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Directed percolation: "field" exponents and a test of scaling in two and three dimensions
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Directed percolation is a simple model which is believed to fall into the same universality class as
Reggeon field theory. A large body of series data in both "field" and "thermal" (concentration) vari-
ables is now available for both of these models, and they provide an ideal framework for studying the
relationship between field and thermal corrections to scaling. In particular it is of interest to test
whether the measured nonanalytic confluent correction in the field direction, fl, is equal to b, ~//15 in
any system Th. is relation between 0 and 6i, the thermal correction and P, and 1/5, the exponents
of the percolation probability in the thermal and field directions, has been proposed but never suc-
cessfully confirmed for isotropic percolation. We make direct estimates of 0=0.45-]-0. 15(2d),
0=0.4+0.2(3d), 1/6=0. 111+0.003(2d), 1/6=0. 285+0.35(2d), and 61 ——0.75+0. 10(3d), and in-
voke extant estimates of 6~(2d) and /3 to confirm the scaling relation.

I. INTRODUCTION

There is at present a great deal of interest in the nature
of higher-order corrections to the dominant critical behav-
ior in many different systems. A large amount of effort
has been invested in the study of these corrections for Is-
ing models' and isotropic percolation, both with series
expansions and field theoretic or analytic approaches. For
percolation, the percolation probability P(p, A, ) is believed
to take the forms

P(p, A. = 1)=Pc(p —p, )~[1+a(p —p, ) '+ ]

and

P(p„k)=P (1—A, )' [1+a(1—k) + . ],
where A, =e, 6& is the thermal correction and 0 is the
first "field" correction. For two-dimensional (2D) isotro-
pic percolation the 5& measured in series analyses is in-
consistent with the measured 0, if the scaling relation

0= b, , /it35

is used for their comparison. The measured 6
&

—1.2,
gives 0—0.5 via (1). The measured Q [=0.64+0.08 (Ref.
5) =0.63+0.05 (Ref. 6)] is inconsistent with b, , —1.2 and
(1) but is consistent with (1) and the b, , = —', recently con-
jectured by Saleur, and with an origin in the nonlinear
scaling field (the Aharony-Fisher correction, 0=0.604).
It is also quite consistent with the magnetic correction
proposed by den Nijs, 0,=0.73; this possibility gives in
fact the best 1/6 value but requires us to revise the inter-
pretation of Fig. 1 of Ref. 6. At any rate, the plethora of
possible explanations still does not confirm or otherwise
the correctness of relation (1) since conclusive proof
would require A-0.5, and despite all the confusion A is
clearly &0.6. We can only conclude that if the predicted

A-0.5 correction is present its amplitude must be very
small.

It is thus of interest to determine whether (1) can be
shown to hold in any system. The obvious candidate for
such a study is the Ising model, but the available field
series are too short to draw any conclusions from their
analysis. Another candidate is directed percolation. Here
extensive field series have recently been generated, and the
field theoretic results for Reggeon field theory (RFT),
which is in the same universality class, mean that a large
body of data is available for purposes of comparison. We
note that the problems that occurred in confirming (1) for
isotropic percolation, videlicit the presence of additional
irrelevant operators originating either in the nonlinear
scaling field or in nonleading magnetic singularities could
also occur in directed percolation. If they are present
with large amplitudes in directed percolation then we
could arrive at a similar stalemate to that occurring in iso-
tropic percolation and be unable to confirm or otherwise
the correctness of relation (1). Likewise numerical sup-
port for (1) would not completely exclude the possibility
of additional nearly relevant magnetic eigenvalues, since
there could be an accidental degeneracy, or there could be
a nonleading singularity that is more relevant with an ex-
tremely small amplitude.

