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Real-space renormalization study of a quantum spin glass
with Ruderman-Kittel-Kasuya- Yosida interactions
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We have performed a real-space renormalization calculation to investigate the low-temperature
properties of 54 randomly located quantum spins (s = &) with Ruderman-Kittel-Kasuya-Yosida in-

teractions. The computed spin-glass order parameter, dc magnetic susceptibility, magnetic specific
heat, internal field distribution, and spatial correlation of eigenstates suggest a progressive freezing of
spins with decreasing temperature.

I. INTRODUCTION

The random nature of the exchange interaction in a
spin glass does not allow the system to exhibit long-range
magnetic order, but at low temperature freezes the spins
in random directions. Although experimental observa-
tions on physical properties around the magnetic suscepti-
bility cusp have provided information in favor of a sharp
phase transition over a progressive freezing of the spins,
whether a thermodynamic phase transition between
paramagnetic and spin-glass phases exists in three dimen-
sions remains the central issue of spin-glass theory. Re-
cently, there have been several reviews on the present un-
derstanding of spin glasses. '

Theories have been developed extensively mainly for
spin glasses in either an Ising or Heisenberg system of
classical spins. For infinite-range interaction the
Sherrington-Kirkpatrick model exhibits a thermodynamic
phase transition. On the other hand, for short-range in-
teraction in three dimensions, numerical studies suggest a
finite transition temperature in the Ising model, but zero
transition temperature in the Heisenberg model. " For a
more realistic investigation of metallic spin glasses, it is
necessary to consider quantum spin systems with
Ruderman-Kittel-Kasuya- Yosida (RKKY) interaction.

Almost all existing theoretical works on quantum spin
glasses are within the framework of the mean-field ap-
proximation. For the Edwards-Anderson model, Fisch-
er found a cusp in the susceptibility and in the specific
heat. A conflicting result was obtained by Klemm who
speculated that the quantum fluctuations may destroy the
spin-glass transition for spin —,'. Bray and Moore have
reexamined the same problem and discovered that the

quantum fluctuations depress the transition but do not
destroy it. Using a generalized Thouless-Anderson-
Palmer equation, Sommers and Usadel ' detected a
spin-glass state in two-level systems. The efIect of quan-
tum fluctuations in the Edwards-Anderson model with
anisotropic exchange was also analyzed recently by
Morris" and Theumann. ' Nishimori et al. ' have per-
formed numerical calculations to study the spin- —,

' random
Heisenberg model with infinite-range interaction in a finite
cluster of maximum 16 spins. They found a critical point

between the spin-glass and the mixed-ferromagnetic
phases.

Theoretical analysis of quantum spin glasses with
RKKY interaction is very difficult. Most existing results
have been derived numerically with a system of randomly
distributed classical Heisenberg spins. The works of
Ching and Huber' and Fernandez and Streit' are not
very conclusive. Walstedt and Walker, ' Walstedt, ' and
Walker and Walstedt' found no spin-glass state with
pure RKKY interaction, whereas with a small amount of
anisotropy the system exhibits evidence for spin freezing
at low temperature. Their Monte Carlo calculations have
been improved by Chakrabarti and Dasgupta' with a
correction for any uniform rotation of the spin system.
The finite-size-scaling result of Chakrabarti and Dasgupta
indicates a zero-temperature critical point for the spin-
glass phase. The recent analysis of Bray et al. suggests
that in a classical Heisenberg spin system with RKKY in-
teraction, the dependence of the glass transition tempera-
ture T& on anisotropy D is logarithmic, and T~~O as
D ~0.

In this paper we will perform a numerical renormaliza-
tion study on quantum Heisenberg spin glass with RKKY
interaction. The renormalization scheme is presented in
Sec. II, and then applied to a finite cluster of random
spins in Sec. III. In Sec. IV the characteristic features of
the eigenstates will be analyzed together with the spatial
distribution of internal magnetic fields. The 1ow-
temperature spin-glass behavior of the system will be
demonstrated in Sec. V, which contains the computed
Edwards-Anderson order parameter, the magnetic suscep-
tibility, and the magnetic specific heat.

II. RENORMALIZATION SCHEME

In this section we will outline the mathematical struc-
ture of the renormalization procedure for our calculation.
The scheme is based on the truncation method originally
introduced in the study of lattice-field theory. ' The
method has been used by many authors to study Kondo-
lattice, Ising and XY models in transverse field,
quantum-lattice systems, ' the Hubbard model, and
one-dimensional magnetic systems.
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We consider a spin- —, Heisenberg Hamiltonian in a uni-

form external magnetic field B=B(0,0, 1),
N A

H= g 4o.;,S; S, + g B.S;.

