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Replica symmetry breaking in random-field systems
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The conventional mean-field theory of random-field systems is, for large but finite dimensionali-
ties d, found to be in error. For larger applied fields, a separate glassy phase appears in the phase
diagram of the bond-diluted antiferromagnet. For large d, the diluted antiferromagnet can be
mapped on the antiferromagnet with Gaussian randomness and the phase diagram of this model is
shown to have a de Almeida-Thouless line, marking the onset of the glassy phase by replica sym-
metry breaking. In the limit d ~ we recover conventional mean-field theory.

The eA'ect of quenched-in disorder on magnetic transi-
tions is usually discussed either in terms of random ex-
change models, such as the Ising spin-glass, or models
with a local random magnetic field, such as the random-
field Ising model (RFIM). The relationship between
these two classes is rather puzzling. On one hand, the di-
luted Ising antiferromagnet (AF) in a uniform magnetic
field is the classical realization' of the RFIM. Further-
more, in d =1 the Ising spin-glass in a uniform magnetic
field can be mapped onto the RFIM and the same is true
for a spin-glass on the Bethe lattice (although in that
case the boundary conditions should be treated with
care ). The ordered phase of both classes is characterized
by irreversibility and long-time relaxation processes due
to multiple minima in the free-energy surface. However,
despite the similarity between the RFIM and spin-glasses
in a uniform field, there are profound differences in our
description of these models. A spin-glass in a field exhib-
its a glassy phase even in the case of infinite range interac-
tion, and the mean-field theory is quite nontrivial. The
appearance of the low-temperature glassy phase is sig-
naled by the onset of so-called replica symmetry breaking
at the de Almeida- Thouless (AT) line. This phase has a
new order parameter, the Parisi function q(x). On the
other hand, the RFIM with infinite range interaction has
a normal paramagnetic to ferromagnetic transition and
there appears to be no need to introduce a new order pa-
rameter for random-field systems. Alternatively, if we
neglect thermal fluctuations then the mean-field equations
of the diluted Ising AF are

Thus there should be no hysteresis for higher dimensional-
ities, and, in general, there should be no real glassy phase.

In this paper we will show that this view is, in general,
wrong. The first piece of evidence is from numerical solu-
tions"'2 of the mean-field equations lEq. (I)] of the di-
luted AF in a field which indicated that the paramagnetic
phase is separated from the AF phase by a glassy region
(Fig. 1). In the region labeled LRO (long-range order) in

Fig. 1, the zero-field cooled state has a lower free energy
and in the shaded region the field cooled state does, al-
though the zero-field cooled state remains metastable. It
is, however, not clear whether this region has to be con-
sidered as a truly separate phase or merely as having long
relaxation times due to domain-wall pinning, since these
solutions were computed in d =3.

From the free energy of the short-range diluted AF in a
field, we will derive a model Hamiltonian for random-field

m (i) =tanhP H+ g J~m (j)

with m(i) the magnetization on site i, J~ the exchange
energy between nearest neighbors, and H the magnetic
field. If we neglect quenched fluctuations and assume
m(i) to be uniform, then the resulting phase diagram'
agrees with the infinite range result. This mean-field
theory is commonly held to be valid above d=6. The
low-temperature hysteresis in random-field systems is
solely ascribed to slow relaxation due to impurity pinning
of domain walls, which should only appear below d =5.
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FIG. 1. Mean-field phase diagram for a d=3 diluted AF
with 30% dilution, from Ref. 12. In the shaded region, the field
cooled state has the lower free energy (no LRO) and in the
unshaded region the zero-field cooled state (LRO) does.
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F= —P lim Tr ls. l exp P Hg(S +cr )
n 0 rl

a 1, . . . , n i, a

+ Q J;jSi'oj'
(i,j),a

, (2)

with a the replica index and cr; and S; Ising spins on the
two sublattices with only nearest-neighbor exchange. The
probability distribution of the J;~ s is

P(Jij) =(1 —x)8(Jj+Jo/z)+x6(J~J), (3)

systems, which for higher dimensions has a separate
glassy phase. The onset of the glassy phase is indeed
characterized by a line of replica symmetry breaking. '

The maximum temperature for the onset of the glass de-
pends on the number of nearest neighbors z =2d as
(1/z) '/, so in the limit d ee, we do recover convention-
al mean-field theory.

