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Spectroscopy of glassy systems with a relaxation-time distribution:
Application to Brillouin scattering on Rbp 65(NH4)Q. 35H2PO4
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Glassy systems often have a broad distribution of relaxation times dificult to determine experi-
mentally. A new approach for spectrum analysis, which could find considerable application, is de-
scribed. It is based on the expansion of a relaxation function in the logarithm of the frequency,
and applied successfully to Brillouin data on Rbp65(NH4)p35H2PO4, demonstrating the physical
interpretation of the experimental expansion coe%cients.

There is considerable current interest in the spectrosco-
py of frustrated systems forming glasses at low temper-
tures. ' One of their universal properties appears to be
that their dynamics is characterized by a broad distribu-
tion of relaxation times z. In the case of spin glasses, it
has become customary to describe results by a distribution
g(z, T), normalized to 1 upon integration over dlnz. 3 s

In terms of g, one defines a relaxation function Ic(rp, T),
where m is the measuring frequency and T the tempera-
ture,

K'(CO, T) = K'~ + 1 ki = g(z, T)d lnz
1 I.co z

Recently, a similar approach was taken for
Rb ~ —,(NH4) „H2PO4 (RADP) structural glases, in
which there is random competition between the ferroelec-
tric (FE) ordering of RbH2PO4 and the antiferroelectric
one of NH4H2PO4. Its microscopic origin has been ex-
plained elsewhere. The frustration leads to a disordered
freezing of polarizations for intermediate ammonium con-
centrations x, 0.22 ~x ~0.74. As those crystals are also
piezoelectric, they exhibit a linear coupling between the
polarization and a number of acoustic modes. This leads
to characteristic Brillouin spectra, as explained for the
concentration x =0.35 in Ref. 10, hereafter referred to as
I. In I, the spectra were interpreted using (1) where, on
the basis of previous knowledge, the simplest approxima-
tion of a rectangular distribution for g(z, T) was made.

An alternative approach is presented here. It allows

one to obtain information on g(z, T) from the spectra, in-
dependently from an assumption on the specific functional
form of the latter. This new method of analysis may find
considerable application, and its use may extend beyond
RADP and, in fact, beyond Brillouin scattering and the
specific case of piezoelectrically coupled spectra. It is ap-
plied here to the x =0.35 spectra already fitted in I. In
that case, the information on g(z, T) is interpreted in
terms of a scaling function f(E), where E is related to z
by a Vogel-Fulcher (VF) ansatz"

E = (T Tp) In(z/zp)

Here, To is the VF freezing temperature, and zo an in-
verse attempt frequency.

The spectra to be analyzed were obtained on the
T~ [100] acoustic mode, ' which is the soft one for the FE
transition of KH2PO4. ' The corresponding bare or un-
coupled phonon frequency is called co, . This phonon cou-
ples linearly to the polarization. The susceptibility of the
latter,

Z(rp, T) =Zg+Zp(T) x-(rp, T)

is the superposition of an adiabatic background X~, which
is small and can be taken as constant, with an isothermal
contribution Zp(T) weighted by the relaxation function.
This model is sufficient to describe the Brillouin spectra,
as shown in I. The general expression for the spectral
profile is'

kT &Ip [1+Y(1 —rp'/cp. ') ] '
I(ro, T) ~

~rp Zph
' [rc~+ (Zg/Zp) —g [1+(Zg/Zp) ] [1 —(co'/ro.') l] '+ xl'

(3)

where K~ and xi are defined in (1). It should be noted
that (3) applies to any distribution g(z, T), including a
simple Debye relaxation of characteristic time z,
g(z) =zB(z —z), where 8 is the Dirac function.

In addition to K, the profile depends on Zg/Zp, Q, Y, and
Those parameters were discussed in I, where it was

shown that (i) the ratio Zg/Zp can be taken from the
dielectric data, (ii) Q(T) for this mode can be extracted

from a comparison of the free and clamped dielectric con-
stants, (iii) the profile depends only weakly on Y, a dimen-
sionless and nearly T-independent quantity which can be
well estimated from the high-T intensities, and (iv) rp,
can be extrapolated from the high-T region using a Debye
approximation to account for lattice anharmonicity.

It must be appreciated that although evidence for a dis-
tribution g(z, T) does appear in many measurements, g is
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——m(co, T) [In(co/co)] +1 2 (4a)

xl(ro, T) = xl( ro, T) +m(co, T)ln( or/co)+, (4b)

where

m(co, T) = (tl xl/tl lnoi) (4c)

The expansion (4a) is consistent with (4b), given the local
Kramers-Kronig relation

xl(co, T) = —(x/2) Bxg (co, T)/6 lnro,

known to apply when g(z, T) is broad in lnz. This rela-
tion was verified experimentally for RADP with x =0.35
at audio frequencies.

