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We study the critical behavior of an irrationally frustrated AY model on a square lattice as a
model for the 3osephson-junction array in an incommensurate magnetic field. Approximate argu-
ments are presented suggesting that the system will exhibit successive orderings at larger and
larger length scales with fewer and fewer defects as the temperature is lowered. This low-
temperature phase appears to display features very similar to those in the replica-symmetry-
breaking formulation of spin glasses, which strongly suggest a glassy phase without any disorder.
We propose a Parisi-like order parameter for this state.

Two-dimensional (2D) periodic arrays of coupled
Josephson junctions show periodic variation of many prop-
erties with external magnetic field. ' In the high-
capacitance limit, these are reasonably well described by
uniformly frustrated 2D XY models, in which the
commensurate-incommensurate effects due to external
magnetic fields are reflected in the gauge-invariant quan-
tity "frustration. " A number of studies on these mod-
els reveal a wide variety of critical behavior as a function
of the frustration f (0~f & 1).

The present paper is concerned with the incommensu-
rate system, which is of particular interest since the ra-
tional numbers form only a set of measure zero. Recent
work has suggested the interesting possibility of a meta-
stable glassy phase (without any disorder). Numerical
simulations indeed seem to favor the existence of such a
glassy state. In this Brief Report, we present an approxi-
mate analysis of the proposed glassy phase, based on a
Landau-Ginzburg-Wilson (LGW) formalism, and we also
define an order parameter appropriate to this phase. We
suggest that the ordering in the glassy phase may involve a
series of quasitransitions involving ordering at larger and
larger length scales at successively lower temperatures.
We also briefly consider how the ordering might be
influenced by the finite sizes inherent in real experimental
samples.

We consider a class of uniformly frustrated XY models
described by the Hamiltonian (Boltzmann constant =1)

—H/T=gK cos(pr —p, —A~),
(la)

K for nearest neighbors
K

0 otherwise,

where r is the position vector of the site at (x,y) on an
LxL square lattice, T is the temperature, and A~ is a
bond angle describing uniform frustration. Thus the pla-
quette sum is constant over the whole lattice, gA~ =2trf.
In the case of Josephson-junction arrays A~ is given by

I

(lb)
Cyp ~r

where +a=bc/2e is the flux quantum, and the vector po-
tential A may be taken as that of a uniform transverse

magnetic field B=Bi in the limit of large penetration
depth. The uniform frustration f is simply the flux per
plaquette in units of the flux quantum, i.e.,

Ba
@p

(lc)

(2)

The lattice constant a will be henceforth set equal to uni-
ty. With the Landau gauge A =Bxy,

+'2trfx for r'=r~y
,0 for r'=r ~ x .

In the commensurate system, where f=m/n with rn

and n relatively prime, a unit cell of the Hamiltonian con-
sists of n basic cells (plaquettes). 5 In the incommensurate
system, however, the unit cell is infinite in extent along the
x direction, and correspondingly the usual periodic
boundary conditions cannot be used on a finite L XL lat-
tice. Instead it is plausible to use a free-end boundary
condition along the x direction, while along the y direction
either a free-end boundary condition or a periodic bound-
ary condition may be used without affecting the essential
physics. The free-end boundary condition imposed along
the x direction on the systein of finite size L may be re-
garded as the limiting case of a periodic boundary condi-
tion imposed on the system of size L p . Thus instead
of the original L x L lattice we consider an L x Lp square
lattice with periodic boundary conditions along both
directions. This corresponds to the requirement that qi
(the x component of the wave vector) as well as the frus-
tration f scale as Lo ' while q2 (the y component) scales
as L . The Hamiltonian (la)-(lc) originally defined on
the L XL lattice with mixed boundary conditions is then
regarded as being defined on the L x Lti lattice with
periodic boundary conditions. It is important, however, to
note that K still vanishes unless both the sites r and r'
are members of the original L x L lattice.

To obtain the critical modes we consider the Fourier
transform of the interaction matrix P~ —=K~e ' "'. This
quantity is well defined on an LxLp lattice and, to the
first order in Ak —=LBk =L(f fk ), takes th—e for—m

P~ = (LLO) ' +exp[ —i(q r =q' r') jP ~ QPqq
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+ (2)rfkx+ xhk) for r' =r ~ y

,0 for r' =r+ x .