The resulting phase diagram [Fig. 2(a)] resembles the
numerical results in d =3 except that the glassy phase oc-
cupies a smaller part of the phase diagram. The glassy re-
gion increases if the dilution increases. A phase with bro-
ken replica symmetry carries its own order parameter, and
if the d =3 phase diagram of Fig. 1 is indeed the extension
of Fig. 2(a) to lower dimensions, then one would expect
the critical behavior to be strongly affected. Even if for
small d the glassy phase remains restricted to larger ran-
dom fields, our results still have relevance, although not
for magnetic realizations of the RFIM: Many nonmag-
netic realizations of the RFIM, such as phase separation
of binary mixtures of fluids in porous media, ' require
large random-field strengths. In any case, the infinite
range RFIM cannot be taken as a representative mean-
field theory for random-held systems, and at least for
large d and large field strengths, interface arguments are
insufficient to explain the hysteresis of random-field sys-
tems. Finally, we must mention that in the case of spin-
glasses in a field, it has been questioned ' whether there is
an AT line at lower dimensions and similar reservations
would apply to our case. Our starting point is the expres-
sion for the free energy of a bond-diluted AF using the re-
plica method:
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FIG. 2. Mean-field phase diagram of the random exchange
AF in a field for large d. The mean exchange energy is —Jo/z
with z the coordination number. The width of the (Gaussian)
distribution of the exchange is J/Wz. The Neel temperature is
shown as a straight line, the de Almeida-Thouless line as a
dashed curve. (a) is the case of weak randomness (J« Jo),
which also corresponds to a weakly diluted AF, and (b) is the
case of strong randomness J=Jo, so b =1 —J/Jo is small.

where x is the dilution and z the coordination number.
The mean-field critical temperature for x =1 and H =0 is
thus independent of z. Upon averaging over the J; j's, one
finds an expansion in s =PJo/z in the exponent which, for
high dimensionalities (large z), converges rapidly. To
second order in e

F= —p lim
n 0 n

3 3

F = —P lim „Qdx „Q dy;g exp ——' g g x E; 'x' ——' g g y,'i'K; 'y'~++In Tr
'~r ' ~» p lij a p lij ap i

Trexp —(1 —x)s g a,'Sj+ —,
' x(1 —x)s g pa SJ' +PHD(a +S;) (4)

(i,j),a (ij), a i, a

For s of order 1, the expansion breaks down and Eq. (4) does not correspond to a diluted antiferromagnet anymore. It is
easy to see that Eq. (4), in general, represents a random-exchange model with a Gaussian distribution of Jj with
(JJ) =Jo and ((JJ —Jo) ) =2J, where J=[x(1—x)/2)' Jo/z and Jo= —(1 —x)Jo/z. For J~ —Jo, we should expect
that Eq. (4) is in the "universality class" of the RFIM following the arguments of Ref. 1. We now will establish the
mean-field phase diagram of Eq. (4). The fourth-order terms in the spins are, as usual, decoupled through the Hubbard-
Stratonovich transformation with the following result:

&&exp iki gx;'i (cr +S; )+Xi 'gx;'2a; +gx;'3cr +) 2~;i (o; a~+S; St')
, a a, P

+imp gy;per, 'a~+y gS S~ +PHD(cr, '+S )
, aP

(5)
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y1 =»2(qi +qf ), )23 &z~2q12

where mi 2 and qi~z are the magnetization and Edwards-
Anderson order parameter on the two sublattices:

q'~=(o 0~) (7)

and similarly for I2 and q 2. The average is to be per-
formed with the Hamiltonian H which is the part of F in

Eq. (5) in square brackets. Assuming replica symmetry
we set q& 2=q~ 2, m] 2=m] 2. The resulting mean-field
equations are

~ e
—(]/2)xmi 2= xe

x tanh [p(H Jpm 2 1+Jxjq 2 1)], (8a)

where Xi [ —,
' (1 —x)e] ' and )1,2= j —,

' [x(1 —x)]a ] 'i2.

