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We calculate the static and dynamic transport properties of a two-dimensional electron gas in a Si
quantum well of thickness a at zero temperature. Background doping, remote doping, and surface
roughness are considered as the relevant scattering mechanisms. Multiple-scattering effects are in-

cluded in the theory and the phase diagram for the metal-insulator transition is evaluated. Due to
the anomalous wave-vector dependence of the polarizability the correction to the conductivity,
which is linear in the temperature, is derived for quantum-well structures. The frequency depen-
dence of the scattering rate is calculated. We compare our results on the mobility with recent exper-
iments in superlattices of Si-Si„Gel and discuss the upper limits of the mobility. For electron

0

density n & 10' cm and a &40 A remote doping limits the mobility. But for n ~10' cm
homogeneous background scattering also becomes important. Surface roughness scattering becomes

0
dominant only for thin quantum wells with thickness smaller than 40 A.

I. INTRODUCTION

The study of the transport properties of a two-
dimensional electron gas is a very active field in semicon-
ductor physics. The silicon —metal-oxide semiconductor
system has been studied in great detail. For a review see
Ref. 1. Recently GaAs-Al Ga& As heterostructures and
quantum-well structures have also become important. In
this system the ionized donors are separated from the
two-dimensional electron gas, and so these structures have
a high mobility. For a review see Ref. 2. Very new are
structures of Si-Si„Ge& „strained layers, realized as su-
perlattices, quantum-well structures, and heterostruc-
tures. For a recent review on Si-Si Ge& „superlat-
tices see Ref. 6. It was found in Si-Si Ge& superlattices
that a two-dimensional electron gas is formed and it was

suggested that the carriers are confined in the silicon
layers. Recent calculations of the subband structure
support this idea. The Si-Si„Ge& superlattices have
been doped with a method denoted as secondary implanta-
tion. The mobility for low temperatures depends strong-
ly on the position of the dopant layer, and a weaker
dependence was reported for room temperature.

Transport theory for quantum-well structures " fol-
lows the theoretical work of Stern and Howard' for in-
version layers. In the work of Ref. 9 the finite extension
of the quantum well, which gives rise to some form fac-
tors for the electron impurity and the electron-electron in-
teraction, has been neglected. This effect has been taken
into account in Refs. 10 and 11 for homogeneous doping
in the quantum well and homogeneous doping on the
right side of the quantum well.

We discuss in this paper the scattering from a two-
dimensional sheet of impurities (remote doping) and from
a homogeneously doped three-dimensional structure
(homogeneous background doping). Due to differences of
the models, a direct comparison of our work with the

work of Refs. 10 and 11 is not possible. Moreover, it is
not clear from Ref. 10 how the z dependence of the poten-
tials (Eqs. 7 and 8 of Ref. 10) is eliminated in the final re-
sults for the mobility. Local-field effects reduce the
screening properties of the interacting electron gas and de-
crease the mobility for a given random potential. This
was discussed for metal-oxide —semiconductor systems in
Refs. 13 and 14. In the case of quantum wells this effect
is discussed for the first time in this paper.

For surface-roughness scattering the theory of Ref. 9 is
inconsistent, because the finite quantum-well width is tak-
en into account for the surface-electron interaction, but
for the screening a zero quantum-well width was assumed.
In this paper a finite quantum well is also assumed for the
screening behavior, besides the new effects due to local-
field corrections.

The theory of Ref. 12 cannot account for multiple-
scattering effects. In this paper we extend our transport
theory, which includes multiple-scattering effects and a
description of the metal-insulator transition' ' to
quantum-well structures and various scattering mecha-
nisms. Parameters for Si-Si Ge~ are used. For remote
impurity doping, homogeneous background doping and
surface-roughness scattering, we will discuss the upper
limits for the mobility at zero temperature. Due to
multiple-scattering effects, a transition to an insulator is
expected for low electron density. We predict the phase
diagram for the metal-insulator transition. The behavior
of the momentum relaxation time for low temperatures is
evaluated by following the work of Ref. 15. The dynamic
conductivity for homogeneous doping is calculated and
plasmon anomalies are predicted.

The paper is organized as follows. In Sec. II we explain
the model and the transport theory. The mobility for the
various scattering mechanisms is discussed in Sec. III.
Some aspects of the dynamical conductivity are evaluated
in Sec. IV. In Sec. V we compare our theoretical results
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with experimental results of Ref. 6 and propose some ex-
periments. A conclusion of the paper is given in Sec. VI
and some quantum-well structures are designed there in
order to test some of the predictions of this paper.

II. MODEL AND THEORY

Si„Ge, „
-a

In this part of the paper we specify the system under
consideration and the transport theory.

