitesimal
external perturbation. The computational procedure is to
search for solutions of Eq. (14) along the real z axis for

Using the solutions of this integral equation one can ob-
tain the multipole polarizability for the response of the
system to an external disturbance from Eqs. (1) and (7),

~M(~)= 4m

gp 2M+1 dr r 'gM ( r, co ) .

Our approach to isolating the contributions to the exci-
tation spectra of these jellium spheres is to seek their
eigenfrequencies. Below the continuum threshold these
frequencies are real and correspond to self-sustained exci-
tations of the system. Above the continuum threshold the
excitations are damped and the eigenfrequencies are com-
plex with a negative imaginary part. Thus we seek non-
trivial solutions of our system of equations when no exter-
nal field is applied, A. ~0. Such solutions require that A, ,
Eq. (11), remains finite when iP~O or that

frequencies below the continuum threshold and in the
lower half of the complex z plane above the threshold.

The Green's function for a particular value of angular
momentum, can be represented by

u„i(r)u„i (r )
Gl(r, r';z) = —g

&nI —z
(15)

where u„l(r) is a solution of the homogeneous differential
equation corresponding to the equation satisfied by
Gl(r, r';co), Eq. (6). The Green's function will have poles
at the bound-state energies c.„I and the physical sheet for
Gl(z) is obtained by introducing a cut along the positive
real axis, from z =0 to oo. The analytic continuation to
complex frequencies (Imz &0) is then on the physical
sheet for Rez &0 and, through the cut, onto the second
sheet for Rez&0. Since we require Gl(e„l+z) to form
XM(r, r';z), Eq. (8), we introduce cuts among the line from
z = —c„I to z = —c„I—i oo in order to define each of the
contributions to the sum over n and I in Eq. (8).

The computations presented in this manuscript are for
the dipole response of these spheres; M =1. For this
problem the dynamic force sum rule' can be expressed in
terms of the electrical potential, and one obtains

R OO QO

(4'/3) R f dr r 5n&(r, co)+R f dr 5n&(r, co) +AR=(4lrco R/, 3N) f dr r 5n&(r, co)

or

(4'/3) f dr r[(r/R) —1]g~(r,co)+1=(4vrco /3N) f dr r g, (r, co),

which provides for a useful numerical check on the accu-
racy of the self-consistent solution.

III. COLLECTIVE EXCITATIONS

A classical description of a metal sphere where the pos-
itive and negative charge densities are uniform will have a

I

multipole surface plasma mode (nonretarded) at a fre-
quency given by

coM ——coI &M/2M + 1

where cop is the bulk plasma frequency,

coI (4lrne /In )'r =——(3/r, )'~ a.u.
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The induced density associated with this mode is localized
at the surface of the sphere, 6nM(r) ~6(r —R). In the
model of the metal sphere used in this calculation the
electronic charge density can "spill out" from the rigid
positive background charge, and the hydrodynamic calcu-
lations using a diffuse electron surface density obtain a
size-dependent "red shift" of the frequency for this "sur-
face" plasma mode with decreasing sphere size; i.e.,
Rez &~M. We might also expect to find additional "sur-
face" plasma modes ' which for the classical sphere
would be degenerate with co~. In addition there are
theoretical predictions and experimental results which
indicate the presence of "bulk" plasma modes at frequen-
cies above ~p.

Because of the complexity of the structure spectrum,
g(z), in Eq. (14), one cannot guarantee that all of the
eigenfrequencies in a given region of the complex z plane
have been located. Also, as we stated in the Introduction,
it is often not possible to make a completely unambiguous
identification of the collective modes. Nonetheless, we
have attributed a number of the eigenfrequencies to dipo-
lar plasma modes for the closed shell configurations of jel-
lium spheres from N =8 to N =198 electrons. The posi-
tive charge densities for r, =2.0 and 4.0 a.u. are approxi-
mately the conduction electron densities for bulk alumi-
num and sodium (2.07 and 3.99, respectively). The com-
plex eigenfrequencies for some of the dipolar plasma
modes in these spheres are tabulated in Tables II and III.
The unique identification of many of these eigenmodes is
complicated by the coupling with "nearby" single-particle
excitations and in these cases the coupled eigenfrequency
is also given.