In terms of the basis I ~

%(1:Ip););i =1, 2, . . . , p(0)I,
we can write (5) and (6) in the forms

H(0:I )= g W(1:I );)H(0:I ); (O(1:I )

i j E Ip

The positions of spins are random, and 40.;j can be any
kind of exchange interaction with 8p.;; ——0. The system of
N spins is divided into M (0) blocks, and each block con-
tains N(0)=N/M(0) spins. Let Ip ——1, 2, . . . , M(0) la-
bel the blocks. The spins in the I0th block are specified as

Sr, ; with i = 1, 2, . . . , N(0), and the exchange interac-
tion between Sr, ; and SJ, r is reexpressed as

Then (1) can be written as

and

H (0:Io,Jo ) =

where

i, kEIp j,lEJp
'Ir( 1:Ip ); )

~

qr( 1:Jo )j )

XH (0:Io Jo )jiik

M (0) M(0)
H = g H(0:I o) + g H (0:Io,Jo)(1—5r„r, ), (2) H(0:Io);r =E(1:Io);6r (13)

Ip =1 Ip, Jp =1
and

where

H(0:Ip)= g ~r, , i r, ,jSr, ;.S. r, j+ g 8 Sr„,i
ij EIp iEIp

and

H(0 Ip Jp)= g g ir'ro .Jo jSr& ' SJo j
iEIp j EJp

(3)
H(0:Io Jo)ji =

p(0)

(z, /3, y, k, =1
U(0:Io)";U(0:Jp)pr

X U(OIo)krU(OJo)ik

XH(0:Io,Jp)i3 kr (14)

H(0:I )=og ~

iI1(0:Io);)H(0:Io);, ( I&i( IO),o~
ijEIp

(5)

and

H( OI ,pJ)p= g g ~

i'(0:Ip), )
~

N(0:Jp)j)
i, k EIp j, l E Jp

XH (0:Io Jo )j (k

x (~I1(0:Io)k
~

(~I1(0:Jo) ~, (6)

I ~

F1(0Io), ); i =1, 2, . . . , p(0)I be the set of
configurations of the spins in the I0th block, where
p(0) =2 '. H(0:Ip) and H (0:Ip,Jp) will be expressed in
more convenient forms

We are interested in the low-temperature properties of
the system, which are dominated by the low-lying eigen-
states. Therefore, for each I0 we will truncate the energy
spectrum E(1:Io); and keep only the g lowest eigenener-
gies i =1,2, . . . , g. Next, we combine every set of 11

blocks into a new block according to the rule that the first

g old blocks I0 ——1,2, . . . , g become the first new block,
the second g old blocks I0 ——q+ l, g+2, . . . , 2g become
the second new block, and so on. Let the new blocks be
labeled by I, =1,2, . . . , M(1), where M(l)=M(0)/11.
So the 1} old blocks sPecified by Io = (I, —1)rj+ 1,
(I, —1)1}+2, . . . ,I, rj belong to the Iith new block.
Now, we redefine the summations in (11) and (12) as re-
stricted sums which run over only the g lowest eigenstates

t ~

0'( I:Ip); ); i =1,2, . . . , gI. Then, from (2), (11), and
(12) we can construct the truncated Hamiltonian as

where

H(0:Io); = (iI1(0:Io);
~

H(0:I )o~ 4&(0:Io)j) (7)

M(1) M(1)
H= g H(1:I )+ig H(1:I, ,Ji)(1—6r, J, ),

Il =1 I l, J1 = 1

(15)

and

H (0:Io»o)jilk ('ill(0:Jo)j
l
(N(0:Ip) H(0:Io Jo)

where

H ( I:Ii ) = g H (0:Io,Jo)(1—or, r, )+ g H (0:Io)
P(0:Jp)i ) P(0:Io)k ) Ip, Jp EI 1 Ip E I l

For given value of N (0), the Schrodinger equation

H (0:Io)
~

~Ii(1:Io);) =E(1:Io); (~I1r:I );o)

is solved exactly with eigenstates

p(0)
%(1:Io);)= g U(0:Io);

~

N(0:Io) ) . (10)

and

H(1:Ii,Ji)= g g H( IO, oJ)o.
Ip Ell Jp EJI

We define the configurations in the Iith block as

(16)

(17)

Because the external magnetic field lifts all spin degenera-
cies, the eigenenergies can be ordered as
E(0:Io), &E(0:Io)r if i &j p;=1,2, . . . , g,
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H(l:I))= g i
d&(1,I, );)H{1:I,) ~(4(1:I,)

ij EI I

(19)

and

H(l I iJi))= g g ~(1 I)), )
~

+(I Jt)1 )
i kEIl j I&Jl

XH (I:Ii J 1 )1 (i;