A. Scattering mechanisms

We evaluate the conductivity of a two-dimensional elec-
tron gas in a quantum-well structure. The subband struc-
ture is neglected and only the lowest subband is included
in the calculation. We assume that the electrons can
move in the xy plane and are confined in the z plane. The
wave function tt(z) for the z direction is given by the
quantum-well width a via

1/2
2 wz

P(z) = — sin, 0 (z (a
a a

and is zero for all other z, see Fig. 1.
We assume that a two-dimensional sheet of donors with

a two-dimensional density n; can be implanted in the sys-
tern at a distance z; from the boundary of the quantum
well, see Fig. 1. The random potential U&(q) for wave
number q is expressed as

lOf1IZ6d ++ + ++++

Si„Ge& „

2
2

2ne 1 F ( )p

q
(2a)

with

FR(q, z;) = J dz
~

g(z)
~

e

Explicitly we find

FICJ. 1. Configuration of the single quantum well. g(z) is
given by Eq. (1).
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eL is the dielectric constant of the host lattice and
F~(q, z;) accounts for the distance z; between the impurity
layer and the quantum well and for the finite width of the
quantum well. ' In the following we will refer to this
scattering mechanism as remote doping. Especially, we
will discuss this scattering mechanism for z; = —a/2 and
z; =a/2.

The second scattering mechanism for which we account
is due to homogeneous background doping of the volume
characterized by the three-dimensional density Nz. The

random potential is written as
2

(
~

U, (q)
~

') =X,a — F,(q),2~e 1

with

F~(q) = —I dz;F(q, z;)
a

Explicitly, we get

(3a)

(3b)

1 4~Fa(q}=
aq 477. +a 2q
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qa 4 qa

1 1 2, 2 1
e
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32 ~2 27T2

1 —e

qa 4~+a q
(3c)
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2m*

kFa

4

g~)2 —q A /4

(4)

The factor 2 on the right-hand side of Eq. (4) comes from
the two interfaces and cz is the Fermi energy and kI; the
Fermi wave number of the two-dimensional electron gas.
m, is the mass perpendicular to the interface. According
to Eq. (4), (

~
U3(q)

~
) ~ 1/a and for very thin quantum

wells the surface-roughness scattering should dominate all
other scattering mechanisms. Quantum wells with small
a should be useful to study the roughness of the
quantum-well interface.

The electron-electron interaction V(q) of the electrons
in the quantum well is characterized by a Coulomb poten-
tial and a form factor due to finite confinement' and is
given by

F~(q) accounts for the finite quantum well and the homo-
geneous distribution of the Coulomb-like impurities in the
volume of the structure.

The third scattering mechanism which we consider is
surface-roughness scattering according to the ideas of
Prange and Nee. ' The roughness at the quantum-well
boundary is characterized by the height 6 and the length
A of the Gaussian-like fluctuations. We assume that
roughness at z =0 and z =a can be characterized by the
same parameters and that there is no interference between
the two interfaces. The random potential is then ex-
pressed as

1.0 2.5 5.0

D

—05
N
CT

0/60
x-30/90

0
0 0.5 1.0

Q~Qs
FICx 2. Form factors F&(q,z;) (dashed lines) and F,(q) (solid

line) versus q. The arrow indicates 2k+ for n =3X10' cm
a =60 A.

we assume x =0 5 and then eL ——12 6. The two-
dimensional electron gas is assumed to be confined in the
silicon layer with the transport mass m*=0. 19m, and
m, =0.916m, . m, is the vacuum mass of the electron.
The valley degeneracy g„ is assumed to be 2. The relation
between the electron density n and the Fermi wave num-
ber is given by n =(g„/2n. )kz. eI and m* determine the
effective Bohr radius a* via the hydrogen Bohr radius aH
as a*=aHel m, /m*. The screening wave number q, is
given by q, =2g„/a'. We put %=1 in this paper.

with

V(q) = Fc(q), —
EL q

(5a)
B. Transport theory

Fc(q) = f dz
~
P(z)

~ f dz'
~

@(z')
~

e

Explicitly we evaluate

(5b)

According to the random potentials the momentum re-
laxation time ~ for the electrons in the quantum well is fi-
nite. Within the Howard-Stern formulation' we can
write

1 8'
Fc(q) = 3aq +

4~ +a q aq

32~4 1 —e -'~

aq 4m. +aq
(5c)

e(q) is the dielectric function of the two-dimensional elec-
tron gas and we use' '

Fz(q, z; ) and Fc(q) are shown in Fig. 2 as a function of q.
Later it is shown that the q~0 behavior of the random
potential and the electron-electron interaction determines
various properties of the system. We find

and cz= —2 for remote doping, a= —3 for homogeneous
background doping, and a =0 for surface-roughness
scattering. For Fc(q) we find

1 5Fc(q~O)=1 — —— aq .
4~

In the following we will evaluate the transport proper-
ties of the quantum well for Si„Ge~ „-Si-Si„Ge] . The
dielectric constant is given as eL ——11.5+2.25(1 —x) and

e(q)=1+ V(q)[1 —G(q)]X (q) . (9)

X (q) is the polarizability of the two-dimensional electron
gas' and G(q) is the Hubbard form of the local-field
correction. ' For G (q) =0, X (q) =X (q =0), and
F, (q) = 1, one gets the Thomas Fermi result for dimension
two: c(q)=1+q, /q. The mobility p is connected with r
via p=(e/m )w and the static conductivity o is given by
o.=nep.