We analyze both 2D and 3D directed percolation and
Reggeon quantum-spin (RQS) series. The development of
the P(p, 8, ) series from the perimeter polynomials is
presented in Sec. I. As discussed in Secs. III and IV, we
obtain the first series estimates for 1/5 in directed percola-
tion:

1/5=0. 111+0.003 (2D),
1/5=0. 285+0.035 (3D),

and greatly improved estimates for
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0=0.45+0. 15 (2D),
$1=0.4+0.2 (3D) .

Excellent 5& estimates for 2D have recently been made, '

and in Sec. V we reanalyze the RQS series and some
directed percolation susceptibilities in D =3 to obtain a 6

&

estimate of

—1.0.
The behavior of the Pade approximants is very similar

on both lattices. Plots for some p, choices are given in
Fig. 1 (S) and Fig. 2 (T). For p, =0.7055 [Fig. 1(a)] and

b, , =0.75+0. 10 (3D) .

Throughout the calculations we have attempted to
reevaluate previous analyses of all the series studied, and
this has led to some revised y, v, and p, estimates. We
suggest

p, =0.7053+0.0010 (square, site),

p, =0.5953+0.0008 (triangular, site),

v = l.280+ 0.015 (3D,RQS),

p, =0.3825+0.001 (sc,bond),

y =1.60+0.04 and y„=2.74+0.07 (sc,bond) .

II. SERIES DEVELOPMENT
FOR DIRECTED PERCOLATION

108.

Q. 50 0. 40 Q. '0 Q. CQ Q. '0 0. &Q 0. ~0 1.00 ). )0

Extensive listings of perimeter polynomials are now
available for directed percolation in all relevant dimen-
sions: the data"' extend through size s=24 (square
site), s=18 (triangular site), s=15 (simple cubic site). The
use of recursive relations for site directed percolation is
explained in detail in Refs. 11 and 12. P(p, A. ) can be ob-
tained from the polynomials D(p)=g, g„(1—p)', by the
relation

P(p, A, ) = 1 —g D, (p)p'

The g„summarize the partition of directed site clusters at
fixed size s, according to the number of isolating neigh-
bors t. As explained by Duarte, " clusters in directed
problems are rooted at the origin, so the g„play the role
of sg„ in undirected percolation. They can be used to
study several dominant critical exponents like r (from the
cluster numbers), '

y (from the first moment of the cluster
size distribution), ' and cr = 1/b, = 1/(y +P) (from the
correction to the average perimeter-to-size ratio at the per-
colation threshold). '

10
8.
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(c)

III. TWO-DIMENSIONAL ANALYSIS FOR 6 AND 0
We consider the P(p„k) as A.~l series for both the

square (S) and triangular (T) site percolation problems.
We have analyzed the series both with the Roskies trans-
form, as presented in Ref. 4 for isotropic percolation (see
also Ref. 6), and with a graphical version of the method of
Adler et al. ' Both methods give plots of different Fade
approximants to 1/6 as a function of 0, for difterent
choices of p, in the series P(p„k) as A, ~ l. We have con-
sidered 0.7045 &p, & 0.7060(S) and 0.5939 &p,
&0.5969( T), extending the ranges quoted by De'Bell and
Essam, ' hereafter denoted by DBE-I. We expect that
their D-log-Pade analysis will give reliable central esti-
mates for p, since the thermal" confluent correction is'

10
8,.,

FIG. 1. Graph of different Pade approximants to 1/5 as a
function of 0 for different p, choices on the square lattice: (a)

p, =0.7055; (b) p, =0.70525; (c) p, =0.70500.



7048 JOAN ADLER AND J. A. M. S. DUARTE 35

(a) (b)

10 10
8 .-.