X ( +( I:Ii )i,
~

( +( I:J
~ )i, (20)

where Ip; is one of the Ip's which belong to I1. Altogeth-
er, there are p(1)=g" such configurations. For conveni-
ence, we can use any suitable rule to order these
configurations. With a new notation, we write the or-
dered configurations as

~

P(1:I,); ), where i = 1, 2,
p, (1). In terms of these configurations, (16) and (17) are
then expressed in the forms

Equations (15) and (24) —(27) have exactly the same struc-
tures as Eqs. (2) and (11)—(14). Therefore, we can repeat
the renormalization operation until the fixed point is
reached.

After v renormalizations if within a given accuracy the
matrix H(v:I, , ) becomes diagonal and the matrices
H(v:I, ,J,, ) reduce to zero for all I„and J, , then the re-
normalization procedure reaches the fixed-point ~ Since
the intrablock coupling H(v:I, , ) is stronger than the inter-
block coupling H(v:I, ,J ), when the off-diagonal elements
of H(v:I ) be"ome negligibly small, the matrix elements of
H(v:I,J,) can certainly be ignored. By comparing (3)
and (7) with (16) and (21), the matrix element H(v:I, );
can be interpreted as the effective exchange coupling
j,Qv:I,, );& between two block spins, the configurations of
which are represented by

i
N(v:I ); ) and

i
&P(v:I,, )J ).

Consequently, the fixed point corresponds to the condi-
tion that all block spins are decoupled.

where

and

H(I:Ii);, =(4(1:Ii);
~

H(1:I, )
~

N(1:I, )1 ) (21)

H (1:I,,J, );ig ——(4(1:J,)J ~

(&P(1:I,);
~

H(1:I, ,J, )

X
i
&P(1:J,)i)

i
&b(1:Il)i,. ) . (22)

(23)

The single-block Hamiltonian (19) is again diagonalized
to yield p(1) eigenenergies E(2:I, ); and the associated
eigen states

III. THE MODEL

The most time-consuming part of the calculation is the
matrix elements H(v:I,„J,, );~ii, After many tests with
various sizes of blocks, the most informative system which
can be studied with a reasonably large amount of comput-
er time is shown in Fig. I. There are 18 identical cubes
arranged in a simple-cubic lattice structure. The volume
of each cube is a, and the lattice constant of the back-
ground simple-cubic lattice is a +d. In each cube there
are three randomly located spins of —,'. Any two spins S;
and Sj in the sample are separated by r; )0.3, and in-

teract with each other via the RKKY interaction

40.;,
———(for;, 'cos(2kIr;, ) . (28)

H(1:I,)= g ~

4(2,I, ), )H(1:I, ))(+(2:I,)J ~

(24)

Using the transformation matrix U(1:I, ), (19) and (20) are
transformed to

We have set k~ ——5 which is a reasonable value for non-
magnetic host materials of dilute magnetic alloys, and
0'p = 1. 191 8 which gives 4p. ,j ———1 at r;~ = 1.

We first construct the set of configurations I ~

&P(0:Io) );
t = 1, 2, . . . , 8 I for each cube with three spins, and then

XH(1:I, ,J, ),;&.

X (P(2:I, )i,
~

(+(2:J,), i, (25)

where

and

H(1:I, );, =-E(2:I, ), 5,J (26)

H(1:I, ,J, )~,iq— U(1:Ii );U(1:Jl )p~)

H(1:I, ,J, )= g g ~%'{2:Ii);)
~

'Il(2:Jl)))

Ic(0:1 )

I (31)
Ic (2:I )&

I

I

I

Ic (t:j))&

Iv(2:I) }&

X U{1:I1 )ki U(1:Jl )!x

XH(1:I,,J, )p ~, (27)
FIG. 1. A schematic description of the renormalization pro-

cedure.
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X e(H(v:I. );, —&, +&), (29)

where e(x) is the Heaviside function. The results are
shown in Fig. 2 for d =0 and in Fig. 3 for d = l. In each
figure, the three histograms have the same scale for 4,ff.

