PHYSICAL REVIEW B

VOLUME 35, NUMBER 13

RAPID COMMUNICATIONS

1 MAY 1987

Replica symmetry breaking in random-field systems

J. R. L. de Almeida* and R. Bruinsma
Department of Physics and Solid State Science Center, University of California at Los Angeles,
Los Angeles, California 90024
(Received 5 January 1987)

The conventional mean-field theory of random-field systems is, for large but finite dimensionali-
ties d, found to be in error. For larger applied fields, a separate glassy phase appears in the phase

diagram of the bond-diluted antiferromagnet.

For large d, the diluted antiferromagnet can be

mapped on the antiferromagnet with Gaussian randomness and the phase diagram of this model is
shown to have a de Almeida-Thouless line, marking the onset of the glassy phase by replica sym-
metry breaking. In the limit d— oo we recover conventional mean-field theory.

The effect of quenched-in disorder on magnetic transi-
tions is usually discussed either in terms of random ex-
change models, such as the Ising spin-glass, or models
with a local random magnetic field, such as the random-
field Ising model (RFIM). The relationship between
these two classes is rather puzzling. On one hand, the di-
luted Ising antiferromagnet (AF) in a uniform magnetic
field is the classical realization' of the RFIM. Further-
more, in d =1 the Ising spin-glass in a uniform magnetic
field can be mapped? onto the RFIM and the same is true
for a spin-glass on the Bethe lattice® (although in that
case the boundary conditions should be treated with
care*). The ordered phase of both classes is characterized
by irreversibility®> and long-time relaxation processes® due
to multiple minima in the free-energy surface. However,
despite the similarity between the RFIM and spin-glasses
in a uniform field, there are profound differences in our
description of these models. A spin-glass in a field exhib-
its a glassy phase even in the case of infinite range interac-
tion, and the mean-field theory is quite nontrivial. The
appearance of the low-temperature glassy phase is sig-
naled by the onset of so-called replica symmetry breaking
at the de Almeida-Thouless (AT) line.” This phase has a
new order parameter, the Parisi function ¢(x).8 On the
other hand, the RFIM with infinite range interaction has
a normal paramagnetic to ferromagnetic transition® and
there appears to be no need to introduce a new order pa-
rameter for random-field systems. Alternatively, if we
neglect thermal fluctuations then the mean-field equations
of the diluted Ising AF are

m(i) =tanhp [H+ZJ,-,-m(j)] , (1
J

with m(i) the magnetization on site i, J;; the exchange
energy between nearest neighbors, and H the magnetic
field. If we neglect quenched fluctuations and assume
m (i) to be uniform, then the resulting phase diagram'°
agrees with the infinite range result. This mean-field
theory is commonly held to be valid above d =6. The
low-temperature hysteresis in random-field systems is
solely ascribed to slow relaxation due to impurity pinning
of domain walls, which should only appear® below d =5.
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Thus there should be no hysteresis for higher dimensional-
ities, and, in general, there should be no real glassy phase.

In this paper we will show that this view is, in general,
wrong. The first piece of evidence is from numerical solu-
tions '*!2 of the mean-field equations [Eq. (1)] of the di-
luted AF in a field which indicated that the paramagnetic
phase is separated from the AF phase by a glassy region
(Fig. 1). In the region labeled LRO (long-range order) in
Fig. 1, the zero-field cooled state has a lower free energy
and in the shaded region the field cooled state does, al-
though the zero-field cooled state remains metastable. It
is, however, not clear whether this region has to be con-
sidered as a truly separate phase or merely as having long
relaxation times due to domain-wall pinning, since these
solutions were computed in d =3.

From the free energy of the short-range diluted AF in a
field, we will derive a model Hamiltonian for random-field
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FIG. 1. Mean-field phase diagram for a d =3 diluted AF
with 30% dilution, from Ref. 12. In the shaded region, the field
cooled state has the lower free energy (no LRO) and in the
unshaded region the zero-field cooled state (LRO) does.
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systems, which for higher dimensions has a separate
glassy phase. The onset of the glassy phase is indeed H (a)
characterized by a line of replica symmetry breaking.'?
The maximum temperature for the onset of the glass de-
pends on the number of nearest neighbors z=2d as
(1/2) "2, 50 in the limit d — oo, we do recover convention-
al mean-field theory.