The dynamic conductivity is written as'

ne M"(co )

m* [co+M'(co)] +M"(co)

and M'(co) is the real part and M"(co) the imaginary part
of the current relaxation kernel. Equation (9) generalizes
the Drude result by a finite M'(co) and a frequency depen-
dence of the relaxation time.
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According to the theory of Ref. 13 we take into account
multiple-scattering effects and M' "'(co) is given as

M' "'(co)= ( )
q

4nnm o

o( T) =cr(T =0) 1 —C(a, n) —O(T ~
) (12a)

with

~F
C(a, n) =

T
(12b)

P'"~(q, ~) is the real (imaginary) part of the density corre-
lation function of the interacting electron gas. The in-
teraction is treated in random-phase approximation in-
cluding local-field corrections. P'"'(q, co) depends on
M'(co) and M"(co) and details of the theory can be found
in Ref. 13. If multiple-scattering effects are neglected,
then P"(co) is proportional to the random-phase approxi-
mation for the density relaxation function (Lindhard
function). M" (co=0) is then given by 1/r from Eq. (8).

Equation (11) describes the decay of the current modes
into the density modes of the interacting electron gas.
Within the random-phase approximation we consider, as
the relevant density modes, particle-hole excitation and
plasmons. An equation equivalent to Eq. (11) has been
written down in Ref. 20, but self-consistent effects have
not been taken into account. Recently it has been claimed
in Ref. 21 that in Ref. 20 the plasmon decay channel has
been ignored. But it has been shown in Refs. 13, 14, and
22 that this plasmon channel is very important and that
the plasmon anomalies already have been found in experi-
ments, for a review see Ref. 24.

Due to the anomalous q dependence of the polarizabili-
ty, the conductivity shows an anomalous temperature
behavior at low temperature. At low temperature T the
conductivity can be written as'

A. Background impurity doping

The mobility pz for background doping is given by
Eqs. (3) and (8). Due to the q =2kF singularity in Eq. (8)
we can evaluate the q integral in an approximation where
the square-root singularity at q=2kF is integrated, but
the form factors are taken at q =2kF. This approxima-
tion works very well at low electron densities and gives
the correct trend for higher electron densities. We receive
for background doping

Nga F~(2kF)

[ [1—G (2k+)]Fc(2kF )+2kF /q, j

(13a)

For 2kFa «1 we find Fz(2kF)=1/(2kFa). From Eq.
(13a) for 2kF/q, « 1 we get a p ~ n '~ behavior

k
p=2e [1—G(2kF)] (13b)

and for 2kF /q, »1 we obtain

Nsa F~(2kF)
E.Fg„n (2kF /q, )

(13c)

which corresponds to a p ~ n behavior for high densi-
ties. The transition from the p ~ n ' to the p ~ n

behavior should occur at n =q, /(4vr) = 1 X 10' cm
In Fig. 3 we give our numerical results according to

Eqs. (3) and (8). For low densities pz is independent of a,
see Eq. (13b). Local-field corrections decrease the screen-
ing properties of the electron gas and the mobility is lower
if local-field corrections are taken into account. For
higher densities there is an a dependence in Fig. 3 which
indicates that already higher-order terms than
Fz(2kF)=1/(2kFa) play a role. We expect that at least
at low electron densities the background doping could
limit the mobility.

o. describes the q dependence of the random potential for
q ~0, see Eq. (6). b,r gives the temperature-dependent
part of the momentum relaxation time and analytic ex-
pressions for r and b,r were given in Ref. 15. Here we use
the analytical expression for b,r but use Eq. (8) for r. A
linear T dependence was found in experiments on sil-
icon metal oxide semiconductor systems with high mobili-

ty. So one could expect such a temperature behavior for
silicon quantum wells, too. Explicit results are given in

the next chapter.

14- I I I I I I I

III. STATIC CONDUCTIVITY pi
— I

1P 1P12

n(cm j

1P

In the first part of this chapter I discuss the upper lim-
its of the mobility for the three scattering mechanisms. In .

the second part I describe the metal-insulator transition
and the low-temperature corrections.