The number within parentheses at the top of each histo-
gram indicates the true height of the peak. The peaks are
truncated, and the numbers at the top mark the heights of
the remaining parts which are plotted. It is clear from the
two sequences of P(v:cf,s.) in Figs. 2 and 3 that our calcu-
lations converge very rapidly.

derive the set of eigenstates [ ! 4(1:Io),); i = 1, 2, . . . , 8 }.
The three lowest-eigenenergies states i =1, 2, and 3 are
retained, and every three cubes are combined to form a
block. One such block is shown in Fig. 1 as three cubes
connected by a dotted line. The next step is to construct
the set of configurations [!N(1:Ii);); i =1,2, . . . , 27},
from which we obtain the eigenstates [ ! %(2:Ii ); );
i = 1,2, . . . , 27}. Again, we keep only the three lowest
eigenenergies, states i =1, 2, and 3. Now, the six blocks
are grouped into two blocks of equal size, and one of
them is demonstrated in Fig. 1 as the nine cubes connect-
ed by dotted lines. We repeat the calculation by first con-
structing the sets of configurations { ! N(2:I2 ); );
i =1,2, . . . , 27} and then deriving the sets of eigenstates
[!%(3:Iq);); i =1,2, . . . , 27} for I2 ——1 and 2. For the
last renormalization, we take eight eigenstates with
i =1,2, . . . , 8 from each set to build up 64 configurations
[!4(3:I3););i =1,2, . . . , 64}. So at the end we have 64
eigenstates [!%(F:I&);); i =1,2, . . . , 64} of the entire
system of 54 spins.

We set the external magnetic field B =10 ' and the
cube size a =1 to study two cases d =0 and 1. The re-
sults are configurationally averaged over five samples.

As we mentioned in the preceding section, the matrix
elements H(v:I„),~ generalized from (21) play the role of
effective coupling between block spins. We define a distri-
bution P (v:ot,s) of the eff'ective exchange strength 8,tt as

P( dv, )s= g g e(P,s.+5 H(v:I, , ),J )—1

2A Iv l,g

6
(LI52)

30
(721)

160
(834)

0

0

I I I II Jml 4llKn t I i ~ i I
I

-0.2
I

-0
~ 1

I I l

0 01 02 J )(

FIG. 2. Distribution P(,v:8,ff) of effective exchange d,~ at
different renormalization stage v for the case d =0.

When i =j,p( v );; is simply the inverse participation ratio
of the state

!
'It(F:I3); ) with respect to the configuration

space {!4&(v:I„) ); all I„a}.
If p(v);~ is large, then the two states ! %(F:I3);) and

! 0'(F:Ii), ) overlap very much in the configuration space

{ ! 4( Iv, ) ); all I,a}. Otherwise, the two states

!
0'(F:I3); ) and

!
0'(F:I3 )i ) are localized in different

parts of the configuration space [!N(v:I„) ); all I„a}.
Since I labels the blocks which are separated in real
space, p(v);1 also provides the information regarding the
correlation of

!
%'(F:Ii), ) and

!
%'(F:I,}j) in real space.

In fact, for v =0 p(0 );~ is indeed the density-density corre-
lation function in real space.

The number of terms to be summed over in (31) in-
creases tremendously fast from 8 for v=3, to 3 for
v=2, to 3' for v= 1, and to 8' for v=0. Figure 4 shows
the results for d =0. For given point in the ij plane, the
value of p(v), J is indicated by the length of a vertical bar.
Since we are interested in the values of p(v),~

relative to
each other, for fixed v the maximum value of p(v);J is nor-
malized to 1 and serves as the vertical scale. For both
v=3 and v=2, the off'-diagonal values p(v);1 are much
less than the diagonal values p(v);;, especially, for the

IV. PRELIMINARY INFORMATION

In our model the localization of eigenstates can be con-
trolled by varying the distance d between cubes in Fig. 1.
For given value of d, after deriving the eigenstates of the
entire system [!4'(F:I3};); i =1,2, . . . , 64}, we can cal-
culate the local density p(i:I„a) of ! ill(F:I3); )

20
(2092)

V =1

100
(3622)

400
(4522)

p(i:I,a)= { (4&(v:I„) !
'P(F:I );)!' (30)

with respect to the configuration space [ N(v:I, ); all
I„a}.We define the density density correlation -function

p(v);J of the two eigenstates ! 4(F:I&);) and
! 4(F:I3)j)

as

p(v);~= g gp(i:I,a)p(j:I,a), i j =1,2, . . . , 64 .
Iv a

~LE' ~I t

&iiki. a ... i

-0.04 -0.02 0 0.02 0.04 J

(31) FIG. 3. Same as Fig. 2 for d = 1.
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L)I
I. ..

L„I".

L(PL.

' '

LLLL"'

„pgI,
.
'.'-, .

L~;"
L„L, , '.

V=2

1I.