In Eq. (3) and hereafter the summation over k implies
that over all rational approximants fk =mk/nk such that

&k ~~ «& I &k I (4)

Note that the first inequality in Eq. (4) simply implies
that the system size should be sufficiently larger than the
size of a unit cell, while the second one is the criterion that
the defects Bk =f fk are n—egligible since the phase
change across the system due to those defects is given by
2nL6'k. This observation allows us to come back to the
original LXL lattice. Henceforth we will consider the
L x L lattice on which the interaction matrix in Eq. (3) is
defined.

It is tedious but straightforward to derive an effective
LGW Hamiltonian from the interaction matrix given by
Eq. (3). In the incommensurate case there is no coupling
between fluctuations of the critical modes associated with
diff'erent k's. This results from the fact that the critical
modes due to p

(")—the critical modes of the kth
"level"—are given by

Q,, = (0,2' k ak + )r&k ), (ak = 1,2, . . . , nk ) . (s)

The fact that Q„aQ,, unless k =k' and that Q„
+Q,„,&Q„„+Q,„„,, unless k =k'=k"=k'" leads to the
absence of coupling between diff'erent levels in the LGW
Hamiltonian. A lengthy calculation finally gives the
LGW Hamiltonian in the desired form

gF (k)( (k)) (6)
k

where F is the LGW Hamiltonian for the commensu-
rate system with frustration fk. That commensurate sys-
tem in general possesses nk degenerate critical modes
given by Eq. (7), and we need nk (complex) order param-
eters y,„(ak =1,2, . . . , n ) to describe Iluctuations from
those n modes. Then F takes the form in the real space

F (k) d2~f (k)

(7)f'"'-g(l y. l

'+ l&~. I
')

a

+ g ~.*w)*vyv~~e. +e,,e„+e,
a, P, y, b

where the summation is to be performed over all rational
fk's close enough to f i.e.,

leak

I
( I. Except for the

shift q 2 q 2
—zhk, P~ is exactly the interaction matrix(k) '. '

of the commensurate system with frustration fk
Transforming Eq. (2) back to the real space, we obtain

the corresponding interaction matrix on the L xLp lattice
also in the form of a summation. Note that to the leading
order this interaction matrix defined on the L x L p lattice
is equivalent to an eAective form on the L x L lattice'

(3)
k

where P~ is given by
(k) .

P~ =K~ exp[ —iA~ ]

where it is understood that all a, P, . . . have the same sub-
script k.

Since there is no interlevel coupling in Eq. (6), each
piece of Hamiltonian F " behaves independently of the
others, and gives rise to the phase transition which would
be present in the commensurate system with frustration
fk. That transition temperature depends on nk, and is ex-
pected to decrease with it." This implies that the whole
Hamiltonian would display a succession of transitions
each of which corresponds to that in the commensurate
system with the frustration given by a rational approxi-
mant as long as the condition in Eq. (4) is satisfied. In
such a succession of phase transitions, the one which cor-
responds to the frustration given by the rational approxi-
mant fk =rnk/nk can be interpreted as that into an order-
ing at the scale nk in the presence of defects 6k. At a
lower temperature the transition corresponding to the
frustration given by the approximant

fk+) mk+ I/nk+1(+k + +k+1)

would then drive the system into an ordered state at the
larger scale nk+~ with, presumably, fewer defects 6k+~,
and so on. Thus the system is expected to exhibit succes-
sive orderings at larger and larger scales with fewer and
fewer defects as the temperature gets lower. At
sufficiently low temperatures, therefore, the system would
be in a mixed state where orderings at various length
scales coexist.

Heretofore our consideration has been confined to the
first order in Ak. To this order, Eq. (2) shows that each
P is identical to the interaction matrix of the commen-
surate system with frustration fk. Thus P " yields the nk
degenerate critical modes given by Eq. (S). Higher-order
terms break the degeneracy between the nk critical modes,
thus possibly generating metastable states. If hk is small,
the splitting is also small and the critical modes are still
almost degenerate. In this case the overall critical behav-
ior is expected to be the same. '

Another point which should be noted is the finiteness of
the system. Each successive transition in the finite system
is, in fact, a quasitransition since it would be rounded oA

due to the finite-size effects. These eff'ects are, however,
rather well understood" and will not be discussed in this
paper. In the thermodynamic limit it is obvious from Eq.
(4) that 8k must equal zero, which implies the absence of
the phase transition corresponding to any rational approx-
imants except the irrational f itself.