FIG. 3. Mobility due to homogeneous background doping ac-
cording to Eqs. (3) and (8) versus density, as solid lines. The
dashed line is for 6 =0.
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B. Remote impurity doping

According to Ref. 15 we find with Eqs. (2) and (8) the
approximation for 1/~ in the form

i000-

1 vr Fq(2kF, z;)

g„n I [1—G (2k~)]Fc(2k~)+2k~/q, j' (14a)
800—

For low density Fz ——Fc——1 and pz ~ 1/n for n; =n. For—kFa
higher electron density F~(2k&, z; = —a/2)=e and a
strong dependence of the mobility on the quantum-well
width is expected. Numerical results are shown in Fig. 4

kFafor z; = —a/2. With pz ~ e /n we see that at high den-

sity the factor e increases the mobility and dominates
over the factor 1/n. The minimum in the pz versus n

curves is expected at n =g„/(2~a ). For a =60 A the
minimum mobility is 9 && 10 cm /V s at n = 5)& 10"
cm

In Fig. 5 the mobility pz versus density is shown for
z; =a/2 according to Eqs. (2) and (8). The form factor,
which goes into Eq. (14), is given by

400—

2pp I I I II
10

I I I I I I I I

)013

n (cm ~)

FIG. 5. Mobility due to remote doping according to Eqs. (2)

and (8} versus density, as solid lines for z;=a/2. The dashed
line is for G =0.

a
Fz 2kF, z; =—

2

1 —akF
2 2

1 —e +
7r +a kF

2
akF

(14b)

p = „[1—G (2k~)]
m 77 EF n;

(14c)

and finite local-field corrections decrease the mobility.
This effect has also been discussed for metal-oxide silicon
semiconductors. '

For low density with F~ (2k& ) = 1 and n; = n the mobility
increases with decreasing density: pz ~ 1/n. For high
electron density with 2k~/q, &&Fc(2k+) the mobility fol-
lows the law p~ ~ 1/Fz(2kJ;, z; =a/2) . With increasing
density F~(2k+) decreases and pz increases, see Fig. 2.
FR(2k+) depends on a, see Eq. (14b), and the density for
the minimum mobility also depends on a. For low densi-
ty the mobility does not depend on a,

C. Surface-roughness scattering

With Eqs. (4) and (8) we can evaluate the mobility ps
due to surface-roughness scattering in an approximation
which has been discussed before. ' For kFA « 1 we get

1 5 AA m*—= cF12w5
a 'q,' mz

106

SilSi„Ge& „
Z; =- a))'2 a(Aj

and for kF~O we find

2A2 12' ~ PFm' m*

1

I [1—G (2k~)]Fc(2k+)+2k~/q, }
(15a)

(15b)

10
PV

M

For low electron concentration we find p~1/n. In the
case kFA»1, we get

10

—= cF24m. '1 9 2

'T

2m*

A a kFq

1

j [1—G (2/A)]Fc(2/A)+2/Aq, }
(16)

10
10

I

1012

n (cm '} 10

FICx. 4. Mobility due to remote doping according to Eqs. (2)
and (8) versus density, as solid lines for z; = —a/2. The dashed
line is for 6 =0 and a =120 A.

and p ~n . The crossover of the p ~ 1/n to the long-
range (LR) p ~ n behavior is at n =n„R ——g, /(2m. A ).

Due to the factor (m*/m, ) in Eq. (4) surface-
roughness scattering is strongly suppressed for silicon
quantum wells. In a GaAs quantum well with
m*/m, =1 surface-roughness scattering is more impor-
tant.
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FIG. 7. Critical quantum-well thickness a, versus density ac-
cording to Eq. (17a) and 3 =1. For a &a, the dc conductivity
is zero, while for a &a, the dc conductivity is finite. The dot-
ted, dashed-dotted, and dashed lines are surface roughness,
background doping, and remote doping, respectively. The solid
line is for the three scattering mechanisms. The parameters are
n =n;, z;=a, /2, X~ ——10' cm, 5=6 A, and A=30 A.

A=30 A

)011
I I I I I I III

1
p12

"LR
I I I I I III

10" (17b)

n(cm )

FIG. 6. Mobility due to surface-roughness scattering accord-
ing to Eqs. (4) and (8) versus density, as solid lines. The dashed

0
curve is for G =0 and a = 120 A. n LR is defined as
n =1/(2~A ).

In Fig. 6 we show our numerical results for pz versus
density. Again the local-field effects decrease the mobili-
ty, see Eq. (15b). At low densities with F,(q)=1 one gets
p cc a . So we find that for thin quantum wells (a &40 A)
the surface-roughness scattering becomes very important,
while for thick quantum wells (a &40 A) the surface-
roughness scattering is dominated by homogeneous back-
ground doping or remote doping. Naively one would ar-
gue that an increasing A corresponds to a smoother inter-
face. But for k A «1, p ~ 1/A . Qnly for k A&&1
does one find that p increases with increasing A or in-
creasing smoothness of the interface. '

In Fig. 7 we show the critical quantum-well thickness
a„where 2 =1, versus density. For a &a, the system
shows metallic conductivity and for a & a, the dc conduc-
tivity is zero. The dashed line is for remote doping with
z; =a/2. The solid line is for the three scattering mecha-
nisms.