6(l 1 6I)

h, = g 8,.„(S,)+B,
J

(32)

an essential problem of spin glasses. There has been ex-
tensive investigation, mostly with numerical methods on
the internal fields in classical Heisenberg spin glasses.
Results derived by all authors agree that the distribution
P (

~

h
~

) has zero value at h= 0. On the other hand, the
distribution P(h, ) of the z component of the internal field
has a broad maximum at h, =0. '

Knowing all eigenstates, we can calculate the internal
field at ith spin

L
I

FIG. 4. Density-density correlation function p(v};,- for the
case d =0.

low-lying eigenstates corresponding to small values of i
and j. Similar results for d =1 are shown in Fig. 5. In
this case the cubes in Fig. 1 are fairly separated in space,
and the eigenstates are expected to localize in individual
cube. However, for v=2 (or 3) each block contains three
(or nine) cubes. At these levels (v=2 and 3) of calcula-
tion, the off-diagonal correlation function p(v); is not
negligibly small even if the states

~
V(F:I3 ); ) and

~
W(F:I3)J ) are localized in two different cubes, provided

that these two cubes are in the same block.
To calcitlate each term p(i:I„a)p(j:I„a) in (31), one

has to repeatedly use transformations of the types in Eqs.
(18) and (23). It will take an unrealistic amount of com-
puter time to calculate p(1); and p(0);~ with an ordinary
computer. Nevertheless, the two plots for v=2 and v=3
in both Figs. 4 and 5 are almost the same, suggesting that
the characteristic features of these figures remain un-
changed even for v=1 and v=0. Consequently, it is not
unreasonable to assume that the low-lying eigenstates

~

'P(F:I3); ) localize in different regions of the system and
are fairly separated spatially. This conclusion will be sup-
ported by the following study on the distribution of inter-
nal fields.

The distribution of internal fields h; at various spins is

where ( ) is the thermal average. However, the com-
putation of (Sg) and (S~~) is extremely tedious and too
time consuming to be carried out at the moment. Here,
we present only the results for the z component of inter-
nal field h;, . Similar to (29), we define the normalized
distribution of the z component of internal field as

P(h, )=— g 6(h, +2 —h, , )e(h„—h, +b, ),1 1

l

(33)

where N =54 is the number of spins. The external field
B=Bz in our calculation is extremely small 8 = 10

The temperature is normalized with respect to Vo as
k&T/80. Figure 6 shows the distribution P(h, ) for the
case d =0 with four temperatures kz T = 10, 10
10, and 10 ' . At the lowest temperature 10, only
the ground state is occupied. However, within the
thermal energy kz T = 10 ', there are already seven
low-lying excited states. All four histograms have the
same scale for h, and for P(h, ). We see in every histo-
gram there is a sharp peak at h, =0. As the temperature
increases and more excited states contribute to P (h, ),
there is only a very gradual narrowing of the whole P(h, )

curve. This result strongly suggests that these low-lying
eigenstates contribute almost equally to the distribution
P(h, ). One possibility is that these low-lying eigenstates
are spatially separated and localized on different clusters
of spins. Such clusters are random in nature, and there-
fore the magnetic property of one cluster eigenstate is
similar to those of the other cluster eigenstates.

Figure 7 shows the similar behavior of the distribution

6Ll 1 6'

IL

LLLI

LLL.

'

LLL~L"

LL'

'' ' v2
L.

t4

CL

-1,5 Iog, (k T) =-6

JV' i
'L ~mr ~~.n.

0

l

0 10 hz

FIG. 5. Same as Fig. 4 for d =1.
FIG. 6. Distribution P(h, } of the z component of internal

field h, for the case d =0.
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average, and perform a finite-size scaling. Unfortunately,
at the moment these works are restricted by the available
computation facility. It is important to study the Parisi
order function. However, it is well known that in a
finite system the Parisi order function is just a set of 6
peaks.

We are aware of the unrealistic geometric structure of
the model system for d = l. In this case all low-lying
eigenstates are well localized in individual cubes. Howev-
er, we simply use such well-determined properties to
confirm that in the more realistic model system for d =0,
the low-lying eigenstates are fairly localized around spa-
tially separated clusters of spins.

The insets in Figs. 8 and 9 show the dc magnetic sus-
ceptibility X(T) and the magnetic specific heat C(T) as
functions of temperature. The behavior of X(T) is con-

sistent with the Monte Carlo calculations of Walstedt and
Walker' and Chakrabarti and Dasgupta' with classical
Heisenberg spins. On the other hand, the behavior of the
order parameter Q(T) in our quantum spin system sug-
gests a continuous freezing of magnetic moment with de-
creasing temperature. Therefore, it is important to extend
the present work to calculate the ac magnetic susceptibili-
ty. It will be very interesting to compare the calculated ac
susceptibility to the puzzling experimental observations on
different spin-glass materials.
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