The resulting phase diagram [Fig. 2(a)] resembles the
numerical results in d =3 except that the glassy phase oc-
cupies a smaller part of the phase diagram. The glassy re-
gion increases if the dilution increases. A phase with bro-
ken replica symmetry carries its own order parameter, and
if the d =3 phase diagram of Fig. 1 is indeed the extension
of Fig. 2(a) to lower dimensions, then one would expect
the critical behavior to be strongly affected. Even if for
small d the glassy phase remains restricted to larger ran-

>
dom fields, our results still have relevance, although not 7%
G

for magnetic realizations of the RFIM: Many nonmag-
netic realizations of the RFIM, such as phase separation
of binary mixtures of fluids in porous media,'* require F/~
large random-field strengths. In any case, the infinite /7
range RFIM cannot be taken as a representative mean- A’ AF
field theory for random-field systems, and at least for 1'1b”2
large d and large field strengths, interface arguments are

insufficient to explain the hysteresis of random-field sys-

tems. Finally, we must mention that in the case of spin- FIG. 2. Mean-field phase diagram of the random exchange
glasses in a field, it has been questioned !> whether there is AF in a field for large d. The mean exchange energy is —Jo/z
an AT line at lower dimensions and similar reservations with z the coordination number. The width of the (Gaussian)

PM

would apply to our case. Our starting point is the expres- distribution of the exchange is J/vz. The Néel temperature is
sion for the free energy Ofa bond-diluted AF using the re- shown as a straight line, the de Almeida-Thouless llge a_s a
plica method: dashed curve. (a) is the case of weak randomness (J<Jo),
5 which also corresponds to a weakly diluted AF, and (b) is the
F=—81lim ->Tr fca.a €x HYS (S84 of) case of strong randomness J =Jo, so b =1—J/Jo is small.
‘BnHO on (S_l,,ol} p[B[ % i i
a=1,..., n ’

+ 3 J,»js;’a;'] ] , ()

lija where x is the dilution and z the coordination number.
The mean-field critical temperature for x =1 and H =0 is
thus independent of z. Upon averaging over the J; ;’s, one
finds an expansion in € =8J¢/z in the exponent which, for

high dimensionalities (large z), converges rapidly. To

with a the replica index and of and S Ising spins on the
two sublattices with only nearest-neighbor exchange. The
probability distribution of the J;;’s is

PU;) =0 —x)6U;j+Jo/z2)+x8(;) , 3) second order in €
|
F=—,61imoainTrexp[—(1—x)e Y ofSf+rx(1—x)e? Y [ZG,”S}-’] 2+BH Y (of+Sf) | . (4)
n— (i, j)a ) (e ia

For ¢ of order 1, the expansion breaks down and Eq. (4) does not correspond to a diluted antiferromagnet anymore. It is
easy to_see that Eq. (4), in general, represents a random-exchange model with a Gaussian distribution of Jij with
(Jij)=Jo and ((J;; —J)?) =2J2 where J =[x(1 —x)/212Jo/z and Jo=— (1 — x)Jo/z. For J S —J,, we should expect
that Eq. (4) is in the ‘“‘universality class” of the RFIM following the arguments of Ref. 1. We now will establish the
mean-field phase diagram of Eq. (4). The fourth-order terms in the spins are, as usual, decoupled through the Hubbard-
Stratonovich transformation with the following result:

.0 3 _ 3 B
-—pim 2 [Maxgf T1 dvifexp| =+ 3 T xbki'xhp—+ £ X 2K v+ SinTroese
n—=0 01" jap i,a,8,p p=lij.a p=lij.a.p i