There are additional eigenmodes with prominent sur-
face features and eigenfrequencies in the interval,
co& & Rez & cop. However, the cuts introduced to define the
G~'s, Eq. (15), and the single-particle excitations compli-
cate the analytic structure of the response and prevent the

unique identification of these modes. For the spheres
with r, =2.0 a.u. it was possible to isolate an additional
eigenmode with Rez &cop (ct)p:0.6124 a.u. for r, =2.0
a.u. ) above the low-lying surface mode and to trace its
dependence on sphere radius, and the eigenfrequencies for
this mode in these spheres are also tabulated in Table III.
The eigenfrequencies for the surface mode show only a
slight "red shift" with decreasing sphere size when
r, =4.0 a.u. However, the "red shift" of this mode is
more pronounced for the smallest spheres with r, =2.0
a.u. All of the bulk eigenfrequencies for these spheres
demonstrate the "blue shift" with decreasing sphere size
that was reported in Ekardt's calculation of the polariza-
bility. ' The Imz or the damping of these bulk modes
decreases with increased sphere radius which correlates
with the appearance of a peak in Imat(co) near cop for the
larger spheres.

The dipole density perturbations for a set of modes
identified as plasma excitations of a sphere with N =20
and r, =4.0 a.u. are presented in Fig. 3, and the induced
densities for these modes in a sphere containing N= 186
electrons are presented in Fig. 4. The dipole density dis-
turbances for the mode with Rez =0.099 and 0.142 a.u. in
Fig. 3 clearly have a surface character while the modes
with Rez =0.203 and 0.277 a.u. have large bulk contribu-
tions (cop ——0.2165 a.u. for r, =4.0 a.u. ). The perturbed
dipole densities for eigenmodes in a jellium sphere with
r, =2.0 a.u. and N=20 are presented in Fig. 5.

IV. DISCUSSION

Most of the experimental results which relate to the
plasma modes in metal particles have been obtained using
samples which contain a distribution of particle sizes, and
the median radii for the particles in these samples are usu-
ally large compared to the radii of the spheres studied in
our computation. This distribution of particle size will

TABLE II. Eigenfrequencies for dipolar plasma modes in closed-shell jellium spheres with r, =4.0
a.u. The bulk plasma frequency for r, =4.0 is ~p ——0.2165 a.u. and the classical surface frequency is
co&

——0. 1250 a.u. The frequencies in parentheses are for eigenmodes which are coupled with the mode
above them.

8
18
20

34
40

58

92

132
138

186

z (a.u. )

(surface)

0.101—i 0
0.103—i 0
0.099—i 0
(0.110—i 0.004)
0.106—i 0
0.100—i 0

(0.096—i 0)
0.105—i 0

0.117—i 0.000

0.113—i 0
0.114—i 0.000

(0.112—i 0.000)
0.113—i 0

(0.108—i 0)

z (a.u. )

(bulk)

0.230—i0.057
0.201 —i 0.043
0.203 —i 0.044

0.225 —i 0.042
0.231 —i 0.039

0.193—i 0.044
(0.189—i 0.051)
0.192—i 0.045

0.181—i 0.036
0.178—i 0.036

0.169—i 0.026

z (a.u. )

(bulk)

0.367—i 0.094
0.276 —i 0.054
0.277 —i 0.054

0.272 —i 0.050
0.277 —i 0.048

0.246 —i 0.024
(0.216—t 0.051)
0.240 —i 0.018
(0.235 —i 0.039)
0.235 —i 0.038
0.237 —i 0.036

0.229 —i 0.043
(0.217—i 0.039)
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z (a.u )

(bulk)
z (a.u)

(surface)
z (a.u. )

(surface)

0.917—i 0.220
0 836—i 0. 185
0 825 i0. 18
0 778 —)0 15
0.784 —i 0. 158
0.740 —i 0. 122
0.746 —i 0. 123
0.750—i 0. 125
0.721 —i 0.091

8
18
20
34
40
58
68
70
92

0.359—i 0.095
0.376—i 0.087
0.384—i 0.088
0.383—i 0.075
0.373—i0.078
0.388 —E'0. 074
0.402 —i 0.079
0.407 —i 0.079
0.390—i 0.073

0.641 —i 0. 159
0.611—i 0. 131
0.603 —i 0. 141
0.587 —i 0. 126
0.592 —i 0. 129
0.571 —i 0. 122
0.579—i 0. 124
0.583 —i 0. 125
0.570—i 0. 117

0.202 —i 0'
0.231 —i 0.041
0.242 —i 0.043
0.243 —i 0.035
0.271 —i 0.034
0.262 —i 0.035
0.290—i 0.026
0.296 —i 0.024
0.273 —i 0.027
(0.303 —i 0.013)
0.300—i 0.018106 0.416—i 0.072 0.725 —i 0.0910.574 —i 0. 142

(0.597—i.0. 119)
0.577 —i 0. 103
0.590—i 0.093
0.570—i 0.083

138
156
198

0.317—i 0.004
0.321 —i 0.004
0.311—i 0.006
(0.291 —i 0.009)

0.706 —i 0.068
0.706 —i 0.067
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