4G l GG

10
8—

10 '

8 c

0 30 0 40 G 5G 0 6G G ~', G GG

(e)

1P-1

1. 4Q "G I GG

FIG. 2. Graph of different Pade approximants to 1/6 as a function of 6 for different p, choices on the triangular lattice: (a)

p, =0.5957; (b) p, =0.5954; (c) p, =0.5951, (d) p,. =0.5954, method of Ref. 15; (e) p, =0.5949, method of Ref. l5.
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p, =0.5957 [Fig. 2(a)] we have I/5-0. 108 and fl -0 8.5
The p, choices 0.705 25 [Fig. 1(b)] and 0.5954 [Fig. 2(b)]
give 1/6-0. 110 and the 0, values substantially un-
changed. For p, =0.7050 [Fig. 1(c)] and p, =0.5951 [Fig.
2(c)] we have I/5-0. 112. The interpretation of these
figures is somewhat marred by the presence of apparently
defective Pade approximants between the intersection re-
gions, leading both to uncertainty in the 0, value at the
first intersection region and to a possible question as to
whether there are in fact two distinct regions. If there is
only one region, then the 1/6 values would be (0.108
and the 0 values near 0.7. To clarify this situation we
ran studies with the method of Ref. 15, which we think is
more reliable near a confiuent correction of 1.0 but should
be able to clearly distinguish whether one or two regions
are present elsewhere. In Fig. 2(d) we give this analysis
for p, =0.5954, where the intersection region falls at
I/5 —1.105 and 0-0.5, and in Fig. 2(d) the plot for
p, =0.5949, where 1/6-1.14 and A-0.45. In both cases
the plots from the second method give results consistent

with those of the first only if the two-intersection region
interpretation is invoked.

Our overall conclusions for two dimensions are

0.7045 &p, &0.7060 (S),
0.5945 &p, &0.5960 (T),
0. 108( 1 /6 & 0. 114,

0.30(Q(0.60 .

The p, ranges overlap, but one wider than, those of
DBE-I. The implications of the 5 and A results will be
discussed below.

IV. THREE-DIMENSIONAL ANALYSIS FOR 5 AND 0

In three dimensions we have considered simple cubic
site percolation. The first question here concerns the
value of p, for this lattice; De'Bell and Essam hereafter17

(denoted by DBE-II) quote p, =0.434+0.004, but express

(b)
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FIG. 3. graph of different Pade approximants to 1/6 as a function of 0, for different p, choices on the simple cubic lattice: (a)

p, =0.4315; (b) p, =0.4325; (c) p, =0.4338; (d) p, =0.4345.
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doubts based on problems with the convergence of the
Pades. Their alternative choice is p, =0.4313+0.0015,
and Ref. 14 quotes p, =0.435+0.0015. We find [Fig.
3(a)] very poor convergence for p, =0.4315 and much im-
proved convergence for p, & -0.4325. We plot graphs of
1/6 as a function of A for several p, choices that give
reasonable convergence. In all these graphs there is also
the question of whether there is one or two convergence
regions. However, unlike two dimensions we have no
clear alternative information. Therefore, we shall com-
plete two analyses: one based on the assumption that
there are two regions, one centered at 0.2&6 &0.4 and
another at —0=0.6; and a second based on the assump-
tion that there is a single region with 0.3 & A &0.6.

If we assutne two regions we find p, =0.4325 [Fig. 3(b)]
gives 1/6 =0.34+0.04„0,=0.30+0.20, and p, =0.4338
[Fig. 3(c)] gives much better convergence to
1/6 =0.29+0.03 and 0=0.33+0.16. For p, =0.4345
[Fig. 3(d)] just above the DBE-II range, we find
1/6=0.28+0.03, but 0 a little higher at 0.36+0.16. This
choice of p, is well into the central estimate region recent-
ly proposed in Ref. 14 from extended susceptibility series
of 17 and 16 terms. Their chosen y is 1.564+0.025, and
if the standard Pade analyses of these authors (who also
add several cautionary remarks on the difFiculty of this
specific problem) are to be reconciled with the bond cubic
estimate y = 1.60+0.04 (see Sec. V) even a value of
0.436 —0.437 is not unreasonable. We conclude that
1/6=0.285+0.035 and 0=0.35+0.18. If we assume a
single region we find 0=0.5+0.2 and 1/6=0.27+0.03.
We suggest the overall estimate 0,=0.4+0.2.