At high electron density the insulator phase for the
three scattering mechanisms is strongly increased in com-
parison to remote doping (dashed line). This comes from
the fact that for small a the surface-roughness scattering
dominates all other scattering mechanisms because of
&

~
U3(q)

~
& cc(AA) /a . So at high electron concentra-

tion we find localization due to surface-roughness scatter-
ing. At low electron concentration the insulator phase is
increased in comparison to remote doping due to surface-
roughness scattering and the homogeneous background
doping. We mention that a, for high electron density de-
pends on the parameters of the surface-roughness scatter-
ing. But the dependence is only a weak one; for example,
a, ~(hA)' for kFA && l.

D. Metal-insulator transition

It has been found in Ref. 13 that multiple-scattering ef-
fects in the case of charged impurity scattering lead at low
electron density to a phase which is characterized by a
zero dc conductivity and a finite dc polarizability. Exper-
iments done on metal-oxide —silicon semiconductor sys-
tems are in good agreement with the theory. ' The
phase-transition line is given by 2 =1 (Ref. 30) and 3 is
written as'

dqq x (q)
4~n o e(q)

(17a)

If more than one scattering mechanism is considered and
if correlations between the various scattering mechanisms
are neglected, we must use for our three scattering mecha-
nisms the form

E. Low-temperature corrections

The coefficient C(a, n) determines the temperature
dependence of the conductivity at low temperatures, see
Eq. (12). In the work of Gold and Dolgopolov' C(a, n)
was given analytically via Eq. (12b) and analytical expres-
sions for ~ and A~. A more accurate expression for
C(a, n) is obtained if r is calculated according to Eq. (8)
and

&
i
U(2kF)

i= 2T ln2kF
EI;

V(2kF )pF [1—G (2kF ) ]
[1+V(2kF)pF[1 —G (2kF)] )

from Ref. 15 is used.
Explicitly we find for homogeneous background
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scattering (a= —3),

Nza
C( 3—, n) =EFr ln2 Fs(2kF)C(n),

gv n

for remote impurity scattering (a = —2),

(19a)

and with C;=C(a;,n)

C]~2~3+ C2 T]7 3+ C3 T] T2
C3(n) =

&2&3+&)&3+&]&2

It is easy to show that

(20c)

C( —2, n) =cFr jn2 FR (2kF, z; ) C(n ),g„n (19b) min(Ci, C2, C3) &Cq(n) &max(C, , CQ C3) .

An example will be discussed in Sec. V.

(21)

and for surface-roughness scattering (a=0),

m*
C(O, n) =eFr32nln2.

2 —k~A~-
e C(n) . (19c)

a q,

(19d)

The density dependent parameter C(n) is given by

Fc(2kF )[1—G (2kF ) ]
C(n) =

[ [1—G (2kF ) ]Fc(2k~ ) +2kF /q, )
'

IV. DYNAMICAL CONDUCTIVITY

In this section we discuss the dynamical transport prop-
erties of the quantum well. Because experimental work
has not been done until now, we discuss some results
which are interesting from a theoretical point of view and
give some hints for the parameter regime where dynami-
cal anomalies could be found in experiments.

cr( T) =o.p(T =0) 1 —C3(n) +O(T )
CF

(20a)

with

C(a, n) versus density is shown in Fig. 8 for the three
scattering mechanisms. C( —2, n) decays to zero for in-
creasing density very rapidly because of Fz (2kF ), see Fig.
2. An experimental finding of a variation of the conduc-
tivity linear in temperature could be used to verify the
form factors Fc(q), FJ3(q), and F~(q) and could give in-
formation on G(2kF).

In experiment always all scattering mechanisms contri-
bute to the resistance and to the temperature dependence.
For our three scattering mechanisms we find

A. Non-Drude behavior

ne M"(co)
0 m* (22a)

It has already been pointed out that the current can de-
cay by exciting plasmons and particle-hole pairs, if there
is some disorder in the system. For charged impurities
this was discussed in Refs. 13, 22, 23, and 31. Recently
this phenomenon has been rediscovered in Ref. 21. For
surface-roughness scattering this effect has been discussed
in Ref. 14. The decay of the current into plasmons in-
creases the imaginary part of the current relaxation func-
tion M "(co) in some frequency range and according to Eq.
(10) we get for cu »

~

M' ~,M"

ne 7 ]7273
crp(T =0)= (20b)

an increase of the conductivity in comparison to the
Drude result:

ne M"(co =0)
m* co

(22b)

3.0 I I I I IIIII I I I I IIII

The plasmon contribution to M~"(co) can be calculated
analytically for cu~O. ' The frequency dependence de-
pends only on the q~O behavior of the random poten-
tial' and may be expressed as [see Eq. (6)]

' 9+2a
M~"(co) =K (a)eF

E,F
(23a)

0.1—
Ai =

For homogeneous background doping we get the new re-
sult

Zi
1 NzE( —3)=-

8g2 n
(23b)

NB=

00~
~011 ]012

n{cm }
]013

~4 1 6 A (a*)6kF
K(0)=

2 gU a rn,
(23c)

and for surface-roughness scattering we receive the new
prefactor

FIG. 8. Parameter C (o;, n ) versus density for different
scattering mechanisms according to Eq. (19). The solid lines
and the dotted line are for a =60 A. The dashed lines are for

0
a =100 A.

