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Characteristic pore sizes and transport in porous media
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Analytic calculations of A, a pore-size parameter which characterizes surface effects on trans-
port in porous media, are carried out using two distinct approximations: (1) elfective-medium
theory and (2) percolation ideas recently applied by Katz and Thompson to the permeability of
sedimentary rocks. Our calculations suggest that A may be determined by mercury injection ex-
periments. We also study the phenomenon of electrical surface conduction using both approxi-
mations.

Porous media abound in nature and are increasingly
finding applications in such diverse fields as physics,
chemistry, biology, and geology. Examples include poly-
mer gels, catalytic beds, biological cells, and sedimentary
rocks. How does one characterize transport in porous
media? For electrical conduction, the answer is straight-
forward. The conductivity o. in a porous medium where
the pores are conducting and the solid is insulating, is a
quantity that takes into account the volume fraction of the
conducting phase (p) and the tortuous paths that the elec-
trical current has to take in the complex geometry of the
porous medium. A uniform scale transformation of the
porous medium, where, for example, all the pores (con-
ducting regions) and all the grains (insulating regions) are
increased (or decreased) in size by a constant scale factor
does not alter the electrical conductivity. The situation is

not this simple for fluid transport. In this case, the analog
of the electrical conductivity is the permeability k, defined

by the Darcy equation (the fluid-transport analog of
Ohm's law): v =(—k/tl)Vp, where v is the fluid flow ve-

locity in the porous medium, g is the fluid viscosity, and

Vp is the gradient in the pressure across the sample. The
permeability has units of length squared and thus depends
not only on the porosity and tortuosity (as does the electri-
cal conductivity) but also on the absolute length scales of
the pores that govern fluid transport.

Two recent papers' have addressed the problem of
how one identifies the relevant length scale characterizing
fluid transport in porous media. In an elegant formula-
tion, Katz and Thompson' (KT) have shown both theoret-
ically and experimentally that when the porous medium
(made of insulating solid) is characterized by a broad dis-
tribution of pore sizes (e.g. , log-normal) there exists a
simple relationship between the permeability and conduc-
tivity, viz. ,

k -cil, /F,
where F, a dimensionless constant called the formation
factor, relates the conductivity of the sample cr to that of
the pore fluid, af, viz. , F=(rrf/a), and c~ is a constant
that KT estimate to be 4.4x 10 and l, is a characteristic
length that KT relate to the threshold pressure in a mer-
cury injection experiment. I, is well defined only when the
porous medium can be modeled as a distribution of cylin-
drical pores on a lattice. On the other hand, Johnson, Ko-

plik, and Schwartz (JKS) have introduced a geometrical
pore-size parameter A, which is always well defined for
any porous medium and which describes the eAects of an
internal boundary layer on a variety of processes such as
electrical surface conduction, high-frequency viscous
damping of acoustic waves, and healing-length eff'ects in
fourth sound. [The precise definition of A appears in (4a)
and (4b), below. ] Unlike such standard pore-size indica-
tors as the pore-volume-to-surface-area ratio, A is a mea-
sure of dynamically connected pore sizes and so it is
reasonable to expect that it may be related to permeabili-
ty, at least approximately, because dead-end and isolated
pores are irrelevant to the value of A. Based on plausible
physical arguments, and backed by detailed computer
simulations on random materials, JKS show that

A
k =c2

8F (2)

where cp is a constant of order 1; c2=1 for an array of
nonintersecting tubes canted at an arbitrary angle. The
limited amount of available experimental data on real
porous media indicates that c2 is indeed of order unity.
There is no fundamental reason why (2) should hold —A
(below) and F are defined in terms of the solution to a po-
tential flow problem, whereas k is determined from the
solution to Poiseuille flow —but it has all the right in-
gredients in terms of well-defined independently measur-
able quantities: Equation (2) includes a dynamically con-
nected pore-size parameter A, and it includes tortuosity
eAects through F.

The question we wish to address in the present Rapid
Communication is this: For the broad distributions of
tube radii for which the KT analysis can be presumed to
have approximate validity, can one establish a relation be-
tween l, and A which makes Eqs. (1) and (2) consistent?
We show that within the framework of the KT derivation
of Eq. (1), A can be calculated as well; the constant c2 can
be evaluated and is indeed of order unity. Our result im-
plies not only that A can be determined from a measure-
ment of permeability, but also that it may be determined
by a mercury injection experiment. Obviously one would
like to know the value of A in cases for which the surface
conductivity Z, (below) is not known.

As stated earlier, the KT analysis was specifically
designed for a broad distribution of pore sizes. To com-
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plement the KT analysis for a more normal (not unusually
broad) pore-size distribution, we consider the effective-
medium theory which is known to give an accurate solu-
tion to the random-lattice problem even when the distri-
bution is quite broad; it becomes exact in the limit of a
narrow distribution. We show how A can be calculated
using effective-medium theory and again show that c2 is of
order unity for a uniform distribution of pore sizes.