I I 1

Q. 4Q Q RQ ) PQ I GQ 2. QQ 2. ~Q c. &Q d. cQ

(b)

V. TOWARD A 6
&

ESTIMATE
IN THREE DIMENSIONS +

c. QQ c ~ 4 iJ

Previous 6& estimates in three dimensions are'
0.6&6] &1.1 and estimates of A, =kiev from RFT. These

18are 0=0.49+0.01 from an e expansion and
A =0.58+0.01 from a loop expansion. Using the
quantum-Reggeon-spin-model v value of Brower et al. ,

'
which is 1.271+0.007, this gives 6] ——0.62+0.02 and
6& ——0.74+0.02, the former being barely consistent with
the Ref. 15 estimate. We note that Cardy ' prefers the @-

expansion choice.
We have attempted to find an improved 6] estimate

from reanalyses of the lattice RQS series of Ref. 19, which
were considered too short for a confluent analysis in the
past but turn out to be quite useful, and new confluent
singularity analyses of some three-dimensional directed
percolation series.

The RFT series are 10 terms long, and we chose to take
the series for goo(k), which has a dominant exponent
v(gi). For the central K, choice of Ref. 19, we find
v(1+g) —1.57, but no evidence of any confluent correc-
tion. The graph df v(ted+1) as a function of 6, [Fig. 4(a),
K, = I/2. 428] has a lack of structure that is reminiscent
of the three-dimensional spin- —,

' Ising graphs at the T, one
obtains from an analysis which neglects confluent correc-
tions to scaling and gives exponents that violate hyperscal-
ing [see Figs. 2(a) and 5(b) of Adler ]. In both cases
there is good Fade convergence, but no intersection of the

FIG. 4. graph of different Pade approximants to v(1+g) as
a function of h~ for different K, choices in the RQS model: (a)

2. 428 ' ~ 2.4222

Pade approximants in the Roskies transform graph.
When the K, value is increased to well above the error
bars of Ref. 19, the lack of structure is replaced by two in-
tersection regions, one at 6

&
-0.80+0.10, where

y'(1+ r) ) = 1.61+0.01 for K, =, ,'„, [Fig. 4(b)] with a
lower 6& —0.65+0.10 and higher v(1+g) =1.615+0.010
for K, =, ,'„, . Both graphs have a second convergence
region near 6& ——1.8.

These graphs are reminiscent of Figs. 2(c), 5(c), and 6(c)
of Ref. 20, where the exponent values at the intersection
of the various Fade approximants were those that agreed
with hyperscaling and the field theoretic values. We thus
conclude that b, , -0.73+0.10 and v(1+ g ) —1.61+0.02
for the Reggeon spin model. Using the g value of RFT
given by Cardy, ' g=0.26, we find v= ', ,", =1.28, rather
than the 1.271 of Ref. 19, and this gives 6~-0.63+0.02
or -0.74+0.02, depending on the 0, choice. Both of
these 6i estimates are consistent with the direct estimate
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p, =0.3817 =- y = 1.56+0.02, 5 i
——1.05+0. 10;

p, =0.382~ y = 1.57+0.02, 6 )
——0.92+0.10;

p, =0.3822 =- y = 1.58+0.02, 5 =0.85+0. 15;

p, =0.3824 - y =1.61+0.02, 6) ——0.82+0. 15;

p =0.3826 - y=1.62+0.02 6)——0.75+0. 15 .

The convergence degrades above p, =0.3826 for the
S(p) series, and we conclude from these two studies that
p, for the bond cubic problem is slightly above the DBE-
II estimate (we suggest p, =0.3825+0.001), and that
y = 1.60+0.04, y =2.74+0.07 6& ——0.78+0.22 give ex-
ponent estimates that are consistent with this choice.

from the spin series, but we see that consistency with the
series would favor the loop choice. The v estimate is
closer to the series value of 1.28+0.03 of DBE-II than the
1.271 choice was.