The matrix K;1 is 1 if i and j refer to nearest neighbors,
and is zero otherwise. For high dimensionalities, we can
ignore fluctuations in x; ~ and y; z and evaluate the in-
tegrals by steepest descent' (tree approximation). The
saddle-point equations are

X 1 &z~l (m 1 ™2) X2, 3 z~1m 1,2

Jii. Using steepest descent in Eq. (9),
1/2

2TF(H) = —, —— J exp
7E'

[(H —Jpm i)
4J

+(H —J.m, )2] . (io)

For low temperatures and H & Jo, m~ =m2, so from Eq.
(10)

1/2

TF (H) =- —,
' — Jexp —

2
(H —Jo) . (11)

7r 2J
If H & J13, then mi = —m2, and TF(H) is of order
exp( —z), which is negligible for large z and below the va-
lidity of range of our expansion. There is a multicritical
point at Hp Jp and To=TF(Ho). The phase diagram is
shown in Fi . 2(a). Because TF is, through J, proportion-
al to (1/z) ' there is no replica symmetry breaking in the
limit of infinite z.

For large dilution and smaller coordinate numbers, J
becomes comparable to Jo. Although our expansion in e
is not valid anymore, we can still use Eq. (4) to gain quali-
tative insight into the phase diagram. If b =1 —J/Jo is

small compared to one, then the multicritical point is lo-
cated at

—(1&2)Xe
To=J(l —b' ) H =J(4b /3' ) (i 2)

x tanh [p(H Jom 2 1+JxQq 2, 1)1 (8b)

For field strengths in excess of Ho, the AT line is the
phase boundary

TF (H) =J[I —b 'i (H/H11) i ] (i3)
where Jo = —Joz and J=JJz. To discuss replica sym-
metry breaking we substitute Eqs. (8) back into F. Re-
markably, the same free energy was studied previously by
Korenblit and Shender' (KS) in a somewhat diff'erent
context, and by translating their results to our problem we
can read off'the AT line:

TF (H ) =J „~dz 1 &t dz 2 exp [ —
—,
' (z 1 + z 2 ) ]

x sech [(H —Jom 1+Jz 1 Jq ~)/TF]

x sech [(H Jom 2+Jz 2Jq 2)/—TF],

where qi, q2, mi, and m2 are taken from Eq. (8) Again,
using the results of KS we can discuss the phase diagram.
We first assume that x is very small and that z)) 1, and so
J((Jo. In that limit, the sublattice magnetizations are
those of a pure antiferromagnet with exchange constant

The AF order parameter is zero. For field strengths below
Ho there is a rapid increase by an amount Jb 'i2 in TF(H)
until it reaches a maximum value. The AF order parame-
ter is now finite so the glassy phase is mixed. If H is fur-
ther reduced, then the AT line reaches the H=O axis at
TF(0) =To. The small-b phase diagram is shown in Fig.
2(b). In the limit of zero H the diluted AF should have,
at T =0, perfect AF order so that the AT line should not
intersect the H 0 axis in that case. The fact that the AT
line of Eq. (4) does reach the H =0 axis is due to the fact
that e is not small for b —0, so including higher order
terms in s in Eq. (4) must, for small H, reduce TF(H).

In conclusion, the model Hamiltonian we propose as
typical for random-field systems, Eq. (4), in general, has
replica symmetry breaking and thus a true glassy phase
which can occupy a substantial part of the phase diagram,
especially for larger effective random fields.
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