Thus, we have established, both for extremely broad
distributions of tube radii as well as for more "normal"
ones, that A, which is always well defined, is also related
to permeability via Eq. (2). Finally, to establish connec-
tion with the shaley-sand conductivity problem to which
we alluded, we carry out analytic calculations, using both
the KT approximation and effective-medium theory, of
the conductivity of a porous medium having a layer of
constant surface conductance as the conductivity of the
pore Auid af is varied.

The KT analysis' is based on ideas introduced by Am-
begaokar, Halperin, and Langer (AHL) and refined by
Shante and Kirkpatrick (SK) to deal with electrical
transport in a random system with a broad distribution of
conductances. We assume such a wide distribution of
pore sizes. A cylindrical pore geometry of diameter d and
length I is assumed. To study the robustness of c& and c2,
two simple cases may be considered. Following KT, we
may take d =I or, alternatively, I may be held fixed and d
varied independent of I. To calculate A, we carry out the
KT analysis, but include an additional surface conductivi-
ty whose value is Z, .

I = Ip (constant): The effective electrical conductance
g, (d) and the hydraulic conductance gt, (d) of a pore of
diameter d are given by

and

gd 2 xdZ,
g, (d) = aI+

0 0

zd4

12810rl

(3a)

(3b)

a =F oI+ +O(Z ) .
2~s 2

A
(4a)

F is as defined previously; it is determined experimentally
from a plot of o vs of in the region of high salinity where
the data approach a straight line. A is an effective pore
radius given exactly by

„ I E. l
2d~

(4b)

„ I Eo I
'd&

in which Ep is the microscopic electric field when Z, =O.
The integration of the numerator is taken over the pore-
wall surface; that of the denominator is taken over the
pore volume. Equations (4a) and (4b) predict that a plot
of o. vs af holding Z, fixed will tend to a straight line for

where g is the Auid viscosity and X, is the surface conduc-
tivity of the pore walls. Following JKS, z A may be deter-
mined by computing the electrical conductivity of the
porous medium a in the limit where the bulk conduction
due to aI dominates that due to the surface conduction Z, :

large enough of, whose slope and intercept are deter-
mined from the solution to Poisson s equation in the ab-
sence of a surface mechanism.

The effective permeability (hydraulic conductivity) and
o- can be computed quite readily. We illustrate the calcu-
lation by showing how o. may be obtained. Following
SK, o may be obtained as a variational bound by maxim-
izing ai given by

(xi =—g, (d) [p(d) —p(d, )]',T
0

(5)

with respect to d. g, (d) for this case is given in Eq. (3a).
T is a constant which depends on the lattice structure; the
same constant appears for the hydraulic conductivity cal-
culation as well and therefore drops out when the ratio of
the permeability to the conductivity is taken. p(d) is the
probability that there exists a pore of size greater than d.
d, [=l, in Eq. (1)] is the diameter of the smallest pore
(weakest link) in a percolation network of the largest
pores in the porous medium and t =1.9 is the percolation
conductivity exponent. Physically, Eq. (5) arises on re-
placing all pores of size greater than d by pores of size d
and all pores of size less than d by size 0. Hence cubi in Eq.
(5) is necessarily less than the true a and the best esti-
mate of o is obtained on maximizing the expression in Eq.
(5) with respect to d. Setting the derivative of o with
respect to d equal to zero and making the KT linearization
approximation' [d, tp "(d, )/p'(d, )((1, where p' and p"
are first and second derivatives of p(d) with respect to d],
we find that d, the value of d that maximizes (5) is given
by

with

d, [1 —2z(1+ t )+41+4z z(l+ t ) z+4z ]
2+t (6)

X,
Z =

oIdc

o is then obtained by evaluating oi [given by Eq. (5)] at
d =d [defined by Eq. (6)]. A linearization of cr, about
z =0, is used in conjunction with Eq. (4) to obtain A:

dc

t+2 (7)

d.
2(1+t)

I,
2(1+t) '

27 (1 + t)'+'
32 (3 + t)'+'

(9)

A similar analysis for the permeability may also be car-
ried out, finally yielding

(2+ t)'+'
ci =2

(4+ t)'+'
and

(2+ t ) 4+1
c2 =16

(4 +)t4+l

For t =1.9, c~ =1.14X10 and c2=1.39.
l=d: The calculational procedure is identical to the

one sketched above and the results are
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and

Ci =

l,
2(I+2r) '

9 (1+r)'
32 (3+r)'+' (10)

9(1+2r) (I+i)'
(3+i)"'

Again, with r =1.9, c~ =4.32 x 10 (as given by KT) and
c2= 3.19.