Xexp [ixl Y xA(of+SPH)+1, [Zx,-"zo,f’+2x,-"30’,~“] +1, Xy (oPcf+S2SP)
a a a a,p

+iks [Zyizo."crf“Fyf‘a”Si’Sf] +ﬂH>:(cf’+Sf’>] } ) (5)
ap a
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where AL (1—x)el? and A, ={f[x(1—x)1e3 "2
The matrix Kj; is 1 if i and j refer to nearest neighbors,
and is zero otherwise. For high dimensionalities, we can
ignore fluctuations in x;, and y;, and evaluate the in-
tegrals by steepest descent!® (tree approximation). The
saddle-point equations are

x§=izh(m§+m$), x53=2zAym$, ,
(6)
yi =20t +q%%), y5h=izhrqfh |

where m$, and g% are the magnetization and Edwards-
Anderson order parameter on the two sublattices:

¢ =(c%, qff =(c%"P) , @)

and similarly for m, and ¢,. The average is to be per-
formed with the Hamiltonian H which is the part of F in
Eq. (5) in square brackets. Assuming replica symmetry
we set gf% =g, ,,mf{,=m;; The resulting mean-field
equations are

—-1/2)x?

xtanh[B(H — Joma,1+Jx~/q2.1)1 , (8a)

-1 —(1/2)x2
q12= dxe
\/an

xtanh2[B(H — Joma+Jx~/q21)] ,  (8b)

where Jo= —Joz and J =J+z. To discuss replica sym-
metry breaking we substitute Egs. (8) back into F. Re-
markably, the same free energy was studied previously by
Korenblit and Shender!” (KS) in a somewhat different
context, and by translating their results to our problem we
can read off the AT line:

-4 1
T#(H)=J4Zfdz|fdzzcxp[—- L (zE+2z3)]

xsech*[(H — Jom+Jz1/q1)/TF]

xsech*[(H — Joma+Jz2/q2)/TF],

9

where q1, g2, m, and m;, are taken from Eq. (8) Again,
using the results of KS we can discuss the phase diagram.
We first assume that x is very small and that z>> 1, and so
J<Jo. In that limit, the sublattice magnetizations are
those of a pure antiferromagnet with exchange constant
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Jo. Using steepest descent in Eq. (9),
1/2
2 = 1 =
Tr(H)=1% = - —(H- 2
r(H)= 3 [ﬂ] Jexp[ 4J7'[( Jomy)

+(H—jom2)2]]. (10)

For low temperatures and H > jo, mj=m;, so from Eq.
(10)

) 1/2
TF(I‘I)E % [—
T

Jexp

—3}—2(1{—}0)2] Can

If H<Jy, then m;=—m,, and Tr(H) is of order
exp(—z), which is negligible for large z and below the va-
lidity of range of our expansion. There is a multicritical
point at Ho=Jg and To=Tr(H,). The phase diagram is
shown in F1§ 2(a). Because T is, through J, proportion-
al to (1/z)"/2 there is no replica symmetry breaking in the
limit of infinite z. .

For large dilution and smaller coordinate numbers, J
becomes comparable to Jo. Although our expansion in &
is not valid anymore, we can still use Eq. (4) to gain quali-
tative insight into the phase diagram. If b=1—J/J, is
small compared to one, then the multicritical point is lo-
cated at

To=J(1—b'2), Hy=J(4b¥4/3172) (12)

For field strengths in excess of Hy, the AT line is the
phase boundary

Te(H)=Jl1 —b"2(H/H)??] . (13)

The AF order parameter is zero. For field strengths below
H there is a rapid increase by an amount Jb'2in Tp(H)
until it reaches a maximum value. The AF order parame-
ter is now finite so the glassy phase is mixed. If H is fur-
ther reduced, then the AT line reaches the H =0 axis at
Tr(0) =T,. The small-b phase diagram is shown in Fig.
2(b). In the limit of zero H the diluted AF should have,
at T =0, perfect AF order so that the AT line should not
intersect the H =0 axis in that case. The fact that the AT
line of Eq. (4) does reach the H =0 axis is due to the fact
that ¢ is not small for b~0, so including higher order
terms in ¢ in Eq. (4) must, for small H, reduce Tr(H).

In conclusion, the model Hamiltonian we propose as
typical for random-field systems, Eq. (4), in general, has
replica symmetry breaking and thus a true glassy phase
which can occupy a substantial part of the phase diagram,
especially for larger effective random fields.
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