In Fig. 9 we show M"(co) and cr'(co) for homogeneous
background doping. The dashed line is according to Eq.
(23). The non-Drude behavior is the difference between
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be an appropriate tool to study the nonlocality of the
plasmon dispersion.

Due to disorder the plasmons have a finite linewidth.
This effect has been studied carefully in metal-
oxide —silicon semiconductor systems, for a review see
Ref. 35. It has been shown by Gold and Gotze' that dis-
order shifts the plasmon energy 6 to

—M'(coq ), (26a)

iQ and the linewidth I is given by

I =M"(co~) . (26b)

5
10

3

10
0

I

1P

tu (meVj

Within this theory the relevant experiments ' have been
explained. '

In Fig. 10 we show M" as function of the density for
m=0, 5, and 10 meV. From this Fig. 10 we conclude that
at high electron densities (n ~ 10' cm, cozo& 10 meV)
I in Eq. (26b) is given by the static value M"(0). For
n & 10' cm deviations of the linewidth from the static
transport value 1/v. may be found in experiments. The
strong increase of M" (co =0) for low densities in Fig. 10
is due to multiple-scattering effects and signals the
metal-insulator transition.

FIG. 9. M" and o.' versus frequency for homogeneous back-
ground scattering according to our self-consistent theory, as
solid lines. The dotted lines represent the Drude result. The
dashed line is according to Eq. (23).

the solid and dotted line. Because of the f-sum rule the
conductivity at low frequency is lower than in the Drude
theory. The crossover frequency in Fig. 9 is at 4 meV.
With a higher Nz value, as in Fig. 9, the dc conductivity
would be lower and the high-frequency conductivity
would be higher than in Fig. 9, and then the effect should
be measurable in experiments analogous to the experi-
ments done in silicon metal-oxide —semiconductor sys-
tems.

o-(G)
I

6 ~~ tu(

Si/Si „Ge 1 „
tu(meV)

B. Linewidth of plasmons

The plasmon dispersion for a two-dimensional electron
gas is for q~0 given by'

1/2
(b)

p I

27Tn0
q

mgL
(24)

Because of the quantum-well structure, because of local-
field corrections, ' and because of additional q-dependent
terms in a hydrodynamic expansion' the plasmon energy
is written in the case of a quantum well as

co =co o 1 — [Fc(q~O) ll1 1 q
P 4g, kF

+ ——+O (q')
4 q,

(25)

where Fc(q ~0)—I = [ —, —( S/4~ ) ]aq, see Eq. (7).
Plasmons in quantum wells have been studied recent-

ly. The varying of the parameter a (and so Fc) seems to

n(10'"cm )

FIG. 10. M"(cu) versus density for various frequencies ac-
cording to our self-consistent theory. (a) Surface-roughness
scattering (a =30 A, 6=6 A, A=30 A). (b) Remote doping
(a =60 A, n; =10" cm, z;=a/2). (c) Homogeneous back-
ground doping (a =60 A, 2V~ ——10' cm ).



35 ELECTRONIC TRANSPORT PROPERTIES OF A TWO-. . . 731

V. MULTILAYER SYSTEM

In this chapter we compare our theoretical results with
experiments in Si-Si Cze& strained layer superlattices.
Two models will be considered. The interaction between
the layers of the superlattice is ignored.

A. Model I: n; =n for remote doping

In the experiment of Ref. 3 a superlattice was used and
the mobility of one layer was plotted versus the position
of the remote doping. When the doping was in the silicon
layer the mobility was very low (80 cm /V s), while in the
other case, where the doping was in the germanium, a
high mobility (2000 cm /Vs) was found, see Fig. 11.

In Fig. 11 we compare our theoretical results with the
experimental findings. Three scattering mechanisms are
included. The configuration for the remote doping

10—

position of dopant Iayer
I I 1 I

Si„Ge„„Si
a =608,

C4

E 10'
O

In Fig. 10(a) a metal-insulator transition due to
surface-roughness scattering for a =30 A is shown. This
figure demonstrates the importance of surface-roughness
scattering for the transport processes in quantum wells
with a &40 A. A systematic study of the mobility of
samples with different thickness could easily verify this
effect.