There are several well-behaved three-dimensional
directed percolation series. We choose to study two series
for directed bond percolation on the sc lattice, the resis-
tivity series of Bhatti ' and the 13-term mean size series
S(p) of DBE-II, since these have the same critical point.
It has been conjectured that 5 I will be the same for the
susceptibility (mean size) and resistive susceptibility for
isotropic percolation, with strong support coming from
2D directed percolation; thus, we will certainly make the
same assumptions here.

The p, estimate of DBE-II is 0.382+0.001. From the
series of Bhatti ' we have plotted y, versus 6& for several
p, choices in and out of this range and find

p, =0.382 — =- y„=2.70+0.04, 5) ——0.95+0.2;
p, =0.383 - y, =2.78+0.04, 6) ——0.8+0.2;
p, =0.3835 - y„=2.83+0.03, 6 =0.7+0.2 .

The plot for p, =0.3830 is given in Fig. 5.
From the S(p) series we find

From these diverse analyses we may conclude that
0.65 & 5& &0.85, with the possibility of a slightly lower es-
timate if the e expansion choice were to be preferred over
the loop and series ones.

VI. TESTING THE SCALING RELATION

We now compare the 0, estimates from Secs. III and
IV with the values obtained from the relation A=hi//35.
We begin by comparing our 1/5 estimates with those ob-
tained via the scaling relation 6—1 =y/P. In two dimen-
sions we take y =2.277 21+0.00001 from Ref. 10 and
P =0.28+0.01 from DBE-II to find 5 —1 =8.13+0.28

- 1/6=0. 1095+0.0040, quite in agreement with our es-
timate of I/5=0. 111+0.03. The convergence for the P
and y series is much tighter since 6& ——1.0. ' In three di-
mensions we take our y = 1.60+0.04, together with
/3=0. 59+0.02 to predict 1/5=0.27+0.015. This overlaps
with our range of 1/6=0.285+0.035, and is directly con-
sistent with the 1/6 estimates from the higher p, and 0,
choices. It is in perfect agreement with our estimate made
by assuming a single intersection region, although the 2D
results would seem to imply that the two-region interpre-
tation is the correct choice. We note that the P value
used for the prediction was not taken from a conAuent
singularity analysis. As we will shortly require a P esti-
mate, we make an alternate calculation using the relation
P = —,

' v( 2Dz —g) with the RFT g =0.26, our and DBE-
II's v = 1.28 and the RFT z = 1.16 to find
P= 2(1.28[ —,'(2X1.16)—0.26])-0.58, which is closer to
the site estimates of DBE-II, and thus see that neglect of
confiuent corrections does not affect the P estimate very
much. This P gives a I/5 estimate Of 0.26, also within
our range.

In two dimensions, we use 6, =1.0, and /3 and I/5 as
above, to predict 0=6, i!/N=1.00)& o",,' =0.39+0.02.
This is in good agreement with the measured
Q =0.45+0.15. In three dimensions, we use
5i ——0.75+0.10, P=0.58, and I/6=0. 285+0.04 to predict
Q=b, i//%=0. 75X,'»' ——0.37+0.10. If we use the e ex-
pansion' 5

&

——0.63+0.02, we predict A =0.63 &",,",

=0.31+0.05. The loop expansion 5& ——0.74+0.02, gives
0=0.36+0.05. These 0 values are both well within the
range of our two-intersection region estimate,
0=0.35+0.18, and of our average 0, and toward the
lower end of the 0 estimate from the single intersection
region estimate, 0=0.5+0.2. We conclude that the scal-
ing relation 0= b, , /g5 is satisfied in both two and three
dimensions for directed percolation. We exclude the pos-
sibility of a more relevant II than that given by 5, /P5
with a large amplitude but cannot exclude the possibility
that there is an accidental degeneracy between an 0 de-
rived from the thermal correction and one from another
source.
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