It should be noted that xI in (4b) does not exhibit ex-
plicitly the usual linear dependence on co at small co im-
posed by causality. ' This unusual feature of glasses,
which applies over a broad range of intermediate frequen-
cies, is a spectacular consequence of the broad distribution
of relaxation times. It produces a dynamical central peak,
which might have a narrow dip near co=0, the latter so
far unobserved. This peak, already noted in I, is essential-
ly caused by the xl/co prefactor in (3).

It is apparent from (3) that rc~(co, T) and xl(co, T) are
mainly determined by the position and width of the Bril-
louin peaks, respectively. These two coefficients are
sufficient to describe the main features of the spectra, in-
cluding the dynamical central peak over the limited fre-
quency range of its measurement. However, the fine de-
tails of the line shape, in particular between m~ and the
lowest measurable frequency co;„, may require the addi-
tional expansion coefficient m (co, T). In terms of integrals
over g, those coefficients are

xR(ro, T) = ' =1 — ~ g(z, T)dlnz, (Sa)g(z, T)d lnz
Jo 1+ —2 2 4 i/g

(
—

) g(z, T)codz
I 0 4 0 —2 2

1
g

CO

m(ro, T) =—""Bg(z, T) codz

|1ln z

Bg(z, T)
2 Blni

(Sc)

seldom sufficiently known to allow for direct calculation of
x(co, T) using (1). This is a general difficulty in the evalu-
ation of relaxation data in glass, which should be faced
rather than ignored. ' As parameters Zg/Xo, g, Y, and co,
are well determined by a combination of dielectric and
high-T Brillouin data, they are fixed in (3), allowing
fitting directly for ~~ and KI at temperatures where elastic
and polarization Auctuations strongly couple. However,
the frequency dependence of x is of some importance in
determining the exact spectral profile. As g(z, T) is broad
in lnz, it results that x(co, T) is broad in 1nro. Thus, an ex-
pansion in lnco about a central value co near co~ is ade-
quate in the frequency range of the Brillouin spectra.
Hence, we use in (3),

xz(co, T) = xz(ro, T) ——xl(ro, T)ln(ro/co)
2

xz(ro, T) =1 ——ln
2 mo

" xr(m, T')
dT' . 7a(T' To)—

Similarly, the self-consistency of m (co, T) is checked using
(5b) and (Sc),

xl(ru, T) =(T—To)ln J
'

2
dT' . (7b)

roo "" m (co, T')

, ro, i (T' —To)'

The TED [100] spectra of I are now reanalyzed in this
manner. Except for the new fit variables rcg (co, T),

(cxol, T), and m(co, T), the procedure is identical to that
in I. The data are taken over the broadest possible spec-
tral range, i.e. , from channel 20 upwards, in the notation
of I, corresponding to ro;„/2zr=0 038 cm '. For sm. aller
shifts, the intensity of the elastically scattered light be-
came significant in our setup. Spectra taken between 20
and 90 K were fitted. Outside this range, the coupling is
much too small to extract reliable values. The Z 's of all
fits but two were smaller than one, with a mean value of
=0.68 for all spectra.

The coefficients obtained are shown in Fig. 1. The error
bars are statistical standard deviations. It is clear from
Eq. (3) that systematic errors on Q or ro, can seriously
afI'ect the coefficients, particularly K~. We estimate that
this systematic error is at least as large as the statistical

The right-hand side of the equality (Sc) is obtained by ap-
plying (4c) to (Sb), and integrating by parts. The approx-
imations in (5) are valid when g(z, T) is broad in lnz.
Such fits of the spectra give g(z, T) at the particular value
z = I/co, plus the integral (5a) and the derivative (5c).

The analysis assumes a broad distribution g. By fitting
the s ectra with rc~ =1/(1+co z ) and xl =roz/(I
+ ro i ) instead of (4), it can of course be checked wheth-
er a 6-function distribution is satisfactory. This was done
in I, with negative results for strongly coupled spectra.
Alternatively, having fitted using (4), one can check
whether xg/(xg+xl) =1. That relation holds either for
the 6-function distribution, or when the distribution
weight is mostly at high frequencies (roz((1) so that
K~=1 and ~I=0. For a general distribution, the ratio
becomes larger than 1 the more the distribution has
weight at z) I/co. Similarly, one can compare the mea-
sured value m to the expression rc~xl —xl/x~. The latter
should equal m only for the 6-function distribution.