The shift of the plasmon resonance due to M' will not
be discussed here, because experiments are not yet avail-
able. But a shift to lower frequency because of a positive
M', see Eq. (26a), is expected. This was also found in sil-
icon metal-oxide —semiconductor systems, for a review see
Ref. 35.

scattering mechanisms is given in the inset of Fig. 11. As
a model for the superlattice structure we used for the re-
mote doping scattering mechanisms three impurity layers
with

1

Fz(q, z;) = g F~(q, 2ak+z;)
k= —1

(27)

and n; =n. This form factor corresponds to the oscillato-
ry behavior of pR versus the position of the dopant layer.
The maximal mobility at z; = —30 A and the minimal
mobility at z; = +30 A are both determined by the remote
doping scattering mechanism. For the dashed line
multiple-scattering effects are neglected and only remote
scattering is considered [Eqs. (2), (8), and (27)]. The
theory cannot describe quantitatively the experimental re-
sults. The solid line in Fig. 11 is for the three scattering
mechanisms and multiple-scattering effects are included.
For the homogeneous background scattering we used
N~ ——10' cm and then pz ——6.5 X 10 cm /V s for
n =5)& 10' cm . For surface-roughness scattering we
used 6=6 A, and A=30 A and then 'pz ——7.6)&10
cm /Vs for n =5X10' cm . The difference between
the solid line and the dashed line for z; = —30 A is due to
these two additional scattering processes. The difference
between the two lines at z; =30 A is due to the multiple-
scattering effects for remote doping.

One could argue that for z; =a/2 there could be a
strong band bending due to the impurity layer and the ef-
fective width of the quantum well for the remote doping
scattering should be smaller than the width of the quan-
tum well. In Fig. 12 we have plotted pR for one impurity
layer versus the width of the quantum well and the mobil-
ity decreases with decreasing quantum-well thickness.
But the effect is too small for an explanation of the
discrepancies between theory and experiment, see Fig. 11.

In Fig. 13 we predict the C(a, n) behavior for the con-
figuration as in the inset of Fig. 11 and with the same pa-
rameters as in Fig. 11. The solid line is according to Eq.
(20c) and demonstrates Eq. (21). But we want to mention
that multiple-scattering effects, as discussed in Sec. IIID
could destroy the linear temperature dependence in sam-
ples with low mobility.

A full understanding of the discrepancies between

I I I

n (10' cm ~)

10—2

+.:+:+:
+
I

-2a+zi

+
+
+

0 z(Q

+:+:
+
+~-z

2a+ 2,

nfl

E 200-
5

-60 -40
i I

-20 0

z, (A)
20 40 60

FICr. 11. Mobility versus the position of the dopant layer z;.
The dashed line is due to Eqs. (2) and (8) for remote doping.
The solid line is the self-consistent theory for the three scatter-
ing mechanisms (6=6 A, A=30 A, N~ ——10' cm ). The
squares are experimental results from Ref. 6 for T =20 K. The
theory is for T =0. The inset shows the configuration of the re-
mote doping layers, see Eq. (27).

I

20

Si/Si„Ge„„
I I I

40

a(A)
60

FIG. 12. Mobility versus quantum-well thickness for a single
quantum well and remote doping with n; =n and z;=a/2. For
the dashed lines self-consistent effects are neglected while for
the solid lines self-consistent effects are included.
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FIG. 13. C(o., n) versus position of the dopant layer. The

dotted line is for surface roughness, the dashed line for remote

doping, the dashed-dotted line for homogeneous background
doping. The solid line is for the three scattering mechanisms ac-
cording to Eq. (20c). The parameters are the same as in Fig. 11.

theory and experiment in Fig. 11 is not available. A
1arger 5 for the surface-roughness scattering would de-
crease the mobility, and agreement between theory and ex-
periment could be achieved for —60&z;/A &0. But the
necessary value for 6 is 30 A, and this value is unrealistic.
Another choice of A would even increase the necessary
value for A. The mobility at about z; =30 A would not be
changed by such a big surface-roughness scattering.

It seems that the disorder connected with the dopant
layer is much higher than in our theoretical model. This
is suggested by the following consideration. The ratio be-
tween the mobility at z; = —30 A and z; =30 A is about
31 in experiment. Our theory (Fig. 11) gives for this ratio
a value of 30.6 (dashed curve). The only way to increase
disorder in our model for remote doping is to use n; )n.

B. Model II: n; =Sn for remote doping

Figure 14 shows our theoretical results with the experi-
mental results for remote doping n, =Sn and Fz(q, z;)
from Eq. (27). The dashed line describes the experimental
results quite well. Due to multiple-scattering effects (solid

l I I ) l 1 I I I

10

)
o ~0

20

SI„Ge& „SI
~0~ I I ) I I I I I i

-60 -40 -20 0 40 60

z, (A)

FIG. 14. Mobility versus position of the dopant layer for re-

mote impurity scattering. The solid line is the self-consistent
theory and for the dashed line the self-consistent effects are
neglected. The squares are experimental results from Ref. 6 for
T =20 K. The theory is for T =0.