The remaining task is how, for a given irrational f, to
find the sequence of the rational approximants
[fq =rnk/nk[ which are better than others, i.e. , for every
rational m/n(~mk/nk) with 1 ~n ~nk, we have I Sk I

—=
I f fk I

&
I f m/~ I.— —

An obvious choice is the continued-fraction expan-
sion, ' which is uniquely determined for a given real num-
ber f between 0 and 1:

f= [p(.p2.p).

—:I/[p) + 1/p2+1/(p3+ . ) i

with each p; a positive integer. Iff is a rational (an irra-
tional), this expansion is finite (infinite). The kth conver-
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gent fk to an irrational f is defined to be

fk =[pi,p2,

It is well known that these convergents are rational ap-
proximants better than others. In general, however, the
convergents form merely a subsequence of the desired se-
quence, and there can exist better approximants which are
not convergents. All of these approximants as well as all
the convergents can be accommodated if we use the con-
cept of the Farey sequence. '

We now consider the condition that there exist many
successive transitions. Equation (4) gives the condition
that the transition corresponding to the approximant
fk =mk/nk exists. For the existence of many successive
transitions, Eq. (4) should be satisfied over many succes-
sive k's for a given L. To check this we consider a simple
quadratic irrational

where P(y), the weight of the mode ("valley" ) y, is relat-
ed to its free energy F(y) via'

p( ) =z —
e

—«i&~T z=ge F~~'i&—T

and q
~'~ is related to the coupling term in the LGW

Hamiltonian given by Eq. (7),

q'~'" =N 'g(y,*(r)y~ (r)y„(r)yb(r)) . (17)

q =QP(a)P(P)q i',
a,P

In Eq. (15) the prime in the summation implies that nei-
ther y nor 8 equal either a or P, and Q, is a critical mode
of any level given by Eq. (5). We also suggest the order
parameter measuring the spin-glass order

f=(dp'+4 —p)/2 = [pl,
whose convergents [fk =mk/nkI are determined by

mk =nk —
~

nk pnk —1+nk —2 (no —1 n —
1
—0)

(io)
which increases from zero at the critical temperature (the
highest-transition temperature in the succession) and
reaches its maximum value of one at the zero tem-
perature.

With the assignment

=QP(a)P(P)S(q —
q i'),

dq ~p

nk + &
« L «

I &k I
(i4)

is indeed satisfied if I is su%ciently smaller than k. There-
fore as k gets larger, the number of successive transitions
also increases. In particular, the critical points form a
dense set in the limit k ~. In this case, however, nk

also becomes arbitrarily large implying that the (highest)
transition temperature would also become arbitrarily low.
This is just the thermodynamic limit (L ~) in which
no finite-temperature transition has been already conclud-
ed for the incommensurate system. Although we have
considered only the simple case of quadratic irrationals,
we believe the above features to be valid for any irra-
tionals.

Finally, to characterize the low-temperature "g1assy"
phase, ' we introduce a set of order parameters

q' =Z'P (y)P (~)q""'~e.+e&,e,+e. (is)

It is trivial to solve Eq. (11) and obtain

k+I k+1
nk (12)

x —y

where x,y =[p+ (p +4) '~ ]/2. Through the use of the
known property

I &k I
& (nknk+I)

it is then straightforward to show that the condition for
the existence of at least I (at most pl) successive transi-
tions

q+0 —qP7 ~ q)+ (2i)

since q'~ & 0 if and only if a, P belong to the same level;
q'P=o otherwise. Equation (21) implies that this low-
temperature phase possesses a peculiar ultrametric topolo-
gy, which is believed to be a characteristic of spin
glasses. ' This property is, in fact, a direct consequence of
the absence of the interlevel coupling.

All of these properties, which are surprisingly similar to
those of spin glasses, strongly suggest that this low-
temperature phase is a kind of glassy phase. This is a very
interesting possibility since there is no quenched disorder
in this system. However, it appears that the glass transi-
tion temperature becomes arbitrarily low as the thermo-
dynamic limit is approached.

We are especially grateful to S. Doniach for most il-
luminating discussions. We also thank Jean S. Chung for
helpful discussions. This work was supported in part by
the National Science Foundation through Grant No.
DMR 84-14257.

which is the probability for correctly weighted modes to
have overlap q, it is straightforward to obtain the relation
between q and q(z):

1

q = q(z)dz .Jo (2o)

Thus similarity to the replica-symmetry-breaking formal-
ism of spin glasses' is now obvious. It is also easy to
show that for any three modes a, P, y,
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