Finally, when g(z, T) can be expressed in terms of a
function f(E) of a single variable E, then the knowledge
of g (I /ro, T ) becomes sufficient to check the self-
consistency of the values obtained for rc~ (ro, T), xl(co, T),
and m (ro, T). It is already known that the audio-
frequency data can be collapsed in this manner if the sin-
gle variable E is defined by (2). ' Assuming this remains
valid in the microwave region, one writes g(z, T)dlnz
=f(E)dE, which then gives g(z, T) =(T—To)f(E).
Using (5b), one obtains

f(E) =2xl(ro T)/n(T —To),
where, E =(T To)ln(roo/ro). The values of the con-
stants are To=8.7 K, and coo/2+=100 cm '. ' The
self-consistency of x~(ro, T) is then checked using (Sa)
and (Sb),
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FIG. 2. The ratio xR/(x$+x)), calculated from Figs. 1(a)
and 1(b), demonstrates that, at low T, the distribution acquires
weight at long times, r & 1/co.
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FIG. 1. Fit coefficients with their statistical error bars. (a)
xII. The shaded area results from the integration of xi in (b) us-
ing (7a) with To 8.7 K. The dashed curve corresponds to the
mean value of a similar calculation with Tp 0. The line at
xR =1 is a guide to the eye. (b) xi. The shaded area results
from the integration of m in (c) using (7b). (c) m: The solid
curve is a guide to the eye. The open points are equal to
xRxi —«j/xR using values from (a) and (b).

Second, the consequences of the VF ansatz (6) are
checked. The distribution f(E), derived from xl(ro, T)
without adjustable parameter using (6), is shown in Fig.
3. The solid line is such that ff(E)dE = l. It is remark-
able that this normalization does work, and that f(E) is,
in fact, quite similar to that obtained from audio-
frequency data. ' Identity of the two functions is not ex-
pected, as Ref. 15 is based on "free" dielectric data as op-
posed to "clamped" values here. Further, the self-
consistency of the fit parameters can be checked. From m
in Fig. 1(c), xl(co, T) is calculated using (7b). The result
is shown as the shaded area in Fig. 1(b). Its limits are ob-
tained by integration of m+cr and m —o., respectively,
where cr is the standard deviation on m. Although the
agreement is not perfect, it can be considered as quite ex-
traordinary for a no-free-parameter comparison and since
m depends on minute details of the profiles. Integration of
xi provides another check of the VF ansatz. It leads to
the shaded area in Fig. 1(a), obtained using (7a). The
agreement with xR is very good. This determination ap-

0.008

error for x~, in particular below 35 and above 60 K. It
was found empirically that the result for m is independent
of the choice made for m. Although m is rather poorly
defined experimentally given our signal-to-noise ratio [re-
sulting in the large error bars of Fig. 1(c)],it appears that
m is truly a property of the measured spectra. The choice
of co affects xR(co) and xi(co) so that the values of xR and
xi calculated at co =cog using (4) are always reproduced.
Since m is determined mostly by the spectral region be-
tween corn;„and cog, the expansion was made about the in-
termediate value co/2Ir =0.10 cm

The ratio xR/(xR+ xi ) is checked in Fig. 2. Below 50
K, it grows above 1, indicating that the distribution ac-
quires progressively more weight below co '. This is
clearly incompatible with a single Debye relaxation time.
Similarly, m is compared to the experimental value of
xRxI —xl/xR [Fig. 1(c)]. The infiuence of the distribu-
tion is already seen below =60 K.
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FIG. 3. The distribution f(E) calculated from Fig. 1(b) us-
ing (6). The solid curve is a guide to the eye, and the dashed
one illustrates the rectangular distribution approximation.
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pears sufficiently accurate to allow checking the influence
of Tp. The dashed curve on Fig. 1(a) corresponds to an
Arrhenius law (To=0). It is seen that the VF ansatz
gives a better agreement than the Arrhenius one.

In conclusion, it has been shown that coefficients of the
expansion of the relaxation function in inn can be derived
from experimental spectra on model glasses. In the case
of Rbp as(NH4)p 35H2PO4, those coefficients are consistent
with the development of a broad distribution of relaxation
times on cooling, and with a VF ansatz describing the

scaling of the distribution with T. This new approach for
the analysis of experimental data, which does not require
the assumption of a particular shape for the distribution
function, is expected to find rather broad application in

the spectroscopy of glassy materials.
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