»ne) a metal insulator is expected for 16 A &z,. &44 ~
The origin for the n; =5n behavior could be that in the
implantation process also charged impurities are built into
the remote doping layer. These impurities only contribute
to n;, but not to n. It could also be the case that some
doubly ionized impurities are built in.

It has been found in experiment that the electron den-
0

sity depends on z;. For z;=30 A an electron density
=8&& 10 cm has been found. In this case the metal-

insulator transition would be expected in a much smaller
z; range than for n = 5 )& 10' cm, but this z; range
again depends on n;. At the moment it seems that our
model II describes the experiments of Ref. 6 much better
than our model I. But the factor 5 between n; and n

seems to be very high. More experimental results are
necessary and the design of the quantum wells for these
experiments is discussed in the next section.

VI. CONCLUSION

In this paper the transport properties of a two-
dimensional electron gas confined in a quantum well have
been discussed and compared with experiments. With E .

( ) we have assumed that the barrier height is infinite. In1

1 q.

real systems, the barrier height is finite, which leads to a
penetration of the wave functions into the range z )a and
z &0. In silicon the penetration effects are considerabl
reduced in comparison to GaAs quantum wells due to the
small factor ( m *!m,), see Eq. (4). We believe that the

'mpuri ypenetration effects are negligible in the case of impurit
scattering. Because of the finite barrier height, the effec-
tive quantum-well width for the surface-roughness
scattering is somehow increased in comparison to a. The
surface-roughness scattering depends strongly on the
quantum-well width and we expect a weaker dependence
of the mobility on a if the penetration effects are taken
into account.

We have restricted our calculation to one subband. For
high electron densities more than one subband is occu-
pied. For n & 3 & 10' cm, recent calculations indicate
that only one subband is occupied. But for a small occu-
pation of the second subband our theory will describe the
correct trend of mobility measurements. So we conclude
that our theory should not be applied to densities much
hiigher than 5&(10 cm . In other systems the range of12

applicability of our theory may be even higher.
With decreasing quantum-well width the energy of the

ground state of the quantum well shifts to higher energy.
For given doping conditions the electron density decreases
then with decreasing quantum-well width. By comparinparing
mobility measurements versus quantum-well width with
our theory, conclusive results can only be obtained if the
actual electron density is determined for every quantum
well. We expect that this effect becomes important for
a &40 A.

We made the approximation that both surfaces at the
quantum-well boundary are characterized by the same
surface-roughness parameters 6 and A. In the more gen-
eral case one has to use four parameters and for very thin
quantum wells, a & 2h, also a correlation between the two
surfaces has to be considered. This effect would again in-
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crease the number of model parameters.
For n = 5 && 10 cm as in experiment the relevant

scattering mechanism which determines the mobility is
the remote doping. Surface-roughness scattering and
background doping can be neglected for a ~40 A. For
a &40 A surface-roughness scattering becomes very im-
portant. The experimental values of the mobility are
much lower than predicted from theory with n; =n, and it
seems that much more disorder is introduced into the sys-
tem: n; =5n. But we expect that samples with n; =n can
also be produced.

It has been shown that in thin quantum wells localiza-
tion is expected at high electron density due to surface-
roughness scattering. This effect could be easily seen in
experiment with thin quantum wells, and such experi-
ments would be very helpful to determine the surface-
roughness parameters 5 and A. If the surface roughness
limits the mobility (for a & 40 A) in the case where the re-
mote doping is in the germanium layer, then this limit
should strongly depend on the thickness of the quantum
well. The coefficient C(0, n) also depends on A and could
be used to determine A. The concept of localization due
to surface-roughness scattering is new and is a novel as-
pect of quantum wells. In silicon inversion layers the
surface-roughness scattering decreases with decreasing
density and A =1 is difficult to achieve there. Further-
more, such quantum wells could verify our concept of lo-
calization, ' in contrast to the results of weak localiza-
tion.

In thick quantum-well structures, surface-roughness
scattering becomes unimportant and the mobility limits in
this system are given by our Figs. 4 and 5, at least for
small homogeneous background doping. Thick quantum
wells have a higher mobility, too, if only remote doping is
considered. During the preparation of the remote doping
layers by secondary implantation, the density of ionized
atoms should be carefully controlled. Then a discrimina-
tion between our model I ( n; =n) and our model II
( n; = 5n) should be possible.

In samples with no, or weak, remote doping outside of
the quantum well, a big quantum-well thickness and a
high background doping density, the mobility at low den-
sity is dominated by the background doping. Then the
metal-insulator transition due to this scattering process
should be measurable. Also the non-Drude behavior of
the conductivity could then be seen in experiment.

In conclusion, we have given the mobility limits in sil-
icon quantum wells due to background doping, remote
doping, and surface-roughness scattering. The phase dia-
gram for the metal-insulator transition is predicted. We
have suggested some quantum-well structures in order to
discriminate the different scattering mechanisms.
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