The previous analysis is valid only when there is a wide
distribution of sizes in a porous medium. In many situa-
tions, this may not be realized and we now proceed to an
eff'ective-medium theory calculation of A and c2 for such
cases. For simplicity and to be specific, let us focus on a
network consisting of a simple cubic array of tubes of
fixed length l0 and varying radii r; between 0 and ~0. The
electrical and the hydraulic conductance of a tube of ra-
dius r is, as before, given by Eq. (3) with d=2r. Within
the framework of eA'ective-medium theory, the conductivi-
ty a and the permeability k are obtained by solving

a g, (r)/lp-
dr =0 (»)

rp ~ o 2rr+g, (r)/ip

and

(1+r) 3+(

(3+r ) '+'

For t =1.9, c~ =7.68 x 10 and c2=2.07.
It should be noted that our result for c~ for the case

l =d, is diferent from that obtained by KT. The reason
for this diAerence is that whereas we maximize o~ in Eq.
(5) and assume that the electrical conductivity is propor-
tional to this maximum value, KT divide this maximum
value not by lp but by d (and in the case of the hydraulic
conductivity by the corresponding d ) to get the effective
conductivity. Such a calculation leads to
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charged impurities balanced by counter ions bound to
their external surface cling to the walls of the insulating
grains. When such a rock is saturated with even mildly
salty water, the hydrated counter ions become mobile in a
very thin layer surrounding the clay particles. This pro-
vides a surface conduction mechanism in addition to the
usual bulk electrical conduction analogous to Eq. (3). For
large values of crf, Eq. (4a) will hold, but when of ~ Z, /A
a plot of o. vs crf will, in general, depart from the linear re-
lation implied by (4a). Using each of the two approxima-
tions described above, it is straightforward to calculate the
dependence of (T as a function of crf for a constant Z, . The
resulting plots in Figs. 1(a) and 1(b) show little curvature,
implying, somewhat surprisingly, that within each of the
two widely differing approximations —one appropriate to
a relatively narrow distribution of radii, the other ap-
propriate to a very broad distribution —the geometrical
path lengths associated with surface and bulk conductivity
are nearly the same for random lattices We no.te that the
eff'ective-medium approximation has previously been
shown to give an accurate description of transport in ran-
dom lattices having narrow to mediumly broad distribu-
tions of pore sizes, whereas the AHL formalism has been
shown to give an accurate description of systems having

«0 k/r) gp(r)/lpJI =0.
rp p 2k/r)+gs (r)/ip

(12)

The integrals are readily evaluated in closed form. We
merely summarize the results. As before, o is expanded in
a power series in Z to obtain the leading order correction
and hence A. Evaluating the permeability from Eq. (12)
enables us to calculate c2. We find that A=0.508rp for
the simple example and that c2=1.46, a number which is
again of order unity. The value of A is substantially
difTerent from a characteristic tube radius derived from an
average surface to volume ratio, i.e., 2rp/3. Therefore,
even though the distribution of tube radii is narrow
enough for the validity of the eff'ective mass approxima-
tion to hold, it is not so narrow that one can neglect the
fluctuation of Ep in Eq. (4b) altogether. The value of A
and c2 derived from eff'ective-medium theory are in excel-
lent agreement with numerical simulations carried out by
Koplik for the same distribution.

%e now turn to the shaley-sandstone conductivity prob-
lem. As discussed in JKS, clay minerals containing
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FIG. 1. Variation of cr as ~f is changed. A constant surface
conductivity Z, is assumed. Both the figures assume that the
tube length is a constant. (a) The KT scheme: plot of a (to
within a multiplicative constant that depends on the actual dis-
tribution of pore sizes) vs ofd, /Z, . (b) Eff'ective-medium

theory: plot of olf/Z, rp vs rpcJf/Z, . A uniform distribution in

tube radii between 0 and ro is assumed.
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medium to very broad distributions. We conclude that
random lattices will always tend to give a linear depen-
dence of o on of throughout the entire range, unless the
distribution is pathological. By contrast, it is noteworthy
that the numerical simulations described in JKS, for the
grain consolidation model exhibit appreciable curvature
for low values of cd. This model begins, in the high-
porosity limit, with a simple cubic array of identical
spheres; the porosity is decreased by growth of the grains
beyond the point where they overlap and form a continu-
ous solid phase. This, then, points up a qualitative
difference between random lattices and other geometries
for porous media. We note that sedimentary rocks con-
taining appreciable amounts of charged clay minerals
(i.e. , appreciable values of Z, ) also exhibit substantial
curvature at low salinities. At present it is not known
whether Z„ in these "shaley sands" may sensibly be con-
sidered to be independent of salinity, i.e., whether it is
constant as cd varies. Nonetheless, for all geometries thus

far considered, Eq. (2) holds with c2=1 —3, which im-
plies that transport can be characterized by a single
effective pore size A.

In summary, we have studied transport in random lat-
tice models of porous media using two distinct schemes,
one suitable for a broad distribution of pore sizes and the
other applicable when the distribution is not unusually
broad. In the former case, we established a connection be-
tween A and a threshold length scale that can be deter-
mined using a mercury injection experiment. In all the
cases studied A, which is defined in terms of surface
effects on potential flow, was shown to be suitable candi-
date for the unique length scale that characterizes
Poiseuille flow in porous media.

We are grateful to Arthur Thompson for bringing the
work by Berman, Orr, Jaeger, and Goldman (Ref. 3) to
our attention and to Joel Koplik for allowing us to